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Quotients and interpolation spaces
of stable Banach spaces

by
Y. BASTERO®* (Zaragoza) and Y. RAYNAUD (Paris)

Abstract. We show the stability (in the sense of Krivine-Maurey) of the quotients of
several reflexive or superreflexive stable atomic spaces. We show that the space L(E) is stable
provided L is a stable ri. space and E a stable Banach space. We study the stability of
interpolation spaces [L;, Ly]sy when L,, L, are stable ri. function spaces and X a stable
atomic lattice.

Introduction. In this paper we study the stability of quotients and
interpolation spaces of stable Banach spaces. The notion of stability for a
Banach space was introduced by Maurey and Krivine [KM]; recall that a
Banach space E is stable if for any bounded sequences (x,), (v, and
ulirafilters 4, ¥~ we have

lim Lim ||, + y,l| = limlim [lx,+ 3,,/|-
n m,y mo¥ omd

This property is élearly hereditary but does not behave well with respect
to other standard operations on Banach spaces. Quotients and duals of

- stable Banach spaces, even reflexive, may not be stable, as was shown in [G].

Similarly, no interesting result about interpolation of stable Banach spaces
was known (except the stability of Lorentz spaces, cf. [R]). In fact, if E, F
form an interpolation pair of stable Banach spaces, the space E+F (with
norm ||x|j = inf {|lel| +||f]| e €E, f €F, x =e+ f}) is a quotient of the direct
sum E @, F and therefore may probably not be stable. If E is a stable
Banach space, it is known that L,(E), 1 <p < oo, is also stable ((KMT). In
fact, in all cases where a lattice L is known to be stable, the same is true for
L(E) if E is a stable Banach space. This is the case for L, spaces, Orlicz
spaces, Lorentz spaces. But there was no general result in this direction,
except in the case of atomic lattices (i.e. spaces with 1-unconditional basis, cf.
[BM] and [B]). '

Here we present some positive results in these three directions. For the

* The contribution of this author was supported by the grant 0804-84 from CAICYT
(Spain). '
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problem of stability of quotients, we consider atomic lattices with special
additional properties (§1 below). This allows us to show the stability of
quotients of classical stable atomic lattices (1,, l,, 4, d(w, p), L,(}), ..)) and
trace classes C, at least when they are superreflexive. Ounly the case of
quotients of I, was previously known (cf. [R] or [C]). Interpolation spaces of
these spaces are ipso facto stable.

In §1II, we show the stability of L(E) when L is a stable r.i. space (and E
a stable Banach space). Note that in this kind of problems the behaviour of
ri. spaces is quite often similar to that of atomic lattices.

In the interpolation problem we also give (in §III) a positive result for
atomic or r.i. spaces, under an additional “equiintegrability” assurnption.

As an application we are able to embed stable spaces with unconditional
basis into stable r.. function spaces.

I. Seability of quotients

Recall that a rype on a (separable) Banach space E is a function t eR®
defined using a bounded sequence (x,};2, in E by
VYxeE, 1(x)= lim |[x+x,.
H—oD
Let 7 (E) denote the space of tvpes on E, and 7 ,(E) the space of types
which are weakly null, i.e. can be defined by means of a weakly null sequence
in E. 7 (E) is equipped with the natural topology of pointwise convergence;
and also with the topology of uniform convergence on bounded sets of
E (TUCB). The case where J,(E) is locally TUCB-compact will be of
particular interest in the quotient problem.
If (x,), defines r and (y,), defines o, recall that (x, +y,), » defines the so-
called convohited type 7+ o (cf. [KMIJ). Write also [|t]] = lim, - |[x,]| = t(0).

1. A continuity condition. The following lemma allows us to calculate
iterated limits of the quotient norm:

 Lemma 1. Let E be a reflexive Banach space and F a subspace. Let (£, ¢
and ()1 be two bounded sequences in E/F and %, ¥ two (nontrivial)
ultrafilters on N. Let (x)2, resp. (ym=1, be a bounded sequence of
representatives of the &, resp. #,,, in E. Then we have

(1) hm llm ||g",,+r;,,,|]E,F = mfmfhm inf Hm ||x, + ¥+ F +Kp+ Balle

(k) A dhy) m¥

where lﬂf(k,,) is the infimum over all sequences (k). < F with k, 0 as n
oo, and similarly for infy, ,. :

