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Abstract. This paper is a direct continuation of [4]. The study of conditions on a basis
which ensure that it differentiate ¢(L}(R") is a central problem of the theory of differentiation of
integrals. There are many papers (see [1]) devoted to the study of connections between the
differentiation of various function classes on the one hand, and the halo and covering properties
and estimates for the maximal operators on the other. However, the problem whether there exist
at all bases which differentiate various classes @(L}(R™ has not been much discussed, In the
present paper we prove the existence of bases which differentiate precisely a given class
& (L) (R™), with natural restrictions on ¢. The analogous question for bases of rectangles is also
considered.

1. Introduction. A differentiation basis at a point xeR" is a collection
B(x) of bounded open simply connected subsets of RV containing x such that
there is a sequence {R,! = B(x) with diam R, —+0 as k -+o0. The family B
= {R: ReB(x), xR is then called a differentiation basis in RY. A differen-
tiation basis is called translation invariant (briefly: a Ti-basis) if it contains
all translates of any of its elements. '

If a basis B has the property that for each R in B, if x &R then R eB(x),
then B is called a BF-basis. Unless otherwise stated, we shall consider, only
BF-bases. : '

We define the upper and lower derivatives of the integral of a locally
integrable function f at a point x with respect to a basis 8 by

Dy(f, x):= sup limsup|RJ™" | f(3)dy,
Ry eB{x) k= Ry
diamRy—0

Ds(f, x):= inf liminf|Ry|™" [ f(»)dy.
RyeB(x) k- Ry
diamRy 0

We say that a basis B differentiates the integral of fif Dg(f, x) = Dg(f, x)
= f(x) ae.

Let @ be an Orlicz function (Orlicz function = N-function in [2]) and
®(L)(RY) the Orlicz class. If B differentiates the integral of every function
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from @ (L)(R™, then we say that B differentiates $(L}(RY); if for any class
¥(L)(R) such that ¥(z) = o(®(¢)) as t — oo, there exists f e ¥ (L)(RY) with
Dg(f, ) = +o0 ae. then we say that B does not differentiate o(®(L))(R).

Finally, B differentiates precisely ®(L)(R") (written BD(® (L)) if it differen- -

tiates @ (L)(RY and does not differentiate o(®(L))(RY).

We denote by B,(RY), s=1, ..., N, the TI-basis consisting of all N-
dimensional intervals (i.e. rectangular parallelepipeds with sides parallel to
the axes) R, where

R=1{xy,...,xg): a <x; <ag+bfor i=1,..,N,

w1thb-hfor1-1 S Sh,

while B(R”) denotes the basis of all rectangular parallelepideds (with arbitra-
ry orientation).

Let us introduce sequences @ = (6,2 ., 6,100 as k-0, and 8,
= {2¥1@ .. The basis of rectangles in the plane with one side at angle 1/,
with the positive x-direction (for some keN) will be denoted by B,.

The well-known theorems due to Lebesgue, Jessen-Marcmklewwz»—Zyg-
mund, Saks, and Zygmund give

B,(RY eD(L(log* L) 5)(R) for s=1,..., N,

while B{R") does not differentiate L*(R™ (for references see [1, 47).

In the last ten years many new interesting results in the theory of
differentiation of integrals have been obtained. In particular, A. Nagel, E. M.
Stein and S. Wainger [3] proved that B, differentiates 17(R%), p> 1, if
liminf, . 0,4,/6, > 1. On the other hand, in [5] it was. shown that if
liminf, . B+ /6, =1 and 4,0, 2 0 (where 4,6, is the second. difference)
then B does not differentiate L= (R?). Also, J.-O. Str&mberg [6] noticed that
B, does not differentiate o{Llog® L)(R?).

