

F. Lust-Piquard and W. Schachermayer

[T₁] M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (307) (1984).

[T₂] -, Pathologie des relèvements invariants, Proc. Amer. Math. Soc. 84 (1982), 379-382.

 T_3 -, Some functions with a unique invariant mean, ibid. 82 (1981), 253-256.

UNIVERSITÉ PARIS-SUD Bătiment 425 91405 Orsay, France

136

INSTITUT FÜR MATHEMATIK JOHANNES KEPLER UNIVERSITÄT LINZ A-4040 Linz, Austria

Received July 13, 1987

(2336)

STUDIA MATHEMATICA, T. XCIII (1989)

Some properties of weakly countably determined Banach spaces

by

M. VALDIVIA* (Valencia)

Abstract. Let Y be a closed subspace of a Banach space X. If Y^{**}/Y is separable and X/Y is weakly compactly generated, then X is also weakly compactly generated. Analogous results are obtained with "weakly compactly generated" replaced by "weakly K-analytic" and also by "weakly countably determined".

The vector spaces we use here are over the field of real or complex numbers. N denotes the set of natural numbers. Our notations are standard. If (x_n) is a sequence in X, $[x_n]$ will stand for the closed linear hull of (x_n) . Given a subset A of X, \overline{A} will denote its weak-star closure in X^{**} ; if A is absolutely convex, i.e. convex and circled, and also closed and bounded, we shall write X_A for the Banach space on the linear hull of A with A as its closed unit ball. Given x in X and u in X^* , we shall write $\langle x, u \rangle$ instead of u(x). If P is a continuous projection on X, P^* denotes the conjugate projection on X^* .

A Banach space X is said to be weakly compactly generated whenever there exists a weakly compact set $K \subset X$ such that the linear span of K is dense in X. In particular, every separable or reflexive Banach space is weakly compactly generated.

A Banach space X is said to be weakly K-analytic (respectively, weakly countably determined) whenever there exists a Polish topological space (respectively, a metrizable and separable topological space) F and a mapping T from F into the family of weakly compact subsets of X such that

$$X = \{ \} \{ Tu \colon u \in F \}$$

with the following property: whenever (x_n) is a sequence in F converging to x_0 and U a weakly open neighbourhood of Tx_0 , there exists a positive integer n_0 such that $Tx_n \in U$, $n \ge n_0$.

^{*} Supported in part by CAICYT.

Every weakly compactly generated Banach space is weakly K-analytic (a proof of this fact can be found in [8], where the concept of K-analyticity used is equivalent to the one we have just introduced; see [2], [4] and [6]). Every weakly K-analytic Banach space is, obviously, weakly countably determined.

A Banach space X is weakly K-analytic if there exists a mapping S from N^N into the family of absolutely convex and weakly compact subsets of X such that

$$X = \{ \} \{ Su \colon u \in \mathbb{N}^{\mathbb{N}} \}$$

with the following property: whenever $a = (a_n)$ and $b = (b_n)$ are elements of N^N such that $a_n \leq b_n$, $n = 1, 2, ..., Sa \subset Sb$ (this result can be found in [9] in the case of a Banach space and in [1] in the case of certain locally convex spaces).

A Banach space X is weakly countably determined if there is a sequence (A_n) of absolutely convex, closed and bounded subsets of X such that whenever x belongs to X, there exists a subsequence (A_n) of (A_n) such that $\bigcap_{j=1}^{\infty} A_{n_j}$ is weakly compact and contains $\{x\}$ (see [12]).

The finite products and the separated quotients of weakly compactly generated (respectively, weakly K-analytic, weakly countably determined) Banach spaces are in the same class. In [7], an example is provided of a weakly compactly generated Banach space with a closed subspace which is not weakly compactly generated.

In the sequel we shall need the following results, which can be found in [10], [12], [3] and [11], respectively:

- (a) Let X be a Banach space such that X^{**}/X is separable. Then X is the topological direct sum of a separable Banach space and a reflexive one.
- (b) Let X be a weakly countably determined Banach space. Let C and D be two countable subsets of X and X^* , respectively. Then there exists a continuous projection P on X such that P(X) is separable, $C \subseteq P(X)$ and $D \subseteq P^*(X^*)$.
- (c) Let A be a weakly compact subset of a Banach space X. Then there exists an absolutely convex and weakly compact subset M of X such that $A \subset M$ and X_M is reflexive.
- (d) If Y is a closed subspace of a Banach space X, $X + \tilde{Y}$ is a Banach space (with the norm induced by X^{**}).

