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CoroLLARY 2. For any pe[l, 2] there exists a basis B < Bg, such that
BeD(L(log* L)*)(R?).
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L*-Multiplier transference induced by
representations in Hilbert space
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EARL BERKSON (Urbana, Il), T. A. GILLESPIE (Edinburgh), and
PAUL S. MUHLY (lowa City, Ia)

Abstract. Let (.#, 4) be a measure space, and § a representation of a locally compact
abelian group G by measure-preserving transformations of the points of .#. Under suitable
further hypotheses on g, G, and S, the Coifman—Weiss Transference Theorem for Multipliers
provides a machinery whereby S can be made to transfer “normalized” L7 (G)-multiplier
transforms, along with their bounds, to LP(w), for all finite p. We show below that mwltiplier
transference can be freed of technical restrictions so that its broader, structurally simpler nature
emerges in the following form: whenever an arbitrary locally compact abelian group G has a
uniformly bounded strongly continuous representation R in L?(u) (2 an arbitrary measure) such
that R has a uniformly bounded L?{u)}-version for some pe(l, o), then R will transfer
continuous L7 (G)-multipliers to L7(u). The added generality is illustrated in some elementary
examples and in a short proof of the Homomorphism Theorem for Muiltipliers. An application
to generalized analyticity is presented in the last section. )

1. Introduction, The Coifman—Weiss theory of transference methods uni-
fies and expands diverse streams of thought in general analysis by transfer-
ring operators affiliated with groups, along with their bounds, to spaces in

which the groups act {(see [6] for an expository account of the theory’s

nature and lineage). In this article we shall be concerned with a generaliza-
tion, to a wider context, of the Coifman—Weiss Transference Theorem for
Multipliers {(see Theorem (2.1) below for this generalization).

Suppose that (.#, y) is a2 measure space, and S is a representatipn of a
locally compact abelian group G by measure-preserving transformations of
the points of .#. Suppose also that the unitary representation R of G in
L*(#, 1) implemented by § is strongly continuous. The Coifman—Weiss
Transference Theorem for Multipliers ([5, Theorem 3.7]) provides a method
for using R to transfer “normalized” multiplier transforms from I?(G) to
L?(#, ) without increasing their operator norms. In order to support this
multiplier transference method, various technical hypotheses are imposed in
[5]: the group G is assumed to be g-compact, (#, ) is taken to be o-finite,
and joint measurability in (v, ) €G x .4 is implicitly assumed for functicns
of the form f (S, ) (f eLf(.#, u)). Recently, it was shown in [4, Proposition
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2.6] that the g-finiteness of (. #, 1) and the joint measurability in (¥, @) can

be dropped from the hypotheses. In the Coifman—Weiss context, the o-

compactness of G is used to produce a countable approximate identity for L'
of the dual group G so as to imitate the properties of the classical Fejér
kernel. The ensuing analogue on G of Cesaro summability is at the core of
their definition and subsequent treatment of normalized multipliers. In barest
outline, the key property enjoyed by a normalized LP-multiplier is that it has
a suitable perturbation which is the pointwise limit of a sequence of Fourier
transforms corresponding to functions in L?(G) having compact support [5,
Lemma 3.5 (2)]. The Transference Theorem for Multipliers is achieved in [5]
by starting with this property of normalized multipliers, and then applying
the General Transference Result for compactly supported L!(G)-kernels ([5,
§ 2], [6, Theorem 247 together with the Lebesgue Bounded Convergence
Theorem. In Theorem (2.1) below, we show that the s-compactness restric-
tion on G can be dropped, and that the hypothesized strongly continuous
representation R of G in L*(.#, ) need only be uniformly bounded, rather
than implemented by measure-preserving transformations. By eliminating all
technical restrictions, our theorem simplifies the Transference Thecrem for
Multipliers, and generalizes it to the more universal context of arbitrary
bounded Hilbert space representations for the general locally compact abe-
lian group. Thus, the precise nature of multiplier transference emerges:
whenever an arbitrary locally compact abelian group has a uniformly
bounded, strongly continuous representation in the L*-space of a measure u,
and this representation has a uniformly bounded L?(y)-version (for some p in
the range 1 < p <o), then the representation in L?(x) will transfer conti-
nuous LP(G)-multipliers to L7 (p).