This shows that for & (L)(R") = (L({log* L}¥}(R®, k=0, ..., N—1, there
are bases which differentiate precisely these classes. On the othér hand,
multiplying each function from @(L)(R¥) by a positive constant does
not change the differentiation properties of the class, and hence
BeD(®(L)(RY)<>BeD(®(cL))(R"). This is possible only if ®(cL)(R") is
independent of ¢ >0, which in turn is equivalent to & satisfying the
A,~condition (for the 4,-condition, see [2})

A natural problem arises: For a given Orlicz class 45(L)(RN) with ¢
satisfying the 4,-condition, construct a basis which differentiates precisely
®(L}{(R™).

Partially, this problem was considered in [4], where the following
aiternative, rather unexpected from our point of view, was established:

If B is a TI-basis of intervals then either B differentiates L(R") or B does
not differentiate o (Llog* L)(RM.
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On the other hand, if we omit the assumption of translation invariance
then there do exist bases of intervals which differentiate classes @(L)(RY)
intermediate between L(RY) and Llog™* L{RY).

In the present paper we give a solution of the above problem and
consider analogous questions for bases of rectangles.

Finally, the author would like to thank Jerzy Trzeciak for his help in
preparing the English version of the manuscript.

2. Differentiation of ¢ (L)(R") by bases of general type

THeoREM 1. Let & be an Orlicz function satisfying the A,-condition. Then
there exists a basis B such that BeD(®(L))(RY.

The proof of Theorem 1 is based on the following lemma, which gives a
general method of constructing a basis with the given differential properties
provided certain covering properties of a simple collection of sets are known.

In the sequel we denote by ¢, c;, ¢, etc. various positive constants which
may vary from line to line.

LEMma A (see [4)). Ler @ and &* be Young cowjugate functions with @
satisfying the A,-condition. Let

a= R VAU

where #,, n=1,2,..., is a finite collection of bounded open subsets of R".
Suppose A, Too as n —~oo and {E,}2, is a family of bounded open subsets of
RY such that there exist comstants ¢, i =1, ..., 6, satisfying the following
conditions for all neN:

(i) All members of A, have equal measure.
(i) For any subcollection & < #,,

‘(‘D*(cl( Y r()—c))dx<c; ¥ IR

Re¥ Re¥

where W= [x: Y p.wtr{¥) 2 c4a).
(i) |[R NE)/|R| = ¢sfd, for Re#,.
(iv) [Ugea, R| 2 6 P E,.
Then there is a basis B(RY) whose every element is a dilation of some member
of ¢ and such that B(R") differentiates precisely ®(L)(R). :
“Proof of Theorem 1. Let ny = max {n: ®*(n) <n!. Define 2,
n > n,, to be any family of » bounded open simply connected sets such that
(0 RAR ={[0,11", |R =®*(n/n for R, R'eA,.

Let A, := ®*(n)/n, E,:=[0, 11%, n > n,. Let us now check the assumption of
Lemma A. o '
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For any .% < &, with card & = s < n we have

f@* (Y 1x) < 8%+ 3 |R| < s@*(m)/n+ z IRl=2Y IR

Re sy, Re ¥ Res*
Moreover,

IRAEJIR| = 1/|R| = /i, for Red,.

It remains to prove (iv). Denote by ¢ and ¢* the inverse functions of ¢
and 9* respectively. Then, as is well known (see eg. [2]),

(2 v<eMe* <2, v20.

Putting v = &* (i) yields * () < ¢ (D* (W))u < 2¢* (u), hence

(3 & (P* (w)/u) < O*(u) < O(20* (u)/u)

or, équivalently,

(4) _ B* (D (u)/u) < D (W) < O* (20 (u)/u).
Further, from (1) it follows that for some ¢ (0, 1)

(5) _fR\R’E* ok R|{zc|R| for Re#,

and from (3) and (5) we obtain

| U Rlz¢ 3 RI=c2*(m >
Rei#y

Rey,

‘G (D* (n)/n) = DP(L)E,.

Hence (iv) is verified, which completes the proof.

