Contents of vplume XCIV, number 2

D. NoLL and W. STADLER, Abstract sliding hump technique and characterization of

barrelled spaces . , . 103-120
D. GaLLarpo, Weighted lnteglal mequahtles for lhe ergodlc maiumdl operator dnd

other sublinear operators, Convergence of the averages and the ergodic Hilbert

transform . . . Lo 121147
N. GROENBAEK, A chdracternzaﬂon of weakly amenable Bcumch a]gebms .. 148-162
M. Nawrockl, The Fréchet envelopes of vector-valued Smirnov classes . . . 163-177
R. Szwarc, Matrix coefficients of irreducible representations of free products of

groups . . . . 179185
1. ZALDUENDO, A geometuc COndlthl’l cquwalent to commutdlwuy in Bdnach

algebras . . . . . . . . . L o o e .. 187192

STUDIA MATHEMATICA

Munaging Editors: Z. Ciesielski, W. Orlicz (Editor-in-Chief),
A. Pelczyiski, W. Zelazko

The journal publishes original papers in English, French, German and Russian, mainly on
functional analysis, abstract methods of matbernati_cal analysis and probability theory. Usually 3

issues comstitute a valume,
Manuscripts and correspondence concerning editorial work should be addressed to

STUDIA MATHEMATICA
Sniadeckich 8, 00-950 Warszawa, Poland
Correspondence concerning exchange should be addressed to

INSTITUTE OF MATHEMATICS
. POLISH ACADEMY OF SCIENCES

Sniadeckich 8, 00-950 Warszawa, Poland

The jowrnal is available at your bookseller or at
ARS POLONA
Krakowskie Przedmiescie 7, 00-068 Warszawa, Poland

© Copyright by Pafistwowe Wydawnictwo Naukowe, Warszawa 1989
ISBN 83.-01-09106-1 ISSN 0039-3223

PRINTED IN POLAND

WROCLAWSKA DRUEKARNIANAUKOWA

icm

STUDIA MATHEMATICA, T. XCIV (1989)

Abstract sliding hump technique and
characterization of barrelled spaces

by

DOMINIKUS NOLL and WOLFGANG STADLER (Stuttgart)

Abstract. We present an abstract sliding hump. technique in a purely functiona]-analytic
setting, leading to a characterization of certain barrelled spaces. We obtain applications in
summability theery and in the theory of function spaces.

Introduction. In his paper [S], the second author has answered in
the affirmative the question posed by Wilansky whether ¢, is the only
FK-sequence space E densely containing & whose f-dual EF is ['.
Independently, the same result has been obtained by Bennett in [B,]. The
result in [S], and also the proof given in [B,], are essentially based on
a characterization of certain barrelled sequence spaces by means of their
B-duals. More precisely, a normed AK-sequence space E whose dual E’ is
also a normed AK-sequence space is barrelled if and only if its f-dual E°
and its dual E' coincide.

The technique of proof leading to the resuit in [S] (and similar in [B,])
is based on a sliding hump argument. A detailed analysis, presented in this
paper, shows that this method carries over —only under slight modifications
—to various related situations. For instance, it permits us to provide new
characterizations of dense barrelled subspaces e.g. of spaces & (p> 1} or
spaces Cy(T) of continuous functions on a locally compact space T vanishing
at infinity, In either case, an appropriate concept of sections and sectional
convergence has to be developed and a substitute for the pB-dual has to be
introduced in an appropriate way.

This pushes forward the question as to whether a more general method
can be affoerdeéd, providing as special cases the examples mentioned above
and the sequence space version given in [S] and [B,]. Here we present such
a method and call it an abstract sliding hump technique. We need to define,
in an abstract setting, the notions of sections, sectional convergence and §-
dual, familiar in the context of sequence spaces, It turns out that this is
actually possible in a satisfactory way, at Jeast in the light of our applications
mentioned above. In these cases the abstract sections and the abstract B-dual
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of the space under consideration are just what they are expected to be from
the concrete point of view. But once these abstract prerequisites are met, the
sliding hump argument carrics over in a satisfactory way.

The structure of the paper is as follows, In Section 1 we introduce the
abstract concept of a system of sections on a dual pairing <{E, F >, providing
motivating examples.

In Section 2 we define the concept of sectional convergence (Abschnitls-
kenvergenz) with respect to a given system of sections. We indicate that it
provides a natural generalization of the classical sequence space notion
known under this name. We end Section 2 with an abstract definition of the
fi-dual.

