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Some remarks on ratio inequalities
for continuows martingales

by
NORIHIKO KAZAMAKI and MASATO KIKUCHI (Toyama)

Abstract, We are concerned with various ratio inequalities for martingales. One of the
results we will prove is that for every 0 <p <oo and every 0 € <0 the ratio inequality

E[ (X Y exple <X DU/ XR] € G p E[CXOL]

holds for all continuous martingales X. This is an improvement of the results given in 4], [5]
and [8]. ‘

1. Statement of the problem. Let (Q, &, (&), P) be a filtered probability
space satisfying the usual conditions, and let @ be a second probability
measure, equivalent to P on ... Suppose, moreover, that the (martingale)
Radon-Nikodym density Z, = dQ/dP| is continuous. In this note, we deal

only with continuous martingales adapted to the filtration ( {§) and, unless
otherwise stated, “a martingale” means “a’P-martingale”. For a martingale
X, let X¥ =sup,¢,|X | and let (X be its associated increasing process. We
shall consider in addition the family (L%),5 o.4ex Of its local times. It is shown
in [1] that the process L¥ =sup,.xL} is also continuous and increasing. '
Let now Y, and 'Y, be any two of the three random variables X3,
(XYY?, L%, and consider an increasing function @ from [0, «c] into

[0, oo]. Our object here is to study the problem: does there exist a constant
C > 0, depending only on p and @, such that the inequality '

(1) Eq[YF®(Y/Y)] € CEQ[¥Y?] (0.<p <)

holds for all martinga[és X7 Here E, denotes expectation with respect to Q.

"This inequality for the case where @ = P and & (x) = x" (r > 0} was estab-

lished in 1982 by Gundy [4] and independently by Yor [83. Quite recently, we
have improved their result to the case where Q = P and @ (x) = exp(cx) for
some ¢ > 0 (see [5]). However, the inequality (1) does not necessarily hold for
any ¢ even if Q = P. We shall first exemplify it. For that, let B = (B,, %) be
a one-dimensional Browhian motion starting at 0, and we set X, =B, ,,
&(x) = exp(x?/2). It is clear that X% eL? for every p >0, but exp(B1/2) is
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not integrable. On the other hand, noticing (X ), =1 we find
Efexp(3B)] < e+ E[ X4 @ (X%5/<X>Y): X* > 1],

so that E[X*? @(X*%/(X>Y*] = oo for any p > 0. This implies that (1) fails
if ¥, = X*% and Y, = (X)U2.

In the same way, we can give dn example such that (1) fails if ¥,
= (X342 and Y, = X*%. To see it, consider this time the martingale X
defined by X, = B,,, where t =inf {¢: |B} = 1}. It is clear that X% =1 and
{X>, =t. From the Burkholder-Davis—Gundy inequality it follows imme-
diately that (X ), el for any p > 0. Let now @(x) = exp(n* x*/8). Then we
find -

E[exp(n7/8)} < exp(n?/8)+ E [ (X 5 B(CXDYHX%): (X Do > 1.
Since the expectation on the left-hand side is infinite, we have
E[{X5 @ ({XL/XE)] = o0,

2. A ratio inequality for increasing processes. First of all, let M,
= {2 'dZ, where dQ = Z ,dP as is already mentioned. Later we shall
assume that M eBMO. Recall that a uniformly integrable martingale X is
said to be in the class BMO if ‘

Sl;p”E[le'—XT” Frllleo < 00,

where the supremum is taken over all stopping times T.

For convenience’ sake, let us denote by C;, or C(4,#) a positive
constant depending only on the indexed parameters 4 apd 5. Note that C,,
is not necessarily the same from line to line.

Consider now two right-continuous increasing processes U and V such
that U, =¥, =0. The essential result of this note is the following.

 Tueorem 1. If the martingale M belongs to the class BMO and if there is
a constant x >0 such that '

@ E[UG—-Uf | Frl<=E[V,_| ]
Jor any stopping times o and T, then the ratio inequality
3 Eg[UbexpaUw/Vo)] < Clx, o, PEg[UL] (0 <p <o)

holds for some o >0,
Moreover, if 0 € B <1, then we have

(4) EQ I:Ugoexp {a(Um/Vao)ﬂ}] S C{Mn a, ﬁa p)EQ[U};Q] . (0 < P < QO)
Jor every a =0,

Here U” denotes the process (U,, ) as usual, Three lemmas are needed
for the proof of this theorem.

Ratlo inequalities for continous martingales o C 99

Lemma 1. Let A be a right-continuous increasing process satisfying E[A
—Aq.| &l < ¢ for all stopping times T, with a constant ¢ > 0, Then for
0< o < 1/c the inequality

1

Efexp (# (A —Ar-)}| ] <

holds for all stopping times T.

For the proof, see [2].
It was proved in [3] by Doléans-Dade and Meyer that if MeBMO,
then the “reverse Hlder inequality”

(5} E[Z%| §r] < C 2%

holds for all stopping times T Let now 1/r+1/s = 1. This given, we can
easily prove the following result.