Theorem 1 admits various generalizations and more precise versions.
Without going into details, we present some of them.

THeEOREM 1. Let @ be an Orlicz function which satisfies the A,-condition.
Then there exists a basis B eD(®(L))(RY) such that for any Orlicz function ¥
which satisfies the dj-condition and ¥{f) = o(® (1)) as t — oo, there exists a
subbasis B of B with B eD(¥(L))(R™).

THEOREM 17, Let @ and ¥ be Orlicz functions satisfying the Az—cond:tzon
such that ¥(t) = o(®(r)) as t = co. Then there exists a basis B eD{®(L))(RY)
such that no subbasis B of B differentiates ¥ (L)(R").

3. Differentiation of & (L)(R? by bases of rectangles. The bases which
have been constructed in Section 2 are generated by sets which, in general,
have rather complicated geometry.

The aim of the present section is the construction of bases generated by
“elementary” sets, i.e. rectangles in the plane. However, we have not been
able to obtain an exact analogue of Theorem 1 in this case, even for R*.
Thus the problem of existence of bases of rectangles {or other convex sets)
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which differentiate precisely an arbitrary class @ (L) (with & satisfying the 4,-
condition) remains open.
Turorem 2. Let & be an Orlicz function such that for' some & >0
(6) BB/ 10 ast—+oo, L1,
Then there exists a basis B < B(R?*) such that B eD(®(L))(R*.

Proof, Let &* be the conjugate function to @ and let ¢* and ¢ be their
respective inverse functions.
By (6), ¢ satisfies the A,-condition and

)] P 2= M " tw  as oo,
Rewrite (2) as
L (o™ 27 Y o* (72 ) < 2
Then
(MR () < @* (1T HRTEY < UV (n).
Finally, vsing (7) we obtain
(8) S* (/1Y < c* (r)fr2rE

where t <t and the constant ¢ depends on e&.
We now deduce from (8) several inequalities which will be used in the
sequel. First,

9) (@*¥(s)/sP(my/n) < esn, 1 <5< P(nyn.
Indeed, by (8) and (4),
P* (5)/5 < cP* (@(n)/ﬁ)nz/dﬂ(n) < cn?/® (n)
and (9) is proved.

Secondly,
10 T k2= Y G*(Rk Ik
k=1 k=1
< cP*(s)s™ 2% Z k< cd* (s)fs,
(1) E Y (k)k? = 2 @ (l) k2= k'

5

oB*(9)s 2™ T KT < o (557

k=1
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" Let us start the construction of a basis. Let m, = [®(n}/n]+1, m,eN.
Let :#, consist of R® = [0, n] x [0, 1] together with the rectangles obtained
from R® by rotation through the angles kn/®(n), k=1, ..., m,, about the
origin. Then

(12) |[Rl=n for ReR,,
and clearly for some nyeN

R\ U R|=2%4R for Red, n3zn,,
Re@ R #R

whence

(13) LY R| ¢ Y IRI>ch(n).

Red,
Define E = {x: |x] < 1}. Obviously (see Fig. 1)

RCI

0,0

Fig. 1

(14) | IRAER =nj@n) for Re,

Let o=#Uhyu..., E,<E, A, =n neN, nzn o- Then (12)(14)
imply (i), (iii} and (iv) of Lemma A,
We now show (n) Let = {Ry,..., R} < &, with the respective rota-

tion angles 8, <... < 8,. Without loss of generality we may assume that s
= 4. Set
e |
Fii= x: card |m: xR, :}, G, = lx card {m: xX€eR,} -:}

= ¢* (kgl AR, (x))-dx
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We aim at obtaining the inequality

I<c Y IRy
k=1

We have
5~1
I'= 3 A®*()|F|+&* (1)|F,|+P*(s)|G,|— &% (s — 1) |F,,
w2
where AD* (i) = 45* (i)-cb*(i—— 1), and therefore