Theorem 1. Let Y be a closed subspace of a Banach space X. If Y^{**}/Y is separable and X/Y is weakly compactly generated, X is also weakly compactly generated.

Proof. Let B be the closed unit ball of X. Let A be an absolutely convex and weakly compact subset of X/Y whose linear hull is dense in X/Y.

According to result (c), A can be chosen in such a way that $(X/Y)_A$ is reflexive. Let φ be the canonical mapping from X onto X/Y. We shall write D instead of $B \cap \varphi^{-1}(A)$. Let ψ be the canonical injection from X_D into X.

We can consider Y as a subspace of X_D . Then X_D/Y is isomorphic to the reflexive Banach space $(X/Y)_A$, hence $X_D + \tilde{Y} = (X_D)^{**}$. It is easy to prove that \tilde{Y}/Y is isomorphic to Y^{**}/Y , hence $(X_D)^{**}/X_D$ is separable, being isomorphic to \tilde{Y}/Y . It follows from result (a) that X_D is weakly compactly generated. Let M be an absolutely convex and weakly compact subset of X_D whose linear hull is dense in this space. Then $\psi(M)$ is an absolutely convex and weakly compact subset of X whose linear hull is dense in X.

THEOREM 2. Let Y be a closed subspace of a Banach space X. Then, if X/Y is separable, there exists a separable Banach space Z such that X is isomorphic to a quotient of $Z \times Y$.

Proof. Let φ be the canonical mapping from X onto X/Y. Let $\{u_n: n = 1, 2, ...\}$ be a dense subset of the unit sphere of X/Y. For every $n \in N$ we can choose an element $x_n \in X$ such that

$$\varphi(x_n)=u_n, \quad ||x_n||<2.$$

Let B be the closed unit ball of $[x_n]$. We denote by ψ the restriction to $[x_n]$ of φ . Given an arbitrary element v of X/Y such that $||v|| \le 1$ and a positive number ε , we can find a positive integer m and $0 \le \lambda \le 1$ such that

$$||v - \lambda u_m|| = ||v - \psi(\lambda x_m)|| < \varepsilon,$$

hence the closure of $\psi(2B)$ in X/Y contains the unit ball of this space. Therefore ψ is a mapping from $[x_n]$ onto X/Y. It follows that $X = [x_n] + Y$. Writing Z for $[x_n]$ we can define

$$T(z, y) = z + y$$

for every (z, y) in $Z \times Y$. Then T is a continuous linear mapping from $Z \times Y$ onto X, hence X is isomorphic to $(Z \times Y)/T^{-1}(0)$.

The following three corollaries are easy consequences of Theorem 2:

Corollary 1.2. Let Y be a closed subspace of a Banach space X. Then, if Y is weakly countably determined and X/Y is separable, X is also weakly countably determined.

Corollary 2.2. Let Y be a closed subspace of a Banach space X. Then, if Y is weakly K-analytic and X/Y is separable, X is also weakly K-analytic.

COROLLARY 3.2 [5]. Let Y be a closed subspace of a Banach space X. Then, if Y is weakly compactly generated and X/Y is separable, X is also weakly compactly generated.

THEOREM 3. Let Y be a closed subspace of a Banach space X. Then, if Y^* is separable and X/Y is weakly countably determined, there exists a closed subspace Z of X with the following properties:

- (1) Z contains Y.
- (2) X/Z is separable.
- (3) There exists a Banach space M which is a topological complement of \tilde{Y} in $Z + \tilde{Y}$.

Proof. Let Y^{\perp} be the subspace of X^* orthogonal to Y. As usual, we shall identify Y^{\perp} and X^*/Y^{\perp} with the Banach space conjugate to X/Y and Y, respectively. X^*/Y^{\perp} is separable, hence, arguing as in the proof of Theorem 2, there exists a separable closed subspace L of X^* such that $X^* = L + Y^{\perp}$. Since $L \cap Y^{\perp}$ is a separable Banach space we can use result (b) to get a continuous projection P in X/Y such that P(X/Y) is separable and $P^*(Y^{\perp})$ contains $L \cap Y^{\perp}$. Let Z be the subspace of X orthogonal to $P^*(Y^{\perp})$. Let us prove that Z is the desired subspace:

 $P^*(Y^{\perp})$ is contained in Y^{\perp} . Hence property (1) is obvious.