Proof For n,meN let f,,m eF be such that
et Yl < 1ot g 27,
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We may assume the family (f,,) to be bounded. Set
.f;l 3W"H$J€,m, hnm =.f;:m—'"fx!

f= W"limf", kn = f;\t_f
n, %

(the limits being weak limits), These are elements of F. Then

imim ||£, + fullgr = hmhmllx +¥mt [k, +hle
nYE my nu

is clearly greater than the right-hand side of (1). The converse inequality
is trivial. m

Let us introduce some notation. Let p= (y,)%-; be a fixed weakly nuil
sequence in E. Let #, be the set of sequences (v, + fie; where (£, )2, is a
weakly null sequence in F. To an element b of #, and an ultrafilter % on N
we associate the type o, 4€.7,(E) defined by b and 4.

ProrositionN 2. If the map F(E) —+R, < »-—«»mfhﬁg ||z €0y, |, is contimious
for the simple topology of F (E) (for any 1 and @’) then the stability of E
implies the stability of E/F.

‘Proof Use Lemma 1 and set y=w-lim, yy, and ¥, =y,—y,
Y = (Vn)w and similarly x = w-lim, 4X, and x, = x,—x, ¥ = (x}),. Then

lim inf Hm {|x, 4 Y+ [ +kn+ byl = im inf oy, (x,+y+ f+ky)
n A (hy) m, ¥ ¥ heF

= inf ¢ (a*ayy(x+y+f)
(12
by the continuity condition, where = (x,+k,), € #, and infi,) is taken over
all (h,) « F with hm,,l,,h,,1 = (). Thus
limlim [[€, +7,)| = inf inf inf oy g op (x+y+ f).

n¥ my feF tleF o heFy

As convolution of types is a symmetric operation, the left-hand side of this
equality remains unchanged after exchanging the limits. Thus E/F is
stable. =

2. Strong compactness condition for 7, (E)

ProrosiTioNn 3. Let E be a stable Banach space. If Fo(E) is locally
compact for TUCB, then the continuity condition of Proposition 2 is satisfied
(and consequently quotients of E are stable if E is supposed to be reflexive),

Proof. The map 9 (E) x5 (E) =R, (t, 6) —[[r +¢]|, is jointly contin-
uous when F (E) is equipped with the simple topology and 7 (E) with
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TUCB. Therefore the map 7 (E) —R,, t|t*ol|, is continuous wrt. 7,
uniformly in ¢ varying in a bounded subset of .7, (E), under the strong
compactness condition made here; hence the continuity condition of Prop. 2
follows. w

A trivial example of a space satisfying the strong compactness condition
of Prop. 3 is the space [, (1 <p < o), since (I, contains only the types
T, x ()P +aHP, aeR, .

Another example is given by the space spanned by a 1-symmetric (not
necessarily 1-unconditional) weakly null sequence in L,, p = 2 (cf. [G2]).

A more interesting example is given by Orlicz sequence spaces. We refer
to [LTI] for basic facts on Orlicz sequence spaces and recall that Orlicz
(sequence or function) spaces are stable (cf. [Gal).

ProrosiTion 4. If 1, is a reflexive Orlicz sequence space, then olly) is
locally TUCB-compact.

Proof A type t€.97,(l,) is given by t(x) = lim, . ||x+ x,{| where (%)
is a block basic sequence in I,. We can suppose |x,|| =7 (0) = Il # 0.

To each xel, we associate the Orlicz function ¢,: (1) = 221 @(tx)).
Then

t(x) =inflg > 0: ¢, (1/0)+ lim g, (1/0) < 1}.

The functions ¥, v, (f) = @, (t/l|x]) belong to the class C, , ((LTI], p. 140)

which is norm compact in C([0, 1]). Let y be in the closure of (¥,),. We
have - :

t(x) =inf{g > 0: o, (/o) +v (ll/e) < 1};

in fact, 7(x) is the unique solution of the implicit equation
2 @< (1/t(x)+¥ (aft{x)) =1 where a= ||t

To each pair (yf, g)eC,; xR, we can associate the function T = Ty
I, = R, such that t(x} is the unique solution of (2) (note that, as is easily
seen, @ v [|x|l < 7y, (x) < a+||x])). This map Co.1 xR, *»Rijfl 1s continuous for
the norm topology {of C{[0, 17) on C,,1 and TUCB on le. Indeed, the
function F(4; ¢, a; x) = ¢, (A)+ ¥ (1a) is continuous w.r.t. (¥, @) uniformly in
A £ 1/a and in x varying in a bounded subset B of l,; and moreover aF/82 is
bounded from below (at 1 =1,,(x)) independently of xeB:

oF 1

| i
i qox(/l)‘-i-al,lf (Aa) = A(%(A)—H}/(Aa)) =7 = e

Thus the set {TW‘Q}WEC¢'1,|‘,} <4 is TUCB-compact for every A < o0, u
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It is not hard to see that if 7, (E) is locally TUCB-compact, the same is
true for 7o (E/F) (for all quotients of E). .