< P*{1) Z IRyl + @*(5) |G|+ Z ADP*(H|F,).

i 2

Let us estimate |G,. By Fig. 2, G, = R, nR,, and hence

A

Fig, 2

(15) |G| =% cot (6,—8,) < 20 (n)/(sn).
Let us point out that similar estimates, with details of proof omitted, will

appear in several places of this. paper.
Further, from (15), (9) and (12} we obtain

B*(5) |G,} < 2(P*(s)/s)(P(m/n) < esm=c Z IR
It remains to estimate Y :=Y32} A®*(i)|F,|. We have |

U’PkuQ,
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where

P, = {xeR,‘\ U R;: card {m: xeR,} 2},

0 = -{xeR card {m: xR, l}.

Therefore
s—1 s—1 s~1
r< _szdi*(i) 2P+ Y AS*()IQ) =3+ 3.
i= k=1 i=2

But, as Q =R,nR,_;,, by repeating the proof of (15), we obtain |Q]
=%cot (B,—0,_;.,) < 20 (n)/{in), hence

s~1
Y e(P(min) 3 AP* (/i
i=2
It follows from (10} that

s—1 51 §=1
Y Ad*()fi= T *()i— ¥ o (i-1)i
i=2 E i=2

i=2

s—2
< c(_z D (i)/i + D* (s)/s) < cd* (s)/s
and by (9) "

" (@ (sys) (Sinyn) < ¢ Z Rl

It remains to estimate ). From Fig. 3 we have

" Fig. 3
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Pye=(Re Ry s )\MRy w1 DRz )

and therefore [Py = 4cot(B,— 6y ;1) —1cot (B —B_;+;). Hence

s=1 s—1
2= T T A ()oot(—0ic.)
i=2 k=i
=1 35—1
- ,Zz kgid¢*(i)COt(6k+l"Bk—i+ 1)

s—-1 §s—1 5~
< Y AP*(Qcot(B—b- )+ ¥ 2 L &* (i)cot (0, — B—; 4 1)
k=2 P=3 k=i

=100+ 2
where A, ®* (i) = A®* (i) —AD* (i—1). Since cot (B —0,-,)} < 2&(n)/n from
(12) and (6} we obtain .

< cP(ms/n=cP(ysn/n* <esn=c Y, R,
k=1

and we are left with the main sum %
Analogously to (15), cot (6, —8;_;+,) < 2&(m/(in), and so

s—1 s—1

Yo < (Blyn) Y T A, O* ().

i=3 k=i

Applying twice the Abel transform and reasoning 4s above gives

S <clomirne 3, 5 500

‘Now (11) implies

i Z S P < s Z & ()i < c®* (s)fs
Py &
and (9) and (12) show that
Tr<e Y IR,
k=1

which completes the prool.

CoroLLARY 1. For any pe[l, 2) there exists a basis B < B(RY) such that
BeD(L")(RY).

Tucorem 3. There exists a basis B = B(R?) such that B differentiates
L2(R® and does not differentiate L?(R?) for p <2.

Proof. Let £ = {x: |x <1}, m, = [n/lnn], m,eN, n > 2. Let A, consist
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of R® =[0, n] x[0, 1] together with the rectangles obtained from R° by
rotation through the angles k{m/&)m; ', k=1, ..., m,. Clearly,

(16) IRl=n for ReA,,
(17) | U R|=c¢ Y IR =com,>cn’/lnn,
ReAy R,
(18) IR EIR| > r/(4n) for ReA,. !