Let now u be an arbitrary element of P(X/Y). Let v be an element in X such that $\varphi(v) = u$, φ the canonical mapping from X onto X/Y. If ψ denotes the canonical mapping from X onto X/Z, let $Tu = \psi(v)$. We then have

$$\langle u, z \rangle = 0, \quad z \in P^{*-1}(0),$$

hence, for $u \neq 0$, there exists w in $P^*(Y^1)$ such that $\langle u, w \rangle \neq 0$. Then

$$\langle v, w \rangle = \langle \varphi(v), w \rangle = \langle u, w \rangle \neq 0,$$

which implies that v is not in Z, hence Tu is different from zero. It is plain that Tu does not change when v varies in $\varphi^{-1}(u)$. From these remarks it follows that T is an injective linear mapping from P(X/Y) into X/Z, its continuity being easy to prove. Let us now choose an arbitrary element x of X/Z. Write x_1 for an element in X such that $\psi(x_1) = x$, and

$$t = (P \circ \varphi) x_1.$$

Then Tt = x, hence T is an isomorphism from P(X/Y) onto X/Z. Thus (2) has been established.

In order to prove (3), recall that $Z + \widetilde{Y}$ is a Banach space, according to result (d). Let M be $L^{\perp} \cap (Z + \widetilde{Y})$, L^{\perp} being the subspace of X^{***} orthogonal to L. It is enough to prove that M and \widetilde{Y} form an algebraic decomposition of $Z + \widetilde{Y}$. Obviously, $M \cap \widetilde{Y} = \{0\}$. Let now s be an arbitrary element of $Z + \widetilde{Y}$. Let m be the linear form on X^* defined by m(u) = s(w) where u = v + w, $v \in L$, $w \in Y^{\perp}$, whenever $u \in X^*$. Obviously the definition is consistent. Recalling that $L + Y^{\perp} = X^*$, m is easily seen to be continuous on $(X^*, \|\cdot\|)$. Hence $m \in M$ and $\widetilde{y} = s - m \in \widetilde{Y}$. Then $s = m + \widetilde{y} \in M + \widetilde{X}$.

COROLLARY 1.3. Let Y be a closed subspace of a Banach space X. Then, if Y^{**} is separable and X/Y is weakly countably determined, X is also weakly countably determined.

Proof. Theorem 3 allows us to choose a closed subspace Z of X with properties (1)-(3) stated there. Z/Y is isomorphic to a closed subspace of X/Y, hence weakly countably determined. Using the notation of the proof of Theorem 3, we find that $(Z+\tilde{Y})/\tilde{Y}$ is isomorphic to M and also to Z/Y, hence M is weakly countably determined. Since Y^{**} is separable and \tilde{Y} is isomorphic to Y^{**} , $M+\tilde{Y}=Z+\tilde{Y}$ is weakly countably determined. The Banach space Z is a subspace of $Z+\tilde{Y}$, hence Z is also weakly countably determined. Finally, X/Z is separable. Corollary 1.2 gives the desired conclusion.

Corollary 2.3. Let Y be a closed subspace of a Banach space X. Then, if Y^{**} is separable and X/Y is weakly K-analytic, X is weakly K-analytic.

Proof. The proof goes along the lines of the proof of Corollary 1.3 with "weakly countably determined" replaced by "weakly K-analytic" and with Corollary 2.2 used instead of Corollary 1.2.

LEMMA. Let Y be a reflexive subspace of a Banach space X. Let φ be the canonical mapping from X onto X/Y. Then, if A is a bounded subset of X such that $\varphi(A)$ is weakly relatively compact, A is also weakly relatively compact.

Proof. Let M be a weakly compact absolutely convex subset of X/Y containing $\varphi(A)$ and such that $(X/Y)_M$ is reflexive. Let B be the closed unit ball of X. We can find a positive integer m such that $A \subset mB$. Put

$$D=\varphi^{-1}(M)\cap mB.$$

 X_D is a Banach space and Y is a reflexive subspace of X_D . Since X_D/Y is isomorphic to $(X/Y)_M$, X_D is reflexive, hence D is weakly relatively compact in X_D , thus weakly relatively compact in X. Finally, D contains A, so we get the conclusion.

Remark. A method analogous to the one used in the proof of the last lemma gives the following more general result: Let Y be a closed subspace of a Banach space X. Let φ be the canonical mapping from X onto X/Y. Then, if A is a bounded subset of X such that $\varphi(A)$ is weakly relatively compact, \widetilde{A} is contained in $X + \widetilde{Y}$.

