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Spectrum of generators of a noncommutative
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Abstract. The joint spectrum of generators of a noncommutative Banach algebra with unit
has many properties similar to the commutative case. The left and the right joint spectra of
generators coincide and the joint spectrum is determined by the values of multiplicative linear
functionals {see also [1]). The joint spectrum of generators is always polynomially convex (but
possibly empty). It is also shown that a unital Banach algebra 4 has a nonzero multiplicative
linear functional if and only if such a functional exists on every finmitely generated subalgebra of
A. Finally, we investigate the properties of the function which assigns to each finite collection of
clements in a Banach algebra the joint spectrum of these elements in the Banach algebra
generated by them. .

Throughout this paper the term “Banach algebra” will stand for a unital
Banach algebra over the complex field C. Let 4 be a Banach algebra with
the unit 1 and let ay, ..., a,€4. The left joint spectrum of(ay, ..., a,), simply
written as o;{(d,, ..., a,) if there is no confusion, is defined as the set of those
n-tuples (g, ..., 4,) €C" for which the left ideal generated by a;—4,, ...,
a,— A, is proper. (We shortly write a;— A, instead of a;—A;1.) The right joint
spectrum o, (ay, ..., a,) can be defined analogously. The joint spectrum is the
union of the left and the right joint spectra,

T(@, s @) =0y(a1, .00, B) VO (A1 s G).

For basic properties of o, 6,, and o see [2].
It is well known that the joint spectrum of generators of a commutative

Banach algebra has an important additional property, namely it is polyno-

mially convex, The aim of this paper is to study the joint spectrum of
generators of 4 noncommutative Banach algebra. We show that it exhibits a
lot of properties of the joint spectrum in a commutative Banach algebra.

Denote by WR(A4) the set of all nonzero multiplicative (linear) functionals
on a Banach algebra A.

ProrosiTION. Let X, ..., X, be generators of a Banach algebra A. Denote
by I, (respectively 1) the closed left (right) ideal generated by x, ..., x,. Let C
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be the closed two-sided ideal generated by the commutators X;x,-x, X; (f, k
=1,..., n). Then:

N L=1. In paticlar, ©0,...,0€0,(x,...,x,) if arnd only |if
(03 LR ] O)Eo-r(xl: e xn)'

(23 Ce<l,.
(3 If I, 2 A, then there exists f e M(4) such that
f(xl) o Ef(xn) =0

Proef (1} Let & be the set of all complex polynomials in n non-
commutative indeterminates, i.e. the free associative noncommutative algebra
with »n generators and with unit. Denote by 2, the subset of # consisting
of polynomials without the constant term. As x,, ..., x, are generators of 4
we have

A=1{p(xy, ..., x): peP~
Further,

. ‘
=LY piX, oo, X X0 Py evrs PrE PP}
Jj=1

= {p(x1, ..., x,): pegf’o}” =,

Since the closure of a proper ideal is proper, we conclude that
©,....,0€eq (%, ..., x,) if and only il [, # 4 if and only if I, s 4 if and
only if (0, ..., 0)eo,(xy, ..., x,). .

(2) Clearly x;x,—x.x;€l; (j, k=1, ...,n). Hence C < I,

" (3) Suppose I; # 4. Then I, is a closed two-sided ideal of codimension 1.
The factor algebra A/I, is isomorphic to the algebra of complex numbers and
the canonical homomorphlsm Jr A = A/l is-a multiplicative functional satis-
fying f(x;) =f(x)=0.u

Tueorem 1. Let A be a Banach algebra with generators x,, ..., x,.
Then: )

(1) Gl(xl""axn)=ar(xla"-san=a(x1:---s xn)

={(f{x0), .o () S eMA)].

(2)  Let C be the closed two-sided ideal generared by the commutators x;x,
=X U k=1,...,m. Theno(x,, ..., x) =@ if and only if C = A. If

C# A, then a(xy, ..., x) = oM (vxy, ..., vx,) where vi A —A/C is the
canonical homomorphism from A onto the commuiative Banach algebra
A/C. .

(3} alxy,..., x,) is polynomially convex.
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Proof (I) Let {4;,...,4)eC" As x,—41,, .. —4, are also genera-
tors of A4, part (1) of the Proposition gives (1., ..., ,,}ea;(xl, eony X, if and
only if (A4,..., Lo (x5, ....x), and so o,(x;, ..., X} =0, (X1, ..., X)

=o{Xy, ..., Xp).
Let (Ay,....., Ayeo(xy, ..., x,). By part (3) of the Proposition there exists
feIM(4) such that f{x;) =4, ..., f(x) =4, So

a(xy, o X (S (x0), L f (X)) feMA)).