Let &= [Ry,..., R} « A&, and let 8, <... <0, be the respective rota-
tion angles, Then g

(3 m)" =T Eam 2] X X tmy 2ty
k=1 k k <k

=3 IRJ+2Y Y IR, N Ry

k Jj<k
Let us estimate the second term on the right-hand side. We have
(19) |Ry N R} = ot (B, —8) ~ m,/(k—j)
and hence
Y Y IReORi€Sm,Y, ¥ 1fk~)) < cmysins
k J<k

k i<k

Lcln/mmslns <csn=c Y, |Ry/.
k=1

Therefore, for any system & < #, we have the estimate
{20) (Y %) <ec Y IRl
Re & Rew

Put o =4 L Hhu..., E,=E, A, =n nz2 The reasoning analogous
to the proof of Lemma A in [4] now yields the desired basis B. '

. Since by (20), B has the F;-covering property, it follows that B differen-
(tiates L?(R?) (see [1]). On the other hand, by (16)(18), B differentiates
no class ®(L)(R?) with &(z) = o(t*/logt) as t = oo, in particular, it does not
differentiate LF(R*) for p < 2. '

The proof of Theorem 3 is complete.

Remark. The basis constructed in Theorem 3 has precisely the V-
covering property. Indeed, by (19)

[T 2e) =ZIRI+2Y T IRARI =Y T 1k—))
k=1 k k i<k k <k
My
= cmilnm, = cn’/Inn = cnm, = ¢ Z |Rd.
! : Z
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4. Differentiation of ¢(L)(R") by subbases of B . The bases constructed

in the previous section consist of rectangles with a dense set of directions.
Thus they also have rather complicated structure.

Let us now consider the question of existence of bases of rectangles with
a rare set of side directions which differentiate precisely some classes
#(L)(R%. An example here is the basis Bg,, which differentiates LP(RY),
p> 1, and does not differentiate o(Llog® L)(R?). )

It would be interesting to see whether there exist bases B — Bg, which
differentiate precisely a class ® (L) (R?) intermediate between Llog* L(R?) and
Llog® L(R%).

TueorReM 4. Let @(t) = nj (1} be an Orlicz function satisfying

(21 Y@ Int™1too  ast—w, =1,
(22) w)flnitlaz0 ast—+oo, t2t.

Then there exists a basis B — Bg, such that BeD(®(LY)(R?).

Proof. First we show that ¥, the inverse function to y, satisfies the
As-condition (for the definition see (43} below). Using (22) and 2(a*+b%) =
(a+b)* we obtain :

YO+ o) In*t+In’y

1
vy @) 2

for t, y = &g,

hence
WP P <20+ =¥ (PRE+1).

Therefore () ¥(y) < P{2(t+y)) for 1, y 2 1o, and finally,
tP(t) = w(w(:))w(r) < P2 () +1)):
But, by (22), () = o(?)} as t =00, and so- :
(4)t¥ () < Wict) for £ to.

Consequently, the conjugate function &* is equivalent to ¥ (see [2]). |
Thus, to establish the differentiation of @ (L)(R?) it suffices to prove (i) of
Lemma A with &* replaced by ¥—this will be used below. Further, (22)
implies that @ satisfies the A,-condition. .

Write o(t) ;= (2/%). From (21) and (22) we obtain

- {23) w(t)ttoo ast—row, t =1l

(24) wyt*|b=0 . ast—ow, t21l
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o Without loss of generality we may assume that b < 27%. Then there Fix nzno, neN. Let [; be the line x, = 2" "x,, j =j,,..., n, in the
i8 j, 2 ty such that _ (%1, x;)-plane. Figures 4 and 5 define the families of parallelograms
(25) <oU-1<(-1)/16 for }3J. P, K): j=los .-, m; k=0,...,m} and {D;: j=j,,..., n}. Let

Let m; = [ (j~1)/f1=1, m;eN, j 2 jo. By (23), @()) > (j/(j = D)) @ (j~ 1), exp(t) = 2.

and hence for j = j,

X2

my+ L < (Wi-D)e(i—1) = (i~ D-Do(i-) <o(D-w(j-1).