A simple example where .7(E) is not locally TUCB-compact is given
by the space (), p # q (cf. [G3] or [R2], Prop. A2).

Other simple counterexamples are the Lorentz sequence spaces [,,,
p # g, and the Schatten trace classes C,, p # 2 (containing [,(l,)). These
spaces are known to be stable ([R], [R3]). '

In the case of [,, consider the types t, defined by the sequence
Xpgo= 0~ HPY L esy (Where (e), is the natural basis of 1,)). The sequence
(Ta)y converges simply in J4(l, ) to the type t such that = (x) = (|jx{|9+ 1)*/4;
but this convergence does not hold for TUCB because 7,47, does not
converge to 7 (since ||z, *1,[| = 2% and ||t 1| = 2Y/9).

These counterexamples lead to give another {less restrictive) condition.

3. Case of superreflexive atomic spaces. The “continuity cendition” of
ne. 1 may be written as .
lim inf lmlz+y,+x,+h)l= Inf  limlim|z+ 4+ x,+ k|

n, 8 0= (hy)eF g om Y b=(hp)eFq nA m ¥

for every z ¢E and any weakly null sequences (x,};2 1, (Vme=, in E. Here &,
is the space of weakly null sequences b= (A, )%, in F
Let us rewrite this condition in the ultrapower E = EN/%. We obtain

(3 lim inf ||z 4x,+ 54 Al = inf lim|jz + x,+ 5+ A
o S mar

n heFg heFyp m,
for every ek, (the space of those 7€E which have \fcakiy null representa-
tives in EV); here F, is the subspace of elements of E defined by sequences
belonging to #,.
The left-hand side of (3) is clearly smaller than the right-hand one. So it
suffices to prove that for each sequence (k"), in F, we have
lim ||z + x,+ §+ 7" = inf lim fz+x,+ §+ Al
n, hEFO n
We can restrict ourselves to bounded sequences (f",. As F, is a closed
subspace of the reflexive space E, such a sequence has a weak limit h*
{along ). So it suffices that

Hm ||z + X, + 5+ A7| = lim||z + x, + 7+,
n, ¥ s

So we are led to the following criterion: ‘

ProrosiTion 5. Let E be a superreflexive stable Banach space. 'Suppose E
satisfies the following condition: -

(c} For every ultrapower E of E, every bounded sequence (x,) in E and
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every bounded sequence (%) in E,

lim|[x, + @4l 2 lim [lx, + @]
n%

n, %

where U, is the weak lmit w-lim, o,

Then E satisfies the continuity condition of Proposition 2 (and hence its
quotients are stable).

Note that in the case where E is a Banach lattice, £, and E are disjoint
sublattices of E.

Let us see how the criterion of Prop. 5 applies to the spaces d(w o)
and ¢,

CorovrLary 6. The superreflexive spaces d(w, p), 1 <p < oo, have stable
quotients.

We tefer to [LTI] for the definition and basic results on the spaces
d(w, p).

_ Lemma 7. An ultrapower E of a space E =d(w, p) (p < o) can be split as
E=E, @,E,, where:

(1) E, and E, are disjoint bands which are members of a p-direct sum

(fe. x; €Ey, Xy €Ey = [|x1 4+ X7 = [|x{]|7+x4)P).
(i) E; is an atomic lattice (in fact, a space d(I; w, p} on an uncountable
set of indices I) containing E as a band.

This decompositicn is similar to that of ultrapowers of Orlicz spaces
given in [DCK]. Elements of E, are those elements X €E = E'/4% which can
be represented by a family (x;)., with lim; llxll, =0. On the other hand,
er1 when (x;);,.; may be chosen ° cqulsupported“ (ie. Y& >0, 3% ek with
IX-X|| <& and INeN st. Viel, x; has a support of cardinal < N). We
refer to [R3, Lemma 5] where a similar result is stated for sequences in a
symmetric sequence space. (not containing cg). » -

Lemma 8. If X is an atomic lattice not containing c,, then
lim [, +ud| 2 lm [lx, +u ]
n % n %
Jor every pair of bounded sequences (x)i2, )2, with x,, d, disjoint (V1)
and u,, = w-im, 4u,.