Conversely, let fe9(4). Then kerf is a proper two-sided ideal and
x;—f(x)eker f (j=1, ..., n. Therefore {f(x,),....f(x)e0(x, ..., x,).

(2) Let feW(A4). Then fix;x=x.x)=0 (j.k=1,...,n and so
J(Q)=0.

If C =4, then M(A) =@ and o(x,, ..., x,) = @ by part (1).

Suppose Cw# A Then o%{xq,..., %) 2a(vx,, ..., vx,). Let
(A1 eers ea 4(xy, ..., x,). Then there exists f €W(4) such that f(x) =
(=1, .. . Since f(C) = 0 there exists f € M(4/C) such that f = fov, 1e
Flox) = f(x,,) = A (j=1,..., ). Therefore (i, ..., A)ea¥C(vxy, ..., vx,).

(3) The joint spectrum cr"(xl, ..., X,) is either empty or a“(xl, ey X
= g4 (vx,, ..., vx,). As A/C is a commutative Banach algebra with genera-
tors vxy, ..., vx, we conclude that ¢ (x4, ..., X,) is polynomially convex (see
[6], 17.10). m

Remarks. 1. The equality o(x,, ..., X = {(f(x1), .... S (x)): f e MM(A)}
was proved in [1], Proposition 2. We have proved it in a different way.

2. The formula o*(xy, ..., x,) = ¢¥(vx,, ..., vx,) can also be deduced
from [1], Remark 3, p. 218 and Proposition 2, but our proof is simpler.

3. If we introduce the joint spectrum of infinite families of elements of a
Banach algebra A, then the resulls of Theorem 1 remain true,

Let a4, ..., 4, be elements of a Banach algebra 4. The left approximate
point spectrum t,(ay, ..., a,) is defined as the set of those n-tuples
(Ags.oos A) eC" for which

inf {JZ a;—A)zl|: z€A, |lz|| = 1} = 0.
=1

The right approximate point spectrum t,(ay, ..., 4,) can be defined in a
similar manner (see [2] or [3]).
let A be a Banach algebra with generators Xxi,...,x, and let
(Ags ey An) er;(xi, ..., %,). Denote by I the closed two-sidéd ideal generated
by xl—zll, cees /1 Clearly I consists of joint left topological divisors of
zcro, i.e. there 1s a net (z,) of clements in A such that |jz,]| = 1 for all « and
z, — O for every yel. Thus
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T (Xgs oo X = {(f(xy), ..., f(x0)): £ €DA), ker [ consists

of joint left topological divisors of zero}.

On the other hand, the following two examples show that the left and
the right approximate point spectra of x,, ..., x, may differ and they may be
empty even if &(x, ..., x,) # @ (cf. also [3], Example 1).

ExampLE 1. Let V be the free (noncommutative) semigroup with genera-
tors x, y and with the unit 1. Define a norm on ¥V by

1
Ay, K,k
X X -
Iy Y-l gt gl
k=1, my,ng, mg, ooy iy, m =1, ny, my = 0). Clearly,
lloy vally < llogliv lloally (o4, 2 EV).

Let A be the I' algebra over V; ie.
A=fa=} a0 2,eC (veV), |la| =} lo/lfelly <o}

vel veV
Then A is a Banach.algebra with generators x, y. It is easy to check that
o(x, y) = {(0, 0)} # O while 7,(x, y) = 1,{x, y) = @. To see this, it is sufficient
to prove that [|zx|{+[izyl| Z [lzll (z€A4) (and analogously ||xz||+ ||yzl| = ||zi]).
Let z eA. We can write z =0 +24 x4z, y for some z;, z, in A and a&C,
lizll = |+ Hzy x[| +liz2 y1|. Then

llzxl} = llox+2zy x*+ 25 yal| = lloxht +lzy 2| +liz yxll 2 Jol + 11z, VI

Similarly |[zy|f 2 Jo|+||z; x||. This gives together

lzxll + lfzyl) 2 2 lod + [z, x|l +lz2 ¥ 2 2]l

Exampere 2. Let ¥ be as in Example 1. Now the norm on ¥ will be
given by

1
[[x™ y™ L x™ Y =
¥l nl (my + 1)L (my + DY
for k=1, ny,my,....,n. 21, m =0, and
my H2 m2 m mk” — 1

fly "

mylny! (my + 1)1,
forkz1, m,n,,...,m 21, m=0.
Let A be the /' algebra over ¥ with this norm. Then 4 is again a
Banach algebra with generators x, y, and o(x, y) = {(0, 0)} # @. Further,

'-ﬂk! (mk-f-l)!

[yl = vy =

(n+1)! n+1 a1

icm

Spectrum of generators of 4 Banach algebra 91

so (0, 0)ety(x, y}), and hence 7,(x, y) =o(x, y)  O. On the other hand,
1,(x, ¥) = @ since |jzx||+]zy)| = ||lz|| (zeA) as in Example 1.