Consequently, | explmy)
(26) Y m+l)<wfs) for s=j,.
CJ=ig ' explm)
On the other hand, (24) yields w{(f} < (A ]—1)) w{fj—1), and since
1j = (1/4) @ 1)/~ 1)%, j > 3, we have SxplnT M-k "

Fig. §
mi+1 2 (@(-1Df)—12 G-~ D)e(-1)-1 :
2121 V1 S e o TV Clearly, |Dj| = exp(n—j+m;_y+1+m)).

. =M= =N (-)-12He()-o(-1) - By the definition of cuJ and m; and (25), (26)
Finally, (25) implies

S J
s s @8 | ¥( Z Z Xeiw) < F( 2 (m+1)|D]
2 m+D) 23 ¥ (0()-o(-10)-(+1) by = i=Jo
Tl 1J'j° ' < ¥(w(Hexpn—j+m;_, +1+m) < exp(j/d+n—j+2m+1)
zo8)—w(j—1
: o8 —w(jo—1)—(s+1) < exp(j/4+n—j+2(j~1/16+1) < exp(n+1—j/2).
Zgw(s)~o(j,—1), . Write 'XJ.:=.U:ZOP(j, k)\D; (see Fig. 5 where the case i=j—1 is
and hence for some ng 2 j, represented). Clearly,
=1 i —idms = .
2n E (mj+1) 2 w(m/16  for n > n,. |4B] > 3|4C| = Sexp(i—n)expln J+r_n’_1+l) exp(m;— 1),
=Jo ' and since m; < m;_,; for jyi<j—1, we have X;nX; =@ for i#]j, i f
As before, we now construct the desired basis with the use of Lemma A, = o, o N
First we introduce some auxiliary sets and obtain certait preliminary We now define #, to be the family of rectangies
estimates. (R(, 0: J =gy oams k=0, ...,m)
B where R{j, k) = ABCD and P{j, k) = AEFD in Flg. 6. Obviously,
2 | (290 IR(, =[P, K| =2 for j=jo,..cn k=0, .., m.

Pl k) / Set V= sta,,R\{(xis x,): x; = 0} It can easily be seen that Y is an

isosceles right-angled triangle with hypotenuse of length exp(m,) lying on the
x,-axis. From (25) we obtain |Y| < exp(2m,} < exp(r/8), and hence

- 2H-dr

ol (30) : [2(% )< ¥( Z (my+1))|Y] < exp(n/4)exp(n/8) <

Fig. 4 Y Redt, i= Jo
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c F
Xz
D
E
2]
A X

Fig. 6

Let E:={(x;,x;): 0§x, €1, x;, €x,<1}. Then E<R(j, k) and
therefore

(31) [RNE/|R| = |E/iRl = 27" for ReH,.

Moreover, from the construction of 4, it follows that for some ¢ e(O 1)
[R\ R|2c|Rl for ReA,.
R ey, R =R

Then (27) gives

U R>c ¥ IRI=c2' ¥ (m+1) 3 2y (2"9).

Reot, Re#, i=Jg

On the other hand, (22) implies that ¥ (u*)/In?(u*) < ¥ (W/In?u for u = j,,
therefore v (u) > ¥ (u*)/16, and hence ¥ (2¥*) = 15 (2". Finally,

(2 | U R{Z 2w @) =co@)IE for n>ro.
Redy, .
Further, we aim at obtaining the inequality

(33) [ PG 2 x)<c ) IR

Riy  Re¥ Re¥

for an arbitrary subcollection ¥ — #,. To avoid technicah’tiés, we consider
the most important special case: % = #,. Then

| P am)= ¥ Z Xt (D za)=:1+4J
n2w Rey Re, Rest,
where D= {Ji_; D;, X:=Jj-; X, Let us estimate I. From (28) and (29)
we -obtain

n J "y "
I ¥ PG Y X trow)< Y, exp(n+1—j/2)
J=io By i=Jg k=1 i=To :

r<ey iju, k)|

J=Jg k=1 B
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and therefore
(34) I€e Z |R|.
Re.#n

