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A remark on functional continuity of
certain Fréchet algebras

by
HELMUT GOLDMANN (Bayreuth)

Abstract. Let A be a Fréchet algebra. Denote by §(A) the set of all nonzero multiplicative
linear functionals and by M {4) the set of all continuous members of §(A). As usual we endow
M (4) with the weak* topology. Among other things it is proved that if there are fy, ..., f, €4
such that the map M(4) = C" x ~+(x(f1}, ..., x([,)), is discrete, then A is functionally conti-
nuous, ie. M(A} = 5{A).

1. By a Frécher algebra A we mean a commutative complete metrizable
locally convex topological algebra over the field of complex numbers whose
topology is given by a sequence (p,) of submultiplicative seminorms, which
may be assumed to be ascending:

Pu(f) € puii(f)  for each fed, neN.

In [5] Michael raised the question whether every Fréchet algebra A is
functionally continuous. Till now only partial answers have been obtained.

(1) Perhaps the most far reaching result, due to Arens [1], Theorem 7.1,
ensures that a Fréchet algebra A is functionally continuous .if there are
glements f;, ..., f, €A such that for each (zy, ..., z,) (" the set

ixeM(A: x(f) =z, i=1,...,n
is compact.
In [7] Zelazko showed that M{A) = §({A) if M(4) is at most countable.
In his proof he first reduced the problem to the case when 4 bas a unit, then

explicitly constructed an element heA such that the Gelfand transform kis
injective on M(A) and finally used the following result of Arens [1],

Theorem 6.32;
(2) Let 4 be a Fréchet algebra with unit. Let yeS(4) and f;, ..., S, €4.
Then there exists x e M (4) such that
x(f)=y(f) fori=1,...,n

Our first lemma is contained in the prool of Zelazko's result. For the
reader’s convenience we give a (different) proof.
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LEMMA 1. Let A be a Fréchet algebra. Let (x;) be a sequence of distinct
points in M(A). Then there exists h €A so that (x;(h) is a sequence of distinct
points in the plane.

Proof. For i#j set
Ay =1fedA: x(f)=x(f)}.

Obviously A;; is a closed subset of 4 and it is easy to see that A;; is nowhere
dense in A. Hence there is

h EA\,G J A

i=1 j>i
by Baire’s Theorem. m

We need not assume for the lemma that A has a unit. In the proof of
our theorem we have to be a little bit more careful.

If A has no unit we adjoin a unit 1 in the usual way. Consider the
direct sum

A =ADC={f,A): fed, ieC)}
with the topology given by the seminorms g, (f, ) = p, (/) +]A|. All elements
of §(4) extend to elements ¥ of S(4,) by setting
X(f, A =x(H+4.
Note that ¥eM(4,) if xeM(A). Set
Yo Ay = C, (f, H—A
Then yo €M(A4,). It is not hard to prove that '

(3) i M) MU\ (), x-F,

is a weak* homeomorphism. Note that i"!(y)(f)=y(f, 0 for all
veM(A)\ iy} and all feA.

TueoreM 1. Let A be a Fréchet algebra. Suppose there are f,, ..., [, €A
such that for each x e M(A) the set

yeMA: y(f) =x(f), i=1,..,n}
is at most countable, Then §(4) = M (4).

Proof. Let x;&5(4) be an arbitrary element.
() Assume first that 4 has a unit. Choose x by (2) such that
x(f) = xo(f), i=1,...,n. The set

T= {xéM(A): vy =x(f),i=1,..., n}
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is at most countable, hence—by Lemma 1| —we can find f,,, €4 so that the
Gelfand transform f,,, is injective on T. So—using again (2} — there is exactly
one element x; eM (A4) such that

) x () =x(f), i=1,..,n+1
Hence x; = x, by (2) and (4).

(i)) If 4 has no unit we first choose f,,, 4 with
%) Xo (fasr) # 0.

By (3), (2) and our assumption the set

WEMA): y(h 0 =%/, 0, i=1,..., n+1}
is at most countable. As in (i) we can show that X, e M{A;). Since X, # y,
by (5), xoeM(4) by (3). =

{6) For each neN denote by K, the set of all elements of M(A) which
are continuous with respect to the seminorm p,. It can be shown that (K,) is
an admissible exhaustion of M(4), ie. each K, is compact and if K = M (A4)
is a compact set then there is /eN with K <K, (of. [5] and [8]).
A Hausdorff space with an admissible exhaustion is called hemicompact.

CoroLLaryY 1. Let A be a Fréchet algebra. Suppose there are fy, ..., f, 64
such that the map

M(A)_'*Cn: X""()C(fl), R | x(.f;l)))
is discrete. Then M (A) = §(4).