This follows easily from the fact that there is a decomposition u, =
v,,+w with v,, w, disjoint and v,z U, in the norm topology. w

We now verify easily that the spaces d(w, p), 1 < p < oo, satisfy condl-
tion (c) of Prop. S when they are superreflexive.
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Indeed, we decompose #,=a,+#, (¥ €E,, #,cE;) and set

iy, = lim, 4, Uy, = lim, 5, We have

lim ||, + 17 = tim ||, +i/|” + Lim [|i7]}?
n¥ % n, %

2 lim||x, +&)|?+|[#L?  (by Lemma 8)
n¥

=lim|[x, + &, w
nH

Remark 9. 1. It could be shown similarly that the dual spaces d(w, p)*
also satisfy condition (c} of Prop. 5.

2. Cor. 6 has a vectorial version: if E satisfies (c) then so does 4, ,, (E).

3. Lemma 8 is easily extended to Banach spaces having a boundedly
complete monotone Schauder FDD.

CoroLLary 10. The spaces ¢,, 1 <p < oo, have stable quotients.

We refer to [GK], [MC] for the definition and properties of ¢, = ¢, (H).

We proceed analogously to the preceding proof.

Ultrapowers E of E = ¢, can be decomposed as E = E; @, E, where
E, = c, (), # being a nonseparable Hilbert space. Let (e.),.4 be a hilber-
tian basis of »#; we may consider that N = A and that (e,),.~ spans H; the
embedding H — 2 induces the natural embedding of E = ¢, into E;. We
decompose: i, = i, +ii,,_ #,ek;, Uy r.=}3?2

The condition #, €E, means that &, espan |e, ®ela, B ¢ N]. The ele-
ments x,, &, (#=N) belong to a subspace of c,(H#) isomorphic to c,. Using
the so-called shell decomposition (S, of ¢, (8,=span {ei Re,,
e, @i <n)) which is known to be a monotone boundedly complete
Schauder FDD, [A], and Remark 9.3 we conclude as in the case of

dw,p). »
ProvosirioNn 11. Let E=I[(X) be a superreflexive space where X is

a Banach space and | an atomic lattice both satisfying condmon (c) of Prop. 5.
Then I(X) also satisfies condition (c).

Proof An ultrapower [ of I can be split as
I=1@T7,

(where ! is the canonical image of [ in T and T, is the space of elements
having a weakly null representative). Indeed, we have an evident projec-
tion m: T—1: wn(%) = w-lim, 4%, (when (x;; represents %) which is’ a. band

projection.
To this decomposmon there corresponds a decomposition of the ultra-

power E of E = I(X): L
(@ E=FE @E,
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where E; = I(X), X being the corresponding ultrapower of X. Let N be the
random norm (in the sense of [LR]) on E with values in T: E, is the space of
JeE with N(y) belonging to /.

Let (x), (@) be as in Prop. 5, with f, = if,+a" (i,€E,, iy eE,).
We have

1i13; (1%, + ]| = liI};IJN(xn-'*ﬁL) + N {@)llr 2 Um||N (x,+ &)+ w-lim N (@)l
", ", o "
{by condition (c) for 1). But w-lim, 5 N (i) > N (i) where g = w-lim, 5.
Thus ,
lim ([, + )| Z lim |IN (x,+ ) + N (@TL)l] = Hm||x,+ &, + @),
n n, % n, %

Applying the decomposition (4) to EY/% we decompose x, = x(+ x and
i, = M+ 72, with

NED) gz wimN(x), N +20) L ydim N (x, + 1)
] m, ¥ m, %
{norm convergence) and
N, N(@) disjoint from N (x), N (7).
We have N(x{2+Z) = N(x¥) and thus

linq'll (g + i+ Tl] = lim ||V (x{V +E )+ N (2 + 7Y 4 N (T iz
n, n, 9

o,

=2 lim [|w-lim N (x,,+i%,) + N () + N @2)|!.
n, o m, %

The weak convergence appearing here is coordinatewise convergence. There-
fore, as X satisfies (c), it is easy to see that

W-]:iIB N(x,+@) = w-lim N (x,+i,)  where o = w-lim i,
. " U n,#
Thus

W llx, + 2, -+ @ f] > Him ffw-lm N (x,, + ) + N (x2) + N @)
n, ¥ n% m, % =

= Iirz”N(xS,” + W)+ N (x) + N @)l

el

= lim|jx, + & + @] = lim {|x, +17,|l. =
n% n¥

' Remark 12. 1. It is not hard to see that a reflexive Banach space E
with .77, (E) locally TUCB-compact satisfies condition (c) of Prop. 5.