Section 3 contains our main results. Theorem 1 provides a purely
functional-analytic version of [S, Satz 3.1] and [B;, Lemma 1]. It relates
barrelledness to the concept of B-dual, Theorem 2 presents a somewhat more
general version of Theorem 1 which applies to systems of sections on
(E", E'S rather than on <E, E"). This gain of generality is compensated by
an additional condition on E.

In Section 4 we present various applications of our main results in the
theory of sequence spaces. We prove once more the fact already obtained in
[B,1 that ¢ and cs have the Wilansky property (in the sense of [B,]). Our
proof, however, is more direct since it uses Theorem 2 instead of the
sequence space version of Theorem 1. We provide characterizations of dense
barrelled subspaces of various. summability domains in terms of the f-dual.
The section closes with two results on scarce copies. For instance, we prove
that an AK-sequence space E —m having Ef < cs does not contain any
barrelled scarce copy.

_ In the final Section 5 we present two classes of examples of nonstandard

systems of sections. ‘We characterize dense barrelled subspaces of spaces
¥ (p>1) and Co(T) by defining appropriate systems of sections which
permit an application of the main results in the concrete case.

For all notions concerning functional analysis we refer the reader to the
‘book [W,]. Summability theory is convered by [ZB] and [W,]. A locally
convex vector space is always understood to be separated.

1. Systems of sections. Let {E, F) be a pair of {real or complex) vector
spaces placed in duality by a bilinear mapping { , > ExF — K, For every
neN let x —x" and y — y be linear mappings on E resp. F; continuous for
o(E, F) resp. o(F, E), and suppose the following axioms are satisfied:

(S1)  x, Y1y = G ity = M,y for every neN and all xeE, yeF;

(82) (xI"m = xlo~m whenever x€E, n,meN; n A m denotes min(n, m).

Then we shall refer to this construct as a system of sections on (E, F).
Notice that any system of sections on {E, F) is uniguely determined by
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the mappings x - x" neN, continuous for o(E, F) and satisfying axiom
(82). Indeed, we may define, for every neN, a o(E, F)-continuous linear
functional on E by x — (", y) for every fixed yeF, and this provides a
unique element y™ of F satisfying {7, y5 = ¢x, y"1 for every x eE. Using
(82), one concludes that (S1) is then true. Dually, the system of sections
might have been reconstructed from the mappings y — v satisfying (S2), too.

Let us introduce two more notions, We denote by EM FIl neN, the
space of vectors x", xek, and y™, yeF, respectwely We refer to xI, y™
as the sections of x, y respectively.

The following lemma will be of repeated use to us during the examina-
tion to follow.

LemMma 1. Let a system of sections be fixed on (E,F>. Let E be the
completion of E with respect to the Mackey topology ©(E, F). There exists a
unigue system of sections on (E, F) extending the given one.

Proof. By the above observation we may construct a system of sections
on <E, F) from the restriction mappings y =" on F alone. It is therefore
sufficient to prove that every restriction g: y — " is o(F, E)-continuous. g
being «(F, E)-continucus, its transpose ¢ maps E to E and is o(E, F)-
continuous, hence by the Hellinger-Toeplitz theorem it is T (E, F)-continuous
(see [Wy, p. 169]), and consequently extends to a continuous linear mapping

c E-E Clearly its transpose {g) = ¢ is o(F, E)-continuous. This proves
the result. m

It is now time to consider a motivating example.

ExampLE 1. Let E, F be sequence spaces (i.e. subspaces of K¥), placed in
duality by {x, y> = 2, X, §,. Suppose that both E and F contain the space ¢
of finite sequences. Then we may define restriction operators by setting

" ' n
XM= xe®, P =3yl
i=1 i=1

where ¢¥ denotes the ith unit vector in K™ This gives rise to a system of
sections in the sense introduced above.

The following lemma gives some more information about the structure
of a system of secticns.

LeEMma 2. Let a system of sections be ﬁxed on <{E, F) For every neN,
the topology induced by ¢(E, F) on E™ is o(EU, F'™). Dually, the topology
induced by o(F, E) on FV is g(F™™, E).

Proof. We prove the first statement. Clearly ¢ (E™, F™) is coarser than
o(E, F) on E". On the other hand, for fixed y€F, the linear functional
¢, y> on EM equals ¢, y™) in view of axiom (S1). This proves the claim. =
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2, Sectional convergence. In this segtion we introduce the notion of
sectional convergence in our abstract setting of a system of sections.