Proposition 1. Let Y be a reflexive subspace of a Banach space X. Then, if X/Y is weakly K-analytic, X is also weakly K-analytic.

Proof. Let φ be the canonical mapping from X onto X/Y. There exists a mapping T from N^N into the family of weakly compact absolutely convex

subsets of X/Y such that

$$X/Y = \{\} \{ Tu: \ u \in \mathbb{N}^N \}$$

and whenever $a = (a_n)$ and $b = (b_n)$ are elements of N^N such that $a_n \le b_n$, n = 1, 2, ..., we have $Ta \subset Tb$.

Let B be the closed unit ball of X. If $a = (a_n)$ belongs to N^N , write $a' = (a_n)_{n=2}^{\infty}$ and let

$$Sa = \varphi^{-1}(Ta') \cap a_1 B.$$

Using the Lemma we see that Sa is a weakly compact absolutely convex subset of X. Given $b = (b_n)$ in N^N such that $a_n \le b_n$, n = 1, 2, ..., we have

$$X = \bigcup \{Su: u \in N^N\}, \quad Sa \subset Sb.$$

Thus X is weakly K-analytic.

PROPOSITION 2. Let Y be a reflexive subspace of a Banach space X. Then, if X/Y is weakly countably determined, X is also weakly countably determined.

Proof. Let φ be the canonical mapping from X onto X/Y. Let (M_n) be a sequence of bounded, closed and absolutely convex subsets of X/Y such that whenever z is an element of X/Y, there is a subsequence (M_n) of (M_n) such that $\bigcap_{j=1}^{\infty} M_{n_j}$ is weakly compact and contains $\{z\}$. Let B be the closed unit ball of X. The double sequence

$$(\varphi^{-1}(M_p)\cap qB)_{p,q=1}^{\infty}$$

can be arranged in a sequence (P_n) .

Let now x be an arbitrary element of X. We can choose a positive integer p such that x is in pB as well as a subsequence (M_{m_j}) of (M_n) such that $\bigcap_{j=1}^{\infty} M_{m_j}$ is a weakly compact set containing $\{\varphi(x)\}$. Let (P_{n_j}) be a subsequence of (P_n) consisting exactly of the elements $\{\varphi^{-1}(M_{m_j}) \cap pB: j = 1, 2, \ldots\}$. Then

$$x \in \bigcap_{i=1}^{\infty} P_{n_i}$$
.

Moreover.

$$\varphi(\bigcap_{j=1}^{\infty}P_{n_j})\subset\bigcap_{j=1}^{\infty}M_{m_j}$$

and, in view of the Lemma, $\bigcap_{j=1}^{\infty} P_{n_j}$ is weakly compact. Hence X is weakly countably determined.

THEOREM 4. Let Y be a closed subspace of a Banach space X. Then, if Y^{**}/Y is separable and X/Y is weakly K-analytic, X is also weakly K-analytic.

Proof. Result (a) establishes the existence of two closed subspaces of Y, one reflexive, U, the other one separable, V, such that U+V=Y and $U\cap V=\{0\}$. Let φ be the canonical mapping from X onto X/V. The space X/Y is isomorphic to $(X/V)/\varphi(U)$ and, since $\varphi(U)$ is a reflexive subspace of X/V, we can use Proposition 1 to deduce that X/V is weakly K-analytic. Finally, Y^{**}/Y is isomorphic to V^{**}/V , hence V^{**} is separable. Thus X is weakly K-analytic, in view of Corollary 2.3.

Theorem 5. Let Y be a closed subspace of a Banach space X. Then, if Y^{**}/Y is separable and X/Y is weakly countably determined, X is also weakly countably determined.

Proof. The proof goes along the lines of that of Theorem 4, with Proposition 2 and Corollary 1.3 used instead of Proposition 1 and Corollary 2.3, respectively.

PROPOSITION 3. Let Y be a closed subspace of a Banach space X. Then, if X/Y is separable and X is weakly countably determined, there exist two closed subspaces U and V of X such that

$$U \cap V = \{0\}, \quad U + V = X, \quad V \subset Y,$$

U separable.

Proof. As in the proof of Theorem 2, we can find a separable closed subspace Z of X such that Z+Y=X. But Y is weakly countably determined and $Z \cap Y$ is separable, thus we can use result (b) to get a separable subspace Z_1 of Y which contains $Z \cap Y$ and with a topological complement V relative to Y. Denoting $Z+Z_1$ by U, U is closed. Obviously U and V satisfy the other required conditions.