2. An easy generalization of Cor, 6 shows that a symmetric sequence

space L with (L) locally TUCB-compact also satisfies condition {c), Here

T oo(L) is the space of types on L which can be defined by a cy-null
sequence, '
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I1. Stability of rearrangement invariant function spaces

In this part we restrict our attention to rearrangement invariant function
spaces (r.i. spaces). We use standard terminology related with this concept as
may _be found in [LTII].

L will denote a r.i. space on a measure space (2, Z, m) which is one of
the spaces N, [0, 1], or [0, c0) with the natural measure. Let us give the
following

DerritionN 13. A subset M < L is said to be equinormable in L if for
each ¢ > 0 the following conditions hold:

(1) There is R > 0 such that |}/l <& for all feM.
(ii) There is a > 0 such that for all f €M we can choose a subset 4 = 2
with m(A4) < a such that ”foc” <&.

An equinormable set is obviously bounded. A convergent sequence is
equinormable. It is worthwhile to note that for a bounded subset M
condition (i) is equivalent to

(i) lim supl|fydi=0.

mid) ~0 feM

If L does not contain ¢y, condition (ii) is equivalent to

(i) limsupllf gz <sfl = 0.
50 feM

For bounded subsets, condition (i) (resp. (i) is trivially satisfied when Q = N
(resp. £ = [0, 1]; in this case, equinormability is the same as equiintegrabili-
ty in the sense of [LTII], 289, or [IMST], déf. 6.5).

The following lemma enlightens the usefulness of the preceding notion in
studying the stability of these spaces.

If f eI, we denote by f* the nonincreasing rearrangement of [f| (which
is in L), ' :

Lemma 14, Let L be an order continuous r.i. space. A subset M of L is
equinormable iff the set M* = {f*| f e M} is relatively compact for the norm
topelogy of L.

Proof. The equinormability of M is clearly equivalent to that of M*. In
order continuous r.i. spaces, finite sets are equinormable, and hence relatively
norm compact sets also. '

Conversely, let M be an equincrmable set of decreasing functions on
[0, co). We can suppose the elements of M to be uniformly essentially
bounded by A < co and to have support-in [0, B].

Let ¢ > 0; we can find N eN such that 24 |jxp,1,mll <e. Let 4 be the o-
algebra generated by the intervals [k/N, (k+1)/N[, 0<k <BN.If feM
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then .
f~E2fI<Y A Yoo+ iyne With 4 = f(k/N)— f((k+1)/N).
X

We have 4, 20, 3 4 < 24. Hence

I ~E2 71l < I e rgw, o o]
k

<Y A e, e + oumill < 24 ([ x00,0/57l] < €-
3

Thus there is a bounded subset M’ of a finite-dimensional subset of L with
Hausdorff distance: to M less than ¢. =

We now give 'a “subsequence splitting lemma” useful for the study of
stability in ri. spaces. A similar lemma for Lorentz spaces L., is proved in
[R]. See also [JMST] for a similar lemma, valid in “good Banach lattices”
having a cotype (this last condition is wrongly omitted in [IMST)).

Lemma 15. Let (f,), be a bounded sequence in a ri. space L not contain-

ing cy. There exist a subsequence ( Judi=1 and a decomposition S =K+ K
such that:

() £, f are disjoint.
(i) (f) is on equinormable set in L.
(it) {f;"% converges to O in measure.

Proof By Lemma 14 and a diagonal argument, we find a subsequence
(denoted again by (f,), for simplicity) such that, for any ¢ > 0 and B < oo,
(tre,p J¥). converges in L. The limit is Xie.m) ¢, Where a priori ¢ €L,(R); but,
by the Fatou property of L, we have g eL. Let ¢ 0, B, # 0. We choose
a strictly increasing sequence (m), such that

N2 = (X By @ Xiep g Sl < 1k
Finally, we set f/ =y aJny K= " So,» Where

A= {01 f26) 2 |, ) > f2(B)). m

Remark. It is easily seen that a sequence (9u) converging to zero in
measure can be split (up to extraction) as the sum grt+gy of a “peak
sequence” (g;) (With supports tending to 0 in measure) and a “flat sequence”
(9%) (ie. llgille =0 as k —o0). :

An application of this iemma and the use of the “stability in distribu-
tion” property {cf. [R], Prop. 1) enable us to find a criterion for the stability
of ri spaces. We first give an equivalent -formulation of “stability in
distribution” and make explicit its proof (very shortened in [R1).

icm
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Lemma 16, Let ()., (@.)m be two equinormable sequences in the order
continuous r.i. space L. Then :
mlim(f,+g.)* = imim{f, +g.)*

n, % om, m¥ n, % ]
{(where the limits exist in the norm topology of L by Lemma 14).