An application of Theorem (2.1) to generalized analyticity is given in §3
{Theorem (3.1)). The full generality of Theorem (2.1), which no longer
requires the representation R to be implemented by measure-preserving
transformations, is utilized in proving Theorem (3.1). Let K be a compact
abelian group with archimedean ordered dual. In [3], Helson’s theory' of
generalized analyticity was extended from L*(K) to L7(K), 1 < p < co. It was
there shown that each normalized, simply invariant subspace of L?(K) is, in a
canonical fashion, the range of an idempotent operator. In Theorem (3.1) we
show that the norm of this idempotent does not exceed that of classical
analytic projection in L# of the unit citcle T

2. Multiplier transference. Let G be a locally compagt abelian group
with dual group G, let (.4, p) be an arbitrary measure space, and suppose
that u — R, is a strongly continuous representation of G ‘in LA(.#,40) such
that sup ||IR,|!: # €G! < +o0. Thus the bounded representation R is automa-
tically similar to a unitary representation of G in L*(.#, w), the similarity
bemg implemented by a bounded selfadjoint operator w1th strlctly positive
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spectrum [8, Theorem 8.1]. Applying Stone’s Theorem for unitary represen-
tations, we obtain a unique strofigly countably additive regular spectral
measure ¢ (-), defined on the Borel sets of G and acting in L%(.#, y), such
that

 Ry=Jywdé(y),  for all ueG.

¢

(2.1) TaroreM. Let G, (., 1), R, and &(-) be as just described. Suppose
that for some p satisfying | < p < oo the following conditions hold:

(iy For each ueG, R, can be extended from L*(.#, i)y nLP( ./, 1) to a
continuous linear mapping R of 1P(.#, 1) into LP(.#, n).
(i) s, =sup {IRP|]: ueG} < c0.

Then if @ is an LP(G)-multiplier which is continuous on G, the operator fcods
extends from L2 (. #, iy " I?(.#, W) to a bounded linear mapping of L (.#, 1)
into LP{./, ) with norm not exceeding Sf,llqoilMp(G-,, where ||@llx ) denotes the

p-multiplier norm of @.

Proof. Since L*(.#, p) L7 (.#, p) is dense in LP(.#, ), it is obvious
that « — R is a representation of G in LP{.#, p). We next show that R is
a weakly continuous representation. Let v &G, and suppose that {u,} is a net
in G convergent to . Fix a function feL?(.#, @y LFP{.#, y). Since
IP(.#, 1) is reflexive, we see from (ii) above that ’R‘P’ f} has a subnet
'R‘P’ f} weakly convergent in I”{.#, y) to a function F. It follows from the

strong continuity of R that F =R, f = R!Y . We infer that ’R‘P’ 1 con-
verges weakly in I”(.#, ) to R . It now follows with the aid of_ (i) that
the representation R™ is weakly continuous.

Hence [11;, Theorem (22.8)], R™ is a strongly continuous representation
in L?(.#, p). The Coifman-Weiss General Transference Result for convolu-
tion kernels ([5, p. 2901 =[6, Theorem 2.4]) now provides that whenever
keL'(G), the Bochner integral 'G u) (R, ) du, taken for all feL?(./#, W),
defines a bounded linear mapping T‘*‘” of L7(.#, ) into itself such that
(TP < 82Kl L (for the Coifman-Weiss General Transference Result in
the generality needed here, see the -discussion in [4, § 2]).

We next consider the special case which, from the standpoint of transfe-
rence methods, is the crux of the matter. Assume that ¢ =k for some
keL'(G) Let fel?(.#, W L*(.#, W, and gel?(.#, W L*{./#, ), where
p~'+g "' =1.Then for the operator T:” defined above we have with the aid
of Fubini’'s Theorem

(BPf,g>=[o(d {8 S, a).
G
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Hence

I({_}{ oM dEG) £, 92 < 5ol 1M g 19V o

The desired conclusion for the special case when ¢ =k is now apparent. In
order to place the proof of Theorem (2.1} under the control of this special
case, we shall require the following scholium {[11;, Theorems (28.52) and

(33.12)]).

. (2.2) ScuoLtum. Let G be a locally compact abelian group. The algebra
L*(G) has an approximate identity (h;};.; such that:

(i) Each h; 2 0.