Let A be a Banach algebra and let a,, ..., a,€4. Denote by [ay, ..., a,]
the Banach algebra generated by a,, ..., a, and the unit. It is clear that if 4
has a muitiplicative functional f; then so do all algebras {a,, ..., 4,], Where
ay, ..., 4, are arbitrary elements of 4 and n =1, 2, ... (e.g. the restriction of f
to [ay4, ..., 3,)). Now we shall show the converse of this fact.

TueoreM 2. If every finitely generated subalgebra of a Banach algebra A
has a multiplicative functional, then A itself has such a functional.

First we shall prove the following:
LemMma. If a function f; A = C is such that
(f (@, f (), /(&) ea™™N(a, b, c)

for arbitrary elements a, b, ¢ in a Boanach algebra A, then it is linear and
multiplicative.

Proof. Take arbitrary a, b in A. By assumption we. get

(f (@), £ (b), f (ab)) a*™**}(a, b, ab),

which, in view of Theorem 1 (cf. also [1], Proposition 2), implies that there
exists a multiplicative functional f, on the Banach algebra {a, b] such that

Sola)=fla}, folb)=71(b), folab)=S(ab).

Thus we have

f(ab} = foab) = fola) fo(b) = f{a) f ().

which means that f is muItlphcatwe Similarly we can prove that it is
linear. =

Proof of Theorem 2 Denote by B(0, |4/} the closed ball in (ol
centered at zero with radius g, (= the spectral radius of a) and let
K = J]iea B(0, flally). Then K is a compact set with respect to the product
topology. Further, for each n-tuple (ay, ..., a,) of elements in A, we write

Kolay, ..., a,) = {(An)wl eK: there exists feM[a,, ..., a,))
. such that f(a) = A. for j=1,.,.,n}.

By our assumption Kq(ay, ..., a,) is nonempty. Moreover, it is obvious that

Ky{ay, ..., a,) is compact and
Ko(a1s-"= ﬂn)ﬁKo(bj_,..., bm)

for arbitrary elements a,, ..., @, by, ..., by in A and any positive integers
n, m. Hence the family {K(ay, ..., a,}}, where {a,, ..., a,} runs through all

Ay, bl: ey bm) CKO(als crez
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finite subsets of A, has the finite intersection property. Therefore its intersec-
tion is nonempty. If (4,),.. belongs to this intersection, then the function
fi A — C defined by the formula f(a) =4, is, in view of the Lemma, a
multiplicative functional. w

Remark. It would be interesting to know an answer to the following:

QuesTioN. Does the assertion of Theorem 2 hold true if we only assume
that every finitely generated subalgebra [ay, ..., a,] of A has a multiplicative
functional, where 1< n< N, and N2z 2 is fixed?

In the final part of the paper we shall examine the propertics of the
function

{agsc. “n](

(¢, ..., a,)—0a iy enny Oy)

which assigns to each n-tuple of elements in a Banach algebra 4 the joint
spectrum of these elements in the Banach algebra generated by them. To
simplify notation we shall write in the sequel &{ay, ..., a,) instead of

AUy ay).

The set 6{ay, ..., a, is compact but possibly empty. In view of Theorem
1 it is always a polynomially convex subset of €7 But it need not be equal to
the polynomially convex hull of the joint spectrum o*{ay, ..., 4,) (see [3],
Example 1).

Theorems 1 and 2 have the following noteworthy consequences;

a

Corortary 1. If &{ay, ..., a,) is nonempty for an arbitrary n-tuple
(ay, ..., a,) of elements in a Banach algebra A with n=1,2, ..., then A has a
multiplicative functional.

Cororrary 2. If all &(ay, ..., ay (a1,...,a,64; n=1,2,..) are non-
empty, then so are all 6(a,, ..., a,) {(also o;(ay, ..., a,) and o.(ay, ..., a,)).

Remark. Examples 1 and 2 show that we cannot replace g, (res-
pectively o,) by 7, (z,) in Corellary 2,

Now observe that the joint spectrum of generators & has the so-called
“one-way spectral mapping property”, ie.

(*) pg(al: LR | an) :&(p(al.a LR an))s

where p =(py, ..., Pm) I an arbitrary m-tuple of polynomials in n (noncom-
muting) indeterminates and a,, ..., a, are arbitrary elements of A.
Indeed, we have

[“1""!“"] (

(**) p&(ala R an) c o p(ala AR an))-

Moreover, since plaq, ..., a,)€[lay, ..., a,]™ _ we get [p(ay,..., 4]
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< [ay, .. s 4,1, which in turn implies
[agy...a,] -
o ! n(p(als"':an))Ca(p(Gla'--san))'

(##) and (+=%) together give (x).