Proof. It is sufficient to prove that the two limits appearing here have
the same distribution (with respect to the Lebesgue measure).

We can suppose the (f,), {¢,) to be uniformly bounded in L and the
measure space (Q, m) to be finite, We are thus led to prove

(5) limlim {F (| f,+gm) dm = imHm [ F(f, + g} dm
nH mY n,

for all bounded continuous functions F, We approximate the function -
G(s,t) = F(s+1) by a finite sum > (), (t) where o, are bounded
continuous. As for each i, {@,(f) (¥:(gm)n Weakly converge in L?(€), the
commutation of the limits (5) becomes clear. m

ProposiTioN 17. A4 ri. space L not containing ¢ is stable if and only if

imlim|j@ + £, +gmll = limlim|lo+ f,+4gnll
nH my m,¥' n, %

whenever @ &L, {f,) and (g,) are Lo-null sequences (and %, ¥ are nontrivial

ultrafilters on N).

(Here 4 signifies digjoint sum: |{f +g|| = | fy +g,]| where f;, g, are disjoint
and have respectively the same distribution as £, g.}

Proof. Let (f,). (g,) be bounded sequences in L. We may suppose to
have decompositions f, = fJ+ £/, Gm = gw+9gm as in the splitting lemma 15.
Then

L lim (| £y 4 £+ g+ gl = UmBm[[(fy +g0) + £+ g0l
n¥ m¥ n% m¥

= LmHm [, +gm)* + fo' +gnll

n % my

= limlim |+ £+ gLl
nY m v

where ¢ = lim,, o limy, v (f; +gm*. Lemma 16 then clsf:arly implies Prop. 17. m

A particular case where Proposition 17 can be used is the one where
Fo(L), the space of types defined by Ly-null sequences, is generated by only
one type (which is necessarily an #-type in the terminology of [KMJ). So are
the L, spaces; the L,, and L, , spaces (by [R]); and the duals LY, (when
they are reflexive).
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Moereover, this method will be used in the sequel in order to establish
the stability in two new cases: vector-valued function spaces and interpola-
tion spaces between r.i. spaces.

If L is a lattice of functions on 2 we define L(E) as the vector space
of Bochner measurable functions F: £ —E such that the corresponding
scalar functions f(-) = ||F(-)||z belong to L, endowed with the natural norm
(Wl ey = 1 flle

Note that Prop. 17 shows that a ri. space L (not containing c,) is stable
iff its sublattices generated by disjoint (L,-null) sequences are stable. We will
use a vectorial version of this fact to prove the following.

Prorosirion 18. If Lis a stable ri. space and E a stable Banach space
then L{E) is stable.

- Proof Let (F),, (GJi be two bounded sequences in L(E). We apply
Lemma 15 to the bounded sequences (f),, (g:h in L where

o=l g = lIGylle,

and a simple disjointification argument to obtain

bm lim [|F, ++ Gyllg = lim im [[|FR + Gl + (| Follz 4 | Gillg] |2
A kb [
where (|iF3llz)n, (IG]lle) are equinormable in L and (|F)z),. (IGlig) ate Lo-
null sequences in L.
The above expression is equal to

lim im | 411 Fylls - Gillelf 1
n¥ k"

where @ = lim, 4lim; ,|[FR +GP||f. As E is stable, the vectorial analog of
Lemma 16 is true ({R], Prop. 1) and says that ¢ = lim, ,lim, 4||F°+G2|[%.
Proposition 18 is now clear.