Let a system of sections be fixed on (E, F3. Let t be any admissible
locally convex topology on E. Then E is said to be an AK-space or to have
sectional convergence with respect to v if, for every xeE, x" converges to
x (n —cc) with respect to 7. Sectional convergence with respect to an
admissible topology on F is of course defined analogously.

Looking back to Example 1, we see that our abstract notion of sectional
convergence coincides with the classical one known under this name in the
setting of sequence spaces. Let us consider one more instructive example.

ExameLE 2. Let E be a locally convex vector space with dual F. Suppose
that with respect to some coarser locally convex topology, E has a Schauder
basis (x,},2;. Then we obtain a system of sections on (E, F) by setting

n
x[n} = Z &i Xgs
i=1

where x = Y, & x; is the representation of x. Now it is easy to see that E is
an AK-space in its original topology with respect to this system of sections if
and only if (x,) is a Schauder basis with respect to the original topology.

Clearly, sectional convergence with respect to some admissible topology
always implies sectional convergence with respect to the weak topology. The
converse is true for barrelled spaces.

x,

’

ProrosiTioN 1. Let a system of sections on <E, F > be fixed and suppose E

is an AK-space with respect to the weak topology. If E is barrelled, then it is
also an AK-space with respect to the Mackey topology.

Proof. The sequence (g,) of restriction mappings E = E converges
pointwise to id with respect to the weak topology and therefore is pointwise
bounded. E being barrelled, it is equicontinuous. But note that (0.) converges
to id with respect to the Mackey topology on the dense subset
EMU BTG, .. of E and, consequently, converges to id on all of E pointwise
with respect to =(E, F). m

Proposition 1 above is well known in the setting of sequence spaces
{(Example 1). Nevertheless, the following consequence of Proposition 1 seems
to have escaped K-space specialists so far, perhaps because it makes use of
Lemma 1, : '

ProrosiTioN 2. Let E be a metrizable locally convex vector space with
dual F and let a system of sections be fixed on (E, F>. Suppose F is an AK-
space with respect to the sirong topology B(F, E). Then E is an AK-space in
its metrizable topology. : ’ '
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_ Proof. By Lemma I, the system of sections on (E, F» extends to
(E, F), where E denotes the completion of E. But note that £ is a barrelled
space, hence the result follows from Proposition 1 as soon as we shall have
proved that F is an AK-space with respect to ¢ (F, £}. But this follows from
a(F, E) = §(F, E), which is a consequence of the fact that given XeF and a
sequence (x,) in E converging to X, we have {x,: neN}° < {Z}°. This ends
the proof. w

In the context of sequence spaces, Proposition 2 tells that if E is a K-
space containing & whose dual F may be considered a K-sequence space via
the natural bilinear mapping {x, y> = ¥ %y, and if F is a strong AK-space,
then E is an AK-space, at least when it is metrizable.

We shall now conclude this section by giving an abstract definition of
the f-dual, a notion which'is familiar in sequence space theory,

Let a system of sections be fixed on (E, F>. We denote by F® the
vector space consisting of all families (y,)7%, of vectors having y,eF™ and
y&™ =y, whenever m < n. We may consider F a subspace of F via the
correspondence

y =R,

in case E (or equivalently F) is a weak AK-space. Now -we define, and denote
by E¥’, the f-dual of E to consist of all elements (y,) of F® such thaf
lim,, oo <X, ¥,> exists for every x€E. .

Specializing to Example 1, we see that F®, in this case, may be identified
with @ = K™, Indeed, every sequence {y,) in F“ gives rise to a unique element
yew, and conversely, in view of & — F, every clkment of w may be
considered an element of F® via the natural correspondence above. But now '
it is clear that, in the context of sequence spaces, our abstract notion of §-
dual is justethe same as the classical one, ie. E¥> = EF.

3, Characmrizatfon of barrelledness. In this section we shall present our
main result. We start with the following proposition, which is known in the
context of sequence spaces (see [Sw, Thm. 3.17]).

Prorosition 3, Let E be a barrelled locally convex vector space with dual
F and let a system of sections be fixed on (E, F> such that E is a (weak) AK-
space. Then E¥> =F.

Proof. E being weakly AK, we have F < F®, so the claimed statement
makes sense. Let (y,) eE¥? and define ¢ €E* by setting

(P(x) = lim <x:- yn>

n-ro0

Then ¢ is continuous by the Banach-Steinhaus theorem, hence we h.ave )
= , y) for some yeF. Inserting the vectors x™ in the above equality, we
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find that y™ = y,, hence (y,) €F. The converse clearly follows from the fact
that E is (weakly) AK. =

We shall now prove a convetse to Proposition 3, ie. we show that, in
certain situations, the equality E¥®’> = F for a system of sections implies that
E is barrelled. In the context of K-spaces, our result has been obtained by
the second author (see [S]) and, independently, by Bennett in [B,].