Proof. (i) Assume first that 4 has a unit. Let x €M (4) be an arbitrary
element. Since M(A) is hemicompact the set

YEM(A: y(f)=x(f), i=1,...,n]

is at most countable and our assertion follows from Theorem 1.
(i) Now assume.that 4 has no unit. Let x,=S(4) be an arbitrary
element. Choose f,.1 €4 with

(7 Xo(for1) # 0.
Then trivially

(8) M(A) “—)C"*Ls X _'(x(fl)’ rrey x(.fn-l-].)):
is again a discrete map. Set '

T=yeM{d): y(f, 0 =%(f, 0, i=1,...,n+1],

U lyeM(Ag): [y(fyr s O < txo(fys i1
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U is an open neighbourhood of y, in M(A4,) and
© ToM(A\U by (7).

i~'(T) is a discrete subset of M(A4) by (8), hence T is a discrete subset of
M{(4,) by (3) and (9). It follows that T is at most countable. Now show as
above that T,eM(A)\ {yo}, 1. xoeM(4). =

ExampLe. Let (X, p) be a hemicompact manifold spread over e X
is a hemicompact space and p: X —~C" is a local homeomorphism. Then
¢y—the algebra of all holomorphic functions on X —becomes a Fréchet
aloebra when endowed with the compact-open topology ([3]. Theorem 5, p.
158). Note that p;ely for i=1,...,nif p=(py, ..., p). It is known (cf. for
instance [2], Theorem 2.5, p. 176) that (M (d%), P) is again a manifold spread
over C", with

ﬁ: M(@X) _)Cn’ x _’(X(Pl)= MR x(pn))

Clearly p is discrete since it is a local homeomorphism. Hence Corollary 1
yields a proof for M ((y) =S5() not depending on the deep imbedding
theorem for n-dimensional Stein manifolds.

2. In this section we want to describe a sort of reduction principle for
the functional continuity problem. Throughout the rest of the paper we only
consider Fréchet algebras 4 with unit.

Let I be a proper closed ideal in A. Then A/I endowed with the
quotient topology is again a Fréchet algebra with unit. (The quotient
topology is determined by the system of seminorms g,(f-I)==inf (pa(f
+g): gell)

Denote by V() the set of all elements x e M(A4) with x(f) =0 for all
fel. Since the natural map j: 4 —A/I is a surjective and continuous

homomorphism, the adjoint spectral map
Je M(A/D) »M(4), y-—yoj,

is continuous and injective. We have j*(p}{f) =0 for each fel and each
yeM (4/I), bence j* (M (A/D)) = V (I). The inverse inclusion also follows, since
for xeV(D

AT -=C, f+I-x(),
defines an element of M(4/l) and j*(%) = x. In fact, it is not hard to prowv¢
that j*: M{A/) -+ V({I) is a homeomorphism for V(f) endowed with the

relative weak* topology.
Let F={(f,....f)eA" Set

F: M(A)=»C x=(x(f), ... x(£).
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For z = (23, ..., z,) €F (M (4)) define
Fliz)= xeM(A): F(x) =z},
I(F,2)=feA: x(f)=0 for all xeF~'(z)}.
I(F.z) is obviously a closed ideal in 4 and V(I(F, 2)) = F1(z).

THEOREM 2. Let A be a Frécher algebra with unit. Suppbse there is
F=ﬂ(f1, s ) eA" such that AJI(F,£) is functionally continuous for each
zeF(M(A)). Then S(A) = M(4).

Proof. Let x,&S5(4) be an arbitrary element. Set

z=x(f), i=1,...,n
Then z = (2, ..., 2,) eF(M(A)) by (2). Let f eI (F, z) be an arbitrary element.
Choose yeM(4) so that
yif) =x(f), ¥ =x0f)y i=1..,n
Then yeF~1(z), so 0 =y(f) = xo(f). Hence
Xo: A/I(F,2)—=C, f+I(F,z) —=x{f),
defines an element of S(A4/I(F, z)), which is continuous by our hypothesis.
This implies
xo(f) = Zo (S +I(F, 2)) = j* (So) {f)
for all f €A, hence xoeM{A). m

Remarks. (i) It follows from [5], Lemma 12.3 b), that the converse of
Theorem 2 is also valid, more precisely, if A is functionally continuous then
A/I(F, z) is functionally continuous for all z €F (M (4)).

(i) The following result (cf. [5], Lemma 123 a)) is a special case of
Theorem 2: A is functionally continucus if A/R(A4) is functionally con-
tinuous, where R{A) denotes the radical of A. '

The next lemma will enable us to give a slight generalization of Arens’
result (1) (see Corollary 2 below).

LemMma 2. Let A be a Fréchet algebra with unit. Suppose
Mdy=U L

iel
with each L, compact and open. Then A is functionally continuous.

Proof. Since M (A4) is hemicompact we can assume that I is at most
countable.
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If M(A) is compact our assertion follows from (1), if not we can w.lo.g.
assume that for each ne/N:

(i) L, is a proper subset of IL,.,.
i) Al elements of L, are continnous with respect to the seminorm
pu (cf. (6)).