III. Stability of real interpolation spaces between r.i. spaces

Now we pass to the stability of real interpolation spaces between r.i.
spaces. We begin by recalling scme usual notation. Let {As, 4;) be an
interpolation pair of Banach spaces. ie. these spaces are given as subspaces
of a_common Hausdorff topological vector space so that the corresponding
embeddings are continuous. Let X be a Banach space with an unconditional
basis (&)=, throughout fixed, and 0 <@ < 1. The space (Ao, dy)ox is
defined to be the Banach space of all elements JSeAy+A; such that
T oim(f)EneX where

Jn(f) = inf‘{euem“fo“o+eu~6)m“f1||1; I=fot+ 11, foedo, fi €4}
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(II*llos fi*lly denote respectively the norms of 4,, 4,) and normed by

o
I llox =1 % in(Fenllx.
m= - o0

When X =1, this space is isomorphic to the classical real interpolation
space (Ag, 41)s,, introduced by Lions and Peetre (see [BL] and [Be]). The
norm we use has been introduced in a paper by Davis, Figiel, Johnson and
Pelezynski ([DFJP]) and it is equivalent to the classical one if the basis (Em)r
is translation invariant.

The stability of (,, L)sx, 1 < p, ¢ <0, for X stable was proved in [B].
The theorem we will show here extends that case as well as the one
corresponding to Lorentz spaces L,, which occurs in [R].

In order to prove the stability of (Ao, Ay)sy We realize that (4, Aex
is the diagonal subspace of @m’X(A0+A1, Jw) and so, by using Proposition 4
of [B], it is sufficient to establish the stability of each norm j,, meZ,
whenever X is stable,

We will be concerned with the case where A, and A, are r.i. spaces.
Since there are no differences in proving the stability of any j,,, meZ, we will
consider the case m = 0. We simplify the notation in the following way. If

fedg+ AL, let

1/ = inf {| follo +11/llss = fo+ f1, fied;, i =0, 1].
The space (Ap+ Ay, ||']l,) is a ri. space and we study the case Q = [0, 1] in
the first place.

Prorosition 19. Let Ay, A, be r.i. spaces on [0, 1]. Suppose that A, is
separable and stable. If :

(i) lim sup N 2assrillo =0,
R-w||fliy €1 .

then (Ao+ Ay, ||I')l) is stable. Moreover, if X is a stable Banach space with an
unconditional basis and 0 <8 <1, then (4q, Ay)sx is stable.

Proof. Condition (i} is equivalent to the equiintegrability of the unit
ball of 4; in 44, and so it implies that 4, embeds in 4,. Note that we need
not suppose the stability of 4;. In this case {|-||, is equivalent to ||-||,.

Let ¢ be a fixed function in 4, and (f,),, (g two peak sequences in A,.
We have to show that

limlim|lg+ £, +gilly = imlim (lo+ £+ gill-
n¥ kY kY om %

Let n,keN and &> 0 fixed. There exist hyed; (i=0, 1) such that
ho+hy =@+ f,+g; and

hollo+ 1Al < llgoF £t gully +e.

4 — Studin Malkemuties 93.3
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Now consider
hy = hy Ysuppe + (o 1) Xauppir 4230
h, =y  —

We have fed; (i=0,1), byt hy = o+f,+g5 7l <|hyll; and
| Wholla = M1Aollo! < H1 Zeupris, + plio-

Because of condition (i), for k¥ and = large enough, we may assume
[lrolle —lihollo] < & {see the comments after the definition of equigormability).
Hence, if we set [y = ho—(f,+gx) = ho Yappy W& have L+ k= ¢ and

I+ (f+Fgollo + A <llo+/+gills +2¢

for k and » large enough. Thus

hmhmifqo+f.,+gkil*—hmhm inf  ([llg+ fu+aullo + 11110
U kY g+l =¢
Led;
and the same is true for the reverse limits.
We are going to finish the proof by proving that

(6) Emlim inf (lo+ fi+adlo+lLl) = il  (vl)+1 )
nd k¥ 10+11=¢ 10+11=q:
Led; ed;

where 7 is the type on A, defined by
() = lilillkimlllﬁﬂﬁgkllo lim lim [y + f, + gl
n," .