It remains to estimate J. We have

n my n
J<Y [P Y tow)=: 2 J5
i=jp g2 k=1 i=jo
Let
mj
P(i P — . —1,
0,k =4 PO PUD or ket myt
P, m) for k == m;.
It is easy to see that
;
Ji= 2 ?(3 Z Arg.a) = Z 5.
k= lQ(]JL) i=1
Define now
i, k—h+D\ P}, k— k) for h=1,...,k~1,
TG, kb = (P(]: +D\P( W)@y, k) for
PG, )nQ(, k) for h=k.
Obviously,
k
U, k= UT{ kb,
h=1
TG, k, hf <explk—h+1)exp(n—k) =exp (n—h+1),
k
Z xp(j,i, (x) = h fOI' xET(j, k, h).
i=1
By (21),
k
Ky | PWY<ec Z exp(h/2) exp(n— h+1) < c2".
a=1 T(hk.h
Then _
iy no M n My )
(35) T Y A<y Nr=cY Y IRG K
i=ig k=1 J=Jg k=] . Jj=jp k=1

and the required estimate follows from (30) and (33)~(35).

Thus the collection ¢ =%, w #, ... is defined. Let E,=E, 4, ='2",
n ny. Then (29), (33), (31) and (32) imply (i~iv) of Lemma A, which
completes the proof of Theorem 4.

4 ~ Studia Mathematica 94.1
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CoroLLARY 2. For any pe[l, 2] there exists a basis B < Bg, such that
BeD(L(log* L)*)(R?).
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L*-Multiplier transference induced by
representations in Hilbert space

by

EARL BERKSON (Urbana, Il), T. A. GILLESPIE (Edinburgh), and
PAUL S. MUHLY (lowa City, Ia)

Abstract. Let (.#, 4) be a measure space, and § a representation of a locally compact
abelian group G by measure-preserving transformations of the points of .#. Under suitable
further hypotheses on g, G, and S, the Coifman—Weiss Transference Theorem for Multipliers
provides a machinery whereby S can be made to transfer “normalized” L7 (G)-multiplier
transforms, along with their bounds, to LP(w), for all finite p. We show below that mwltiplier
transference can be freed of technical restrictions so that its broader, structurally simpler nature
emerges in the following form: whenever an arbitrary locally compact abelian group G has a
uniformly bounded strongly continuous representation R in L?(u) (2 an arbitrary measure) such
that R has a uniformly bounded L?{u)}-version for some pe(l, o), then R will transfer
continuous L7 (G)-multipliers to L7(u). The added generality is illustrated in some elementary
examples and in a short proof of the Homomorphism Theorem for Muiltipliers. An application
to generalized analyticity is presented in the last section. )

1. Introduction, The Coifman—Weiss theory of transference methods uni-
fies and expands diverse streams of thought in general analysis by transfer-
ring operators affiliated with groups, along with their bounds, to spaces in

which the groups act {(see [6] for an expository account of the theory’s

nature and lineage). In this article we shall be concerned with a generaliza-
tion, to a wider context, of the Coifman—Weiss Transference Theorem for
Multipliers {(see Theorem (2.1) below for this generalization).

Suppose that (.#, y) is a2 measure space, and S is a representatipn of a
locally compact abelian group G by measure-preserving transformations of
the points of .#. Suppose also that the unitary representation R of G in
L*(#, 1) implemented by § is strongly continuous. The Coifman—Weiss
Transference Theorem for Multipliers ([5, Theorem 3.7]) provides a method
for using R to transfer “normalized” multiplier transforms from I?(G) to
L?(#, ) without increasing their operator norms. In order to support this
multiplier transference method, various technical hypotheses are imposed in
[5]: the group G is assumed to be g-compact, (#, ) is taken to be o-finite,
and joint measurability in (v, ) €G x .4 is implicitly assumed for functicns
of the form f (S, ) (f eLf(.#, u)). Recently, it was shown in [4, Proposition