(n) [a Ry du =1 for all jeJ.

(i) For each jeJ, hy, the Fourier transform of hy, is compactly supported,
and h; = 0.

(iv) {hj} converges uniformly to the constant function 1 on each compact
subset of G.

(V) For each open neighborhood W of 0, the net {jg\w hi(wydu} con-
verges to 0,

Suppose next that the desired conclusion is known to hold when
) e_M »(G) Is continuous with compact support. In the general case, pick thy)
as in Scholiwm (2.2). For jel, let ;= @h;. Then an obvious application of
"Plancherel’s Theorem shows that [|gj|j My < lloll MA(6) for all j. For jeJ, let
9% be the bounded operator on L2(.#, ;) given by PP = s @;d 4. By our
supposition, ¢{* can be extended from L*(#, ) nL?(#, 1) to an operator
&P on LP(.4, y) such that

(2.3) IBPI < 85 @l -

The regularity of the spectral measure &(-) ensures that L?(.#, p) is the
closure of | {#(C)L*(#, p): C is a compact subset of G}. With the aid of
this fact- and (2.2) (iv), it is easily seen that {${¥} converges to [s¢ d& in the
strong operator topology of #(L*(#, 1). Since LP(.#, u) is reflexive, it
follows from (2.3) that {${"} has a subnet {@{’} convergent in the weak

operator topology of #(L?(.#, 1)) to an operator Q'” such that

(24) 109 < 53 ”(P“Mp(é)-

For fel®(#, ) NLP (M, 1) and gel?(M, y) NI9(H, 4), we have that
@, 9)= <82 [, g converges to QPf, g> = {jspdaf, g). This to-
gether with (24) gives the desired conclusion. .

,So it suffices to prove Theorem (2.1) under the additional hypothesis
(whlc'h WE new adOpt)hthat @ has compact support. Pick an approximate
identity {m;} for L'(G) satisfying (with respect to () the conditions of
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Scholium (2.2). For each j, let y; be the convolution m;* ¢. Thus

(2.5) 1 illae 0 < N0l a0
Moreover, ¥,eL'(G), ¥; is continuous on G, and (by (22) (iii) ¥,
= ;¢ €L' (G). By Fourier inversion ([11,, (3144} (0)]), each V; is the
Fourier transform of a function in L!(G). It is easy to see from the uniform
continuity of ¢ together with (2.2) (v) in the present setting that {y;}
converges to ¢ uniformly on G.

Let fel(.#, Wy IP(H#, w and gel?(#, g 0 L1(H, y). We showed
carlier that the conclusion of the theorem holds in the case when ¢ is a
Fourier transform. Applying this fact to ;, we have

|c_£l/fj N dLEM S, 9 < splllae e 11 o 19 Lo

Hence by (2.5) and the uniform convergence of {};} to ¢ on G,
et d <&M S 93] < sl10llae 1 o 190 o i
b \

This completes the proof of Theorem (2.1).

We next show how the continuity requirement on ¢ in Theorem (2.1)
can be weakened. We shall continue to denote the space of L7(G)-multipkers
by M,(G).

Dermerion. Let G be a locally compact abelian group with dual group
G. We denote by £(G) the set of all complex-valued, bounded, Borel
measurable functions on G with the following property: for each compact
subset K of G there is a sequence {u,}2, (depending on ¢ and K) such that
i, €LMG), lullag <1 for all n, and w9 ¢ pointwise on K
(*+ denotes convolution on 6. ' _

(Note that the existence of a sequence {u,} with the stated properties is
independent of the choice of Haar measure in G).

With the aid of Scholium (2.2) together with uniform continuity of
continuous functions on compact sets, it is not djfﬁcult to see that every
bounded, continuous, complex-valued function on G belongs to £2(G). Hence
the following result generalizes Theorem (2.1).