Lemma 2. Suppose that M eBMO. If A is a right-continuous increasing
process such that E[A,—Ar..| Fr] Sc for all stopping times T, with a
constant ¢ > 0, then for 0 <« < 1/(sc} we have

Eg[exp {a(Ao—Ar-)}| &1 < CHr (L —asc) ™",
where T is an arbitrary stopping time and C, is the same constant as in (5).
Proof. Applying the definition of conditional expectation and the
Holder inequality with exponents r and s we have
Eq[exp {2 (Ao~ Ar-)} &l

= E[(Zo/Zr) exp {a(d o — Ar-)}| Fr]

S E[(Zo/Z0)' | )" E [exp {xs(Ao—Az-)}| Fr1'
If M eBMO, then Z satisfies the reverse Holder inequality (5), i.e. the first
term in the last expression is dominated by C}/". On the other hand, Lemma

1 implies that if 0< a < 1/(cs), then as < 1/c and so the second term is
dominated by (1—acs)™ '/, Thus the proof is complete.

The following lemma is of fundamental importance in our investigation.
For the proof, see [6]

LemMa 3. Let X and Y be positive random variables. If there are iwo
consiants a > () and ¢ > O such thai for A >0 and y>1

P(X >4, YSA) €ee”™P(X > 4),
then for 0 < b <a ar_id 0<p<oo
E[X?exp(bX/Y)] £ C,, E[XT].
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Proof of Theorem 1. For each A >0, we first define the stopping
times © and o as follows: :
t=inf{r; U, >4}, o=infl; V> 4]

Obviously V,_ <./ and so E[U%—U%_| §r] < x4 by the conditicn (2),
where T is an arbitrary stopping time. Let now 0 €& <1/(xs) and ax < ¢
< 1/s. Then from Lemma 2 the inequality

F.]
Ey [exp {E(U'&: - U'{r-)}

follows at once, Combining this with the fact that U,_ € A, we have

ST] < CGlr(1—=dg) 1k

QU > 9, Vo S D S QU= Use > (=14, 0 = 0, T < 0}

< Q{f;(v;—-us_b 00 < oo}

< exp {—5(7: D}EQ [EQ [exp {f—A(UgmU;’_)H 8,]: T < oo] |

< Cexp (—-gv)Q(Uw > A},

where C = CH"e®*(1—8s)1. As « < &/x, we obtain (3) by Lemma 3.
Furthermore, observing that if y >0 and 0 < f <1, then

explaxf) < C(z, B, exp(yx) (0<x <)

for every o > 0, (4) follows immediately from (3). This completes the proof.

‘With the help of Theorem 1 we shall give some improvements of the

ratio inequalities obtained in [4], [5] and [8]. Recently, Barlow and Yor
proved in [1] that : ’

GE[QMPI<EMLYTT < CE[XW*] (0<p <)

for any continuous martingale X with the family (L%),50,..2 of local times.
On the other hand, the Burkholder-Davis-Gundy inequality

¢, ELCOM] < E[(XMP] < C,E[XY?] (0 <p < c0)

is now well known. Combining the conditional forms of these inequalities for
p =1 shows that any two of the three increasing processes X*, (X >? and

L* satisfy the condition (2). Therefore, the following is an immediate conse-
quence of Theorem 1.

. Treorem 2. Assume that M eBMO. If U and V are any two of the three
increasing processes X*, (X)'* and L*, then for some o> 0 the ratio
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inequality
EQ[ULexp@Ua/Ve)] € Cop Eg[U%] (0 <p <)
holds for all continuous martingales X.
Moreover, if 05 B < 1, then for every a 20
Eq[ULexp o (Un/ V)11 € Cle, B, M EQLUT] (0 <p < ).

We especially remark the following.

CoroLLARY 1. Assume that M eBMO. Then for every 0 <u < o0 and
every 0 < p <ou we have
(6) Eo[{X Yk exp(e (X DU/X%] € Cap Eo [{XOE],

(M Eq [{XYhexpla (X Y% 1IA] < Cop B [<X %]

Proof. The usual stopping argument enables us to assume that X is
an [L%-bounded martingale. Observe fist that E[{X e~ <X)r| &rl
< E[(X%)*| §] for any stopping time 7. Then, applying the latter part
of Theorem 1 to the case where U = <X, ¥V =(X*? and f = 1/2 we can

obtain (6). The same arguient proves (7), because E[{(X)x— <X r| 8rl
< CE[(I*%)?| &r]. Thus the proof is complete.

It is natural to ask if the inequality for another pair holds for any o 2 0
as is stated in Corollary 1. But we cannot settle this question so far. _
Finally, we improve a result given by Sekiguchi. He proved in [7] that if
M eBMO, then the inequality .
) Eq[(XLY]1< C,Ep[XY¥*] (0 <p<o0)
holds for all continuous martingales X. Consequently, combining his result
with Theorem 2 gives the following.

CoroLLARY 2. If M eBMO, then there is a constant o >0 independent of
p such that the ratio inequality

Eg (X3P exp (e X4/ (X YD1 < Cop Eg [(XXH] (0 <p < o0)
holds for all continuous martingales X.

Sekiguchi proved there that the converse is also true. Precisely speaking,
his claim is that if the inequality (8) is valid for p =1, then M €BMO.
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