KPR
The inequality < is trivial. Conversely, we may suppose that ¢ is
a simple function, then ¢ = Z; L % XE (the B/s pairwise disjoint}. Consider
the sub-g-algebra 4 on [0, 1] gcnerated by the sets B;, | <j< N, and the
Borel sets in [0, 11(U/}_, B)).
It is a well-known fact that the conditional expectation operator E*
is a norm one projection on every ri. space. If @ =ly+1/;, L =4, then

¢ = E*(l,)+ E*(l,), and ‘ ‘
”Ewlo‘F'fn‘Hik”o Mo+ futaille,  NE*UDI, < (1)l -

Consequently, when considering

inf  (llo+ fo+glo+ily)
lg+i;=¢
Lied;
we may suppese that the l’s are simple functions supported on Bys.
Given ¢ >0, for each pair of n, k€N we can choose a simple funct:on

icm
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I j =0, 1, so that ¢ = I5*+I+* and
"+ fot aullo + 11y <~1 :inf (No+ S Fgullo +[1isll1) +e.
otii=e
hed;

2

Since all the functions [[**; i =0, 1, n, keN} belong to a finite-dimensional
bounded set we may assume that the limits

lo =limlim&* and 1, = limlim /o
n% kv n k¥

exist, Thus Ty+1 = ¢ and
() +IHl; = llmllmlllo+.ﬁ:+gk|lo+|”1“1

m kT

= lmEm{(/§*+ £, + gdlo +1117¥1]0)
n# kv

<lhmlm inf (i + £+ gullo+ 1) +e.
A kv igtly =g
lisd;

Eventualiy we get
inf t(lp)+ Ll €limlim inf  (ls-+ £ +gulo-+11l)

lg+lij=¢ ¥ k¥ !0+f1=fp
hedy Led;

and this ends the proof of formula {6) and of the proposition. m

The main teol in the above proposition is the fact that peak sequences
in A, are null sequences in A4, and this is deduced from condition (i). The use
of the conditional expectation operator implies that the “inf” appearing in
the formulas is taken over a “finite number” of decompositions ¢ = l,+1, .

For the corresponding theorem in the sequence case we need an inverse
condition, namely flat sequences in A, are null sequences in A,.

Prorosition 20. Let Ay, A; be ri. spaces on N. Suppose now that A, is
separable and stable, If

- () llmj sup Jlgx g <alls =0,
letlg€1

then (Ao+ Ay, |[*l,) is stable. Moreover, if X is a stable Banach space with an
unconditional basis and 0 < @ <1, then (Ao, A1)yx 15 stable.

" Proof. In this case we have A4, = A4,. The proof goes as in the
preceding case. The only difference is to pass the flat part from the norm
(]l to the norm |||/, by using condition (ii).

The case 2 = [0, o) is the union of the two previous ones. Now we
need the stability of 4, and 4, as well as conditions (i) and (ii). We also have
to make sure that (4dy+A;, [|'l,) does not contain ¢,.
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We will sketch the proof of this last result for the sake of completensss.

Lemma 21, If Ay, A, are ri. spaces on [0, c0) which both do not contair
€q, then (Ag+ Ay, ||I'll,) has the same property.

Sketch of préof. If ¢, would embed in (Ag+ A4y, ||*]l,), there would
be a sequence (5,), of disjoint simple functions in 4,4+ 4; whose closed span
would be isomorphic to ¢q (cf. [MN], Cor. 18). Put

K41
Sp = Z a; X8,
7 i=K,
where (K,), is an increasing sequence of integers and the sets (B); are
pairwise disjoint.

Let E,, E,, E be the closed linear spans of the functions (x4,); in 4,, 4,,
Ap+ A, respectively. By using the conditional expectation operator with
respect to the g-algebra generated by the subsets (B;);, it is easy to prove that

IAle = inf  (Ufllo+IAill)  if feE.

=fotSfy
JieE;

Thus E = E, @, E{/E; nE,. Since E,, E; have unconditional bases they
are dual spaces; then E would also be a dual space, and this contradicts the
fact of containing a copy of ¢p. m

We now obtain, similarly to Props. 19 & 20:

ProrosITioN 22, Let 4y, A be separable and stable ri. spaces on [0, o).
Suppose that conditions (i) and (i} appearing in the preceding propositions are
satisfied. Then (Ag+ A4y, ||'ll,) is stable. Moreover, if X is a stable Banach
space with an unconditional basis and 0 <@ <1, then (Ag, Ay)sx is stable.

As an application of Proposition 19 we can give the following:

CoroLLARY 23, Every stable Banach space with 1-unconditional basis can
be (1+e)-embedded (as a complemenied subspace) into a stable ri. function
space on [0, 1],

In [B] it is shown that a stable Banach space X with 1-unconditional
basis can be embedded into a stable space with symmetric basis, in fact an
interpolation space [, 1,1, x. .

Here we use basically the same construction, but with the interpolation
space [L,, L,J;x. Such embeddings were considered in [TMST], §10. m
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