Proposition 4 [5]. Let Y be a closed subspace of a Banach space X. Then, if X/Y is separable and X is weakly compactly generated, Y is also weakly compactly generated.

Proof. Since X is weakly countably determined, we can use Proposition 3 to get two closed subspaces U and V of X with the aforesaid properties. Then V is isomorphic to X/U, hence weakly compactly generated. Finally, $U \cap Y$ is separable and V is its topological complement in Y. Thus Y is weakly compactly generated.

References

^[1] B. Cascales, On K-analytic locally convex spaces, Arch. Math. (Basel) 49 (1987), 232-244.

^[2] G. Choquet, Theory of capacities, Ann. Inst. Fourier (Grenoble) 5 (1953), 131-295.

^[3] W. J. Davis, T. Figiel, W. B. Johnson and A. Pełczyński, Factoring weakly compact operators, J. Funct. Anal. 17 (1974), 311-327.

144

M. Valdivia

- [4] Z. Frolik, On the descriptive theory of sets, Czechoslovak Math. J. 13 (88) (1963), 335-359.
- [5] W. B. Johnson and J. Lindenstrauss, Some remarks on weakly compactly generated spaces, Israel J. Math. 17 (1970), 219-230.
- [6] C. A. Rogers, Analytic sets in Hausdorff spaces, Mathematika 1,1 (1964), 1-8.
- [7] H. P. Rosenthal, The heredity problem for weakly compactly generated Banach spaces, Compositio Math. 28 (1974), 83-111.
- [8] M. Talagrand, Sur une conjecture de H.H. Corson, Bull. Sci. Math. (2) 99 (1975), 211-212.
- [9] -, Espaces de Banach faiblement K-analytiques, Ann. of Math. 110 (1979), 407-438.
- [10] M. Valdivia, On a class of Banach spaces, Studia Math. 60 (1977), 11-13.
- [11] -, Banach spaces X with X** separable, Israel J. Math. 59 (1987), 107-111.
- [12] L. Vasác, On one generalization of weakly compactly generated Banach spaces, Studia Math. 70 (1980), 11-19.

FACULTAD DE MATEMÁTICAS Dr. Moliner 50, Burjasot 46100 Valencia, Spain

Received September 7, 1987

(2360)

STUDIA MATHEMATICA, T. XCIII (1989)

On the law of iterated logarithm for Bloch functions*

by

FELIKS PRZYTYCKI (Warszawa)

Abstract. We present a proof of the law of iterated logarithm for Bloch holomorphic functions on the unit disc D by approximating the sequence of sums of trigonometric polynomials which are convolutions of a Bloch function with Fejér type kernels by a martingale on ∂D .

§ 1. Introduction. A holomorphic function b on the unit disc $D \subset C$ is called a Bloch function if

(1.1)
$$||b||_{\mathfrak{B}} \equiv |b(0)| + \sup_{z \in D} (1 - |z|^2) |b'(z)| < \infty.$$

Denote the class of all Bloch functions by A.

The following theorem was recently proved by N.G. Makarov in [M].

Theorem 1 (Makarov). There exists a universal constant $C_M > 0$ such that if $b \in \mathcal{B}$ then

(1.2)
$$\limsup_{t \to 1^{-}} |b(tz)| / \sqrt{\log\left(\frac{1}{1-t}\right)} \log\log\log\left(\frac{1}{1-t}\right) \leqslant C_{\mathsf{M}} ||b||_{\mathscr{B}}$$

for almost all $z \in \partial D$.

For every holomorphic univalent function f on D with f'(0) = 1, the function $\log f'$ is a Bloch function with $||\log f'||_{\mathscr{B}} \le 6$ (see [H], L. 17.4.1). So (1.2) yields for almost every $z \in \partial D$

$$|f'(tz)| \le \exp\left(\left(6C_{\mathsf{M}} + o(1)\right)\sqrt{\log\left(\frac{1}{1-t}\right)\log\log\log\left(\frac{1}{1-t}\right)}\right) \quad \text{as } t \to 1-$$

This provides information about the harmonic measures on the boundary of f(D) (see [M]).

^{*} This is a considerably revised version of the paper with the same title published as a preprint of the University of Warwick, January 1986.

^{4 -} Studia Math. 93.2