Since all elements of L, are homomorphisms, (ii) means that

(10) 1% () < pa(f)

By Shilov's idempotent theorem, which is also valid for Fréchet algebras
(cf. [6]), there are f, €A so that

0 if x¢L,,
x(f")_{l if xeL,

for all fed and all xeL,.

= f/(2" p. (f)).
Then g =Z:ilg,, defines an element of A and

x(g) = Z V(2 p() i xeL\L,., (with Lo = @).

By hypothesis the sets {x eM(A4): x(g) = ¢} are compact for each ¢eC and
our assertion follows from (1).

The hypothesis of Lemma 2 implies that M(4) is locally compact. Since
it is easy to construct Fréchet algebras 4 with countable but not locally
compact spectrum M (A), Zelazko’s result cannot be deduced from Lemma 2.
Hence —with regard to the next result—we note that hypothesis (i) of
Corollary 2 is not a consequence of (i) and vice versa.

CoroLLary 2. Let A be a Fréchet algebra with unit. Suppose there is
FeA® such that for each zeC" ar least one of the following conditions is
Sulfilled:

() F~'(z) is at most countable.

(i) F~"(2) is the union of compact sets which are open in the relative
weak* topology on F~(z).

Then A is functionally continuous.

3. In the last section we endow §(A) with the Gelfand topology, i.e. the
coarsest topology such that all Gelfand transforms are continuous functions
on §(4). An open neighbourhood basis of an element x €S (4) is given by
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sets of the form

yes() y(f—x(fl <e, i=1,..., 7}

e>0and fy,...,f,e4.
As a consequence of (2),
Corollary 12.28).

M(A) is a dense subset of S(A) (cf. [R],

LemMa 3. Let A be a Fréchet algebra with wunit and let (K,) be an
admissible compact exhaustion of M(A). Suppose there is an at most countable
subset T'— A with the following property: For each sequence (x,) in M (A) with
x ¢ K; for all ieN there is feT (depending on (x))) such that

sup I (f): ieN) = co.
Then M(A) = §(A).

Proof. Let T={f: ieN}. Endow S(4) with the coarsest topology
such that the Gelfand transforms of all elements of T are continuous.
If xeS(A) then sets of the form

Ups = Y ES(A): y(f)~—x(fl <ln, i=1, ..., n)

are an open neighbourhood basis of x in this topology.

Fix an arbitrary x €5(4). By (2), U, ., nM(A) # . Assume first that we
can find x, €(M(4) N U,,,x)\K for each neN. Clearly (x,} converges to x in
the new topology. Choose f&T such that sup{|x;(f)]: i€N} = oo, Then
(x.(f)) does not converge to x(f), a contradiction.

Hence there exists neN so that

(11) M{A)nU,, <K,

Let (y,) be a net in M{A) which converges to x in the Gelfand topology.
It follows from (11) that a subnet converges to a point yeK,. This implies
y=x, since S(4) is a Hausdorff space. =

The next proposition shows that the hypothesis of Lemma 3 is perhaps
less technical than it may look at first sight.

Prorosrrion 1. Let A be a Fréchel algebra with unit and let (K,) be an
admissible compact exhaustion of M(A). Let (x,) be a sequence in M(A) with
x, K, for each neN. Then there exists f €A so that

sup {lx, (f): nEN} = cc.

Proof. Considering subsequences of (x,) and of the system of semi-~
norms (p,) if necessary, we can wlo.g. assume by (6) that for each neN:

D) %, €Knui\K,.
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» . . : : 7] W. Zelazko, Functional continuity of commututive m-convex By-algebras with countable
Hinw L 0
(i) K, is the set of all elements of M(4) whlgh are continuous with maximal ideal spaces, Collogq. Math. 51 (1987), 395-399.

respect to the seminorm p,. [8] -, Selected Topics in Topological Algebras, Aarhus Univ. Lecture Notes Ser. 31, 1971.
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n—1 w
%, (F} = lxn(fn)l—\k; Xn (fk)l—|k:>jﬂ X, (f)zn-1. W

Remark. Proposition 1, known from the theory of several comple:
variables, has the following consequence: If S(A) is a k-space, then M (4
= S(A) (cf. also [4], Proposition 3).

Recall that a Hausdorff space is called a k-space if every subse
intersecting each compact set in a closed set is itself closed. Locally compac
spaces or first countable spaces are examples of k-spaces. If X is a topologi
cal space and Y is a k-space, then every continuous map f: X =Y which 1
proper (meaning that the inverse images of compact sets are compact) 1
closed. Now consider the map

M(A) —»5(4), x-—x.

It is clearly continuous and it is also proper. {(Otherwise there would b
a compact set K < S(A) such that K m M(A) is not compact. Using Proposi
tion 1 we then find f €4 such that the Gelfand transform fis unbounded o
K n M (4), a contradiction with the compactness of K It follows that th
map is closed. But this implies M (4) = §(4), since M (4) is a dense subset ¢
S(4).
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