Tueorem (2.1) bis. The statement of Theorem (2.1) remains valid if we
replace “o is an L7(G)-muitiplier which is continuous on G” by
“oeM,(G) N Q2(G)". |

Proof. Let g be the index conjugate to p, and suppose that
fel?(#, WL (A, Y, geL' (A, 1) " L2 (M, 1). Define the regular Borel
measure v by putting v = (£(*) [, 9> Given & > 0, we have, by regularity of
v, a compact subset F of G such that |y (G\F) <e. By [l1;;, Theorem
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{(31.37)7, there is w eL} (G) such that W = | on F, W has compact support, and

”W”LI(G) < 1+a; Let K be the support of W, and let [lp|], denote
sup {{@ (y)l: yeG}. We have

[fomd G g <[{owdv|+] [ o {1—W}dy
G K &
< |,{ Wy +[|oll, (2+2) e

Since @ €2(G), we can choose a sequence {u,! corresponding to ¢ and
the compact set K as in the definition of Q(G). Put ¢, = u, « ¢, for each n.
Thus, [l@Jl, < llolf,, @x @ pointwise on K, [|@dly e < 1@y 6. and @, is

continuous on &. Hence for each n, ¢,W is continuous,

lon ”c'HMp(cE) < Wizt Han”MP(G) < {1+ ”‘P”Mp(ci)'
Applying Theorem (2.1} to @,w, we obtain and

{00t dr| = 1[040 960 A0V f. 93] < 53 10a Pty 1 ol
G

<2+t 0601y 6

Using this and bounded convergence on K, we see that
o 2 0
Ik“ oW dv[ < Sp (1 +8) ”(DIIMP(G) Hf”Lp([.i) Iig”lﬂ(p] -

Applying this to the inequality immediately following the definition of K,
we get : '

[0 01 <8011, 03] < 5FU+6) 0 laet 1y ol ol 2+ )

Letting ¢ >0* now gives the desired conclusion.

- As an _illué;tration, we next show how Theorem (2.1') affords a short
proof of the following well:-known result.

(2.6) HomomorpHISM THEOREM FOR -MuLTIPLIERS ({9, Theorem B.2.1]).
Let o be a continuous homomor phism of the locally compact abelian group I ]
into the locaily compact abelian group I',. Suppose that 1 < p< oo;
P eMp(Iy), and @ is continuous on I'y. Then the composition @ 0g belongs to
Mp(rl)e and . .

‘ e ©ella,iry < l@llayry-

Proof. Straightforward reasoning ([9, pp. 184, 1857) based on Scholium
{2.2) shows that we can further assume without loss of generality that ¢ is
compactly supported. (In particular, ¢ is Baire measurable in the sense of
[10)) Let G; =T, j=1,2, and let §: G, -G, be the dual homomorphism
of 0. For ueG,, let R, be translation by §(1) on L*(G,). Thus R is a strongly
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continuous unitary representation of G, in L?(G,). It is easy to see that the
regular spectral measure 4(-) of R satisfies the following whenever B is a
Baire subset of I',: &(B)is the L*(G,)-multiplier transformation correspon-
ding to the characteristic function of g~! (B).

Use of this fact in conjunction with Theorem {2.1) readily completes the
proof of {2.6).

Remarks. (a) Theorem (2.1) and Theorem (2.1) bis are valid in the case
p =1 also. Since L'(.#, p) is not reflexive, the extension of Theorem (2.1) to
the case p=1 reguires suitable modifications in the proof given above. We
omit the details for expository reasons, Note that the extension of Theorem
(2.1) to the case p =1 makes the foregoing proofs of Theorem (2.1} bis and
Theorem (2.6) valid for p =1 without alteration of methods. In particular,
the Tesulting extension of Theorem (2.6) recovers the case p=1 of [9,
Theorem B.2.1]. In what follows, we shall not consider further the case p =1
of Theorems (2.1), (2.1) bis, and (2.6.).

(b) Theorem (2.6} obviously contains, as special cases, well-known results
of de Leenw [7, Proposition 3.2] and Saecki [13, Corollary 4.6 et seq.]
concerning restrictions of continuous multipliers. .

(c) For another interesting multiplier homomorphism theorem, see [12,
Théoréme 2].