If we replace the inclusion by the equality in (x), then we get the spectral
mapping property of the joint spectrum of generators &, But easy examples
show {for instance, Harte’s example in [2], p. 93) that & need not have this
property.

In investigations of joinl spectra an important role is played by the
projection property which is the particular case of the spectral mapping
property. Namely, we say that ¢ satisfies the projection property on a Banach
algebra A if for arbitrary elements ay, ..., @,.,, in A and arbitrary positive
integers n, m

(k%)

+ - -~
P: ma(ala triva an+m) = G(al, L) a'n):

where Pi™™ js the canonical projection from C"*™ onto C" which sends
(’11* LR A“nvwn) to (’11’ AERS] An)

We shall now show that if & satisfies the projection preperty, then it
must also have the speciral mapping property. Moreover, we shall give some
other conditions equivalent to the projection property of &.

The symbol rad 4 denotes the (Jacobson) radical of a Banach algebra A.

Turorem 3. Let A be a Banach algebra. The jfollowing conditions are
equivalent:
(1) @ has the projection property on A.

@D Flar o ad= (f@), o f@): feMA} for all a,...,a,E4,
n=1,2,...

(3) & has the spectral mapping property on A.

@  J(pla, ..., a)) = pé(ay, ..., a) for every metuple p={py, ..., pn) of
polynomials in n variables and each n-tuple (ay,...,a,)eA", n,m
=1,2,...

(5)  The algebra Afrad A is commutative and every element of A has a totally
disconnected spectrum (i.e. A is of type ES, see [4] and [5]).

Proof. (1)=>(2). Take an arbitraty n-tuple (¢, ..., a,) of elements in 4.
Then it is evident that
{(fla), .- fla)): feMA)] <6(ay, ..., a)

To establish the -converse inclusion fix an arbitrary =n-tuple
(Aisoovy A €G (a1, ..., 6,). We have to show that there exists a multiplicative
functional f on 4 such that f{a) =4, for j=1,....,n
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Let K = [[.ea B(O, llall) be as before and let
Ki(by, ooy bpd = Wtdeea €K: piy, =4 for j=1,..,n
and (1,5 s M) €G (B, ..., b))

for arbitrary by,..., b,cA4 and every positive integer m. The projection
property of & implies that K, (by, ..., b,)is always nonempty. Further, it is a
compact subset of K and

Kl (blu (R bma Ciyenns cp) C:Kl(bls ) bm)mKl(Cli AR ] cp)

for all by, ..., by, ¢1,...,c,€A and m, p positive integers. Therefore the
family 4K, (by,..., b,)} has the finite intersection property. If an element
(ti)seq belongs to the intersection of this family, then the function f: 4 ~C
defined by f(a) = u,is, in view of the Lemma, a multiplicative functional, It
is clear that f(a) =4, (=1, ..., n).

(2) 2(3) and (3)=-(4) are obvious.

- (4) =(1) follows by the one-way spectral mapping property of ¢.
(2) = (5). Take arbitrary a, b, ¢ in A. Then

o((ab—ba)c) = G{(ab~be)c) = {f ((ab—ba)c): f e M(4)} = {0}

Therefore ab—ba erad 4, which means that the algebra 4/rad 4 is commuta-
tive. We claim that the algebra A4 is of type ES. Suppose on the contrary that
there exists an element aycA such that o(a,) contains a continuum (con-
sisting of more than one point). Then reasoning as in the proof of Lemma 1
in [4] we get an element bed with O¢e(b) and 0ed(h). But this is
impossible since by our assumption ¢ () = {f(b): f e M(A)} = o (b).

(5) =(2). As Afrad A is commuiative and

6(ay+rad 4, ..., a,+rad A) = d{a,, ..., a,),

and to every feii(4) there corresponds feWR(4/radA) such that
Ffla+radA) = f (@), we can assume, without loss of generality, that A itself is
commutative, Then

&(als EREN an)= {( 1): f(a)) femt([ah"'ian])}'

But the algebra A is of type ES which means (see [47]) that every multiplica-
tive functienal on [a, ..., a,] has an extension to a multiplicative functional
on the whole algebra A. Thus

5(“‘1: ey an) = {(f(al)’ '--sf(an)): ng:R(A)}

and we are done. m
Remark. Each of conditions (1}~(5) of Theorem 3 implies

€ . ofa,....,a)=26ay, ..., a) for an arbitrary finite subset {a, ..., a,}
of 4,
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The converse iS not true. It can be proved that the algebra M, of all 2x2
complex matrices has property (6) while obviously it satisfies none of (1)}(5).

Acknowledgement. We thank the referee for his kind suggestion which
led us to the formulation of Theorem 2.
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