(2.7) Some comments and examples concerning Theorem (2.1}. Suppose
that G, (.#, p), and R are as described at ‘the outset of § 2. Let #x denoté
the subset of R consisting of all p in the interval (1, +oo) such that
conditions (i) and (i) of Theorem (2.1) hold. Obviously, 2 #g. It follows
readily from the M. Riesz Convexity Theorem [14, Theorem V.1.3] that #p
is an interval in (1, + o). _

If the representation R is unitary, then obvious use of the relation R_,
= (R)* shows that if the index p€ #&, then so does the conjugate index p’,
and (in the notation of Theorem (2.1)) s, = s,. Hence in the special case of R
a strongly continuous unitary representation in L2(.#, 1, either fg
= [po, po] for some py (1, 2] or #r ={(po, Po} for some poe[l, 2). In the
general setting, wherein R is assumed to be bounded rather than unitary, the
interval ¢ need not have such a special form. _

We now give three simple examples ((2.8)-(2.10)) to illustrate how the
form of #, can vary with the choice of the representation R. In egch of
these examples, R is not implemented by a group of IMEeasure-preserving
transformations of the underlying measure space .#, and this fact serves to
illustrate with basic tools one direction in which Theorem (2.1) generalizes
the original Transference Theorem for Multipliers ([5, Theorem 3.7]}. In § 3
we shall consider a full-fledged application of this more general aspect of
Theorem (2.1). '
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(2.8) ExampLE. Each R, is unitary, #y=(1, +0), and s, > 1 for p£ 2.

Take .# to be the additive group Z of integers, and u to be counting
measure. Take G to be the additive group R of real numbers, and let
T: L2(Z) —+1*(Z) be the multiplier transform corresponding to y: T
~[0, m), where ¥ (¢") =¢/2 for 0 <t < 2n. For ueR put R, = ¢"", Since T
is selfadjoint, R, is unitary. By, for instance, Stechkin’s Theorem [9, Theorem
6441, YreM(T) for 1 <p<co. Denoting the corresponding multiplier
transform of y on L*(Z) by T,, we see that condition (i) of Theorem (2.1) is

satisfied for each pe(l, + o), with' R = exp(iuT,) for ueR. Moreover, RY -

is translation by 1 on L*(Z), and so [[RY)! =1 for all neZ, whence s, <
+oc, and #p = (1, co).

Suppose that 1 <p < oo, p# 2. If s, were equal to 1, then exp(iuT,)
would be an isometry for all ueR. Thus T, would be a hermitian operator
(in the sense of Lumer and Vidav [8, Chapter 4]) on I7(Z). Since p % 2, the
hermitian operaters on I7(Z) are well known and easily characterized
concretely. In fact, T, would be forced to be coordinatewise multiplication by
a fixed sequence of real numbers {et,} e L®(Z). This is clearly absurd. For, if
18,102 _  denotes the natural basis of I7(Z), we would then have T, (80)
=y dy. Upon taking Fourier transforms on both sides of this equation and
using the definition of T,, we get = a, almost everywhere on T Thus,
5,>1 for p+£2

It follows that in the present context R cannot be implemented by a
group of measure-preserving transformations of .#. In fact, the following
simple argument shows that if u €R, and R, is expressed as composition with
a permutation of Z, then u is an even integer. For, if R, is 50 expressible,
then R, (6o) = dy for some N eZ. Taking Fourier transforms, we have ¢"¥@
=z" for almost all zeT. Hence "2 = ¢~ for all 1&[0, 2n), and so
= —2N.

(2.9) ExaMpLE. #£x is an arbitrary closed, bounded interval situated in
(1, +o0) and containing the real number 2, '

We remark at the outset that simple variants of the reasoning used in
this example wouid provide representations R which allow ¢ to be an
arbitrarily prescribed bounded subinterval of (1, + o) containing 2. Notice
also the general fact that whenever a representation R in L*(u) has #i
different from (1, +c0), then R cannot be implemented by measure-presery-
ing transformations.

For the example in (2.9), we take .# to be [0, 1], # to be Lebesgue
measure, and G to be R. Fix po, g with 1 <p, <2< ¢, < +c0. We shall
construct a representation R of G in L?(y) such that #x = [po, gol.

Let F(t) =t !(log t)‘z for 0 <t < e™'. Extend F by making it constant
on [e™!, 1]. Put fy = F ™, gy = F'""® Thus, f, e I°(u), fo¢ I (1) for r > qq,
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90 €L (), go# L' (1) for 1> pj. Since fo €L™(k), 0 < fio,1y fogody < +00.
We divide f; and g, by the same positive real constant so as to obtain
corresponding functi9ns Ji and g; with fio 1y fig;dp=1. For pe[po, 4ol
fielr(u) and g, e L7 ().

Define the bounded idempotent operator E, on L?(y) by putting

Ef =([ ,fllfgld.u)fn for fel?(y).

Define the representation R of R in L*(u) by putting
R, =é"E,+(I—E,), for ueR.

Taking account of the L' (u)-spaces excluding f;, and the spaces excluding g,,
it is easy to see that if E, is L'-bounded on L*{) n L (u), then r €[py, ol
Hence #r =[Po, o) On the other hand, if pe[py, ], then for sach ueR,
we have RP = & E +(I—-E,). Thus [po, o] = #x. '

(2.10) ExaMPLE. A umitary representation R with fgr = [po, Pol, where pg
is an arbitrarily prescribed number in the interval (1, 2].

For this example, we need only take g, in Example (2.9) to be pp,. Then,
in the notation of (29), f; = g,, and so E, is selfadjoint, and R is a unitary
representation,

3. Classical analytic projection and bounds in generalized analyticity. In
[37 an L? counterpart (1 < p < co) of Helson's invariant subspace theory was
described for compact abelian groups K with archimedean ordered duals. In
particular, each normalized simply invariant subspace of L? (K) was shown to
be the range of a canonically corresponding bounded idempote¢nt operator
defined on I?(K). In this section, we shall show that the norm of this
corresponding idempotent operator on L?(K) does not exceed that of classi-
cal analytic projection in L? of the unit circle T In order to keep the
discussion brief, we shall omit detailed accounts of the terminology and
results in [3]. _

Let I' be a subgroup of the additive real line R such that I is dense in R
with respect to the natural topology. Endow I’ with its discrete topoiogy and
with the natural order of R. Let K be the dual group of I'. Fix p in the range
1 <p <co. For each normalized, simply invariant subspace M of_ L7"{K)
there is 2 biuniquely associated cocycle A on K. The cocycle 4 gives rise to a
strongly continuous one-parameter group of isometries {U,} on I7(K) de-
fined by

(U, f)) = A(t, x) f(x+1), for fel?(K), teR, xeK.

Application to the group {U,} of the Generalized Stone’s Thcon?m for UMD
Spaces (72,.Theorem (5.5)]) now provides a uniquely determined spectral
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family of projections E(-): R —.#(L”(K)) such that for each (eR,
{2.€*dE(}) tends to U, in the strong operator topology as a — + oo, The
invariant subspace M is recovered from its cocycle 4 by the relation M =
{I—E(07)} L7(K), where E(0") denotes the strong limit of E(J) as A -0~
([3, Theorem (3.3)]). In terms of this notation, we have the following
theorem,

(3.1) Tueorem. Let M be a normalized, simply invariant subspace of

' LP(K), where 1 <p < o0, and let C, denote the norm of the classical Riesz

projection of LP(T) omo the Hardy space H?(T). Then the projection operator
(I —E(07)} e B(L”(K)) described above satisfies

i —EQO7) < Cp.

Proof. We remark at the outset that C, coincides with the LP(R)-
multiplier norm for the characteristic function of {A=R: 4 = 0} ([1, Corolla-
ry {3.13)]). Let the strongly continuous one-parameter unitary group V! on
L*(K) be defined by

V) x) = Alt, ) f(x+1), for feLl?(K), teR, xeK.

Let #(-) denote the spectral measure of {F]. It follows from [3, Lemma
(3.1)] that for f eLP(K)~ L*(K), -

(3.2) AL0, +o0) f = {I-E(07)) f.

Fix feL?(K)nL*(K). For each positive integer n, let ¥,>0 be a
continuous function on R supported on the interval [—n~!, 0] such that
Jr¥Wa(tydt = 1. Denote by y the characteristic function relative to R of
\A€R: 22 0]. It is easy to see that for each reR, (W.xx) (1) = (1) as n—
+00. Apply Theorem (2.1) bis by taking .# =K, R = (¥}, ad ¢ = y. This
shows that

110, +20) fll ey < Coll Ml -
Combining this fact with (3.2) completes the proof of Theorem (3.1

Remarks. The one-parameter group {¥,! to which we have applied
Theorem (2.1) bis in the course of proving Theorem (3.1) is not, in general,
implemented by measure-preserving  transformations of K. For, K (1)
=A(, ) on K, and so, except in special instances, ¥(1) « 1.
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