Tueorem 1. Let E be a normed space with dual F and let a system of
séctions be fixed on (E, F) such that F is an AK-space with respect to the
dual norm topology. Then the following statements are equivalent:

(1) E is barrelled.
(2) Every E", neN, is barrelled and E¥> =F.

Proof. Let E be barrelled. By Proposition 1, E is an AK-space, hence

E‘®> = F by Proposition 3. That all E™ are barrelled follows from the fact
that the restriction mapping ¢,: E —E" is quotient and barrelledness is
preserved under quotient mappings.

Let us now assume that statement (2) is satisfied. We have to prove that
E is barrelled. So let B be a o (F, E)-bounded subset of F. We have o prove
that B is actually norm bounded. Assume the contrary and select a sequence
(z,) in B having ||z,J = n2". Let y,=n"'z,; then (y,) converges to 0 with
respect to o(F, E) and satisfies ||y,] = 2"

(a) We construct sequences ky <k, <...

and n; <n, <... of integers

such' that:
] ly—y <27 fori=1,...,n_, and k> kj;
) [y <2 fork=1,...,k and i Zn.
Indeed, suppose ky,...,k; and ny, ..., n; have been constructed in

accordance with conditions (1) and (2}. Since, by assumption, F is a normed
AK.-space, [|y;— ™| converges to 0 (k —cc) for every fixed iefl, ..., n}.
Clearly this permits us to choose k;,; in accordance with (1}

Next observe that for fixed ke{l, ..., k;iy}, [|M¥| converges to O (i
—o0). Indeed, the sequence (z,) in B being bounded for ¢(F, E), (zf) is
bounded in (F™, o (F*, EM)). But note that E™ is barrelled by assumption.
Hence (z8) is norm bounded and consequently, y¥ = »~ zI¥ converges to
0 (rn —o0) with respect to the norm topology. Clearly this makes possible a
choice of n;.,; according to (2).

Let a; = 1y, ll <27/, j=1,2,... Then for fixed keN we may define

: m
zp = 3, oyl eFH

i=1 -

since by (2) above, (y}) is bounded and F™ js weakly boundedly complete as
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a consequence of the fact that E™ is barrelled. It is easy to see that zi) =z,
whenever » <k, 30 (z,) is an element of F*.

(b) We prove that (z,) e E®,

Let xeE with {|x|| €1 be fixed. For k&N choose j=j(k) satisfying
kj <k <kj+1. Then we have

o

&,z = ), o {x, PR

F=1

=1 o
= 3 o &%, W ey G, D+ Y o (xR,
i=1

Y i=j+1
Here the first term converges (k — o) in view of
<X, yg:]>= <x1 yﬂi>+5ki(x) (Ié.]‘_l)

for some |3, (X)) < 27/% (condition (1) of (a) and |Ix|| < 1), where we use the
fact that the sequence (<x, y, )2 is bounded.
The third term in the above sum converges (k —c0) in view of

(G, N <270 iz j+1)

(condition (2) of (a) and ||x| £1). '
It remains to prove that u; {x, yL’}’) converges (k =00, j =j(k)). Using
axiom (52), we have

®; <xa yH?) =0y <x=‘ynj>+aj <x': J’H;]"_J’nj>

= t; {X, Yo >+ O —x, Y-
Here the first term on the right-hand side converges to 0 (k —co). The
second term, too, converges to 0 as a consequence ‘of the fact that E is a
normed AK-space and {lo;y,ll =1, j= 1,2,... This proves (z,) e E.

(c) We end the proof by showing that (z) ¢ F, thus obtaining the desired
contradiction. Suppose (z) €F, ie. there exists z €F having 2™ = z, for every
k. Then, F being a normed AK-space, we deduce that {x, ;> converges to
¢x, z> nniformly on |[x|f <1, and consequently so does <x, z,‘j> (j —o0).
Now, by the argument in (b) we have :
i—1

J o]
o %, Yo > 3 w60+ 3 %7y (%)
i=1

i=)

=1

x, ij> = E

i=1

with 16,00 <279 and |p;(x) €27/, uniformly for ixll<1. So
1o by dx, Yo 0 18 uniformly convergent, a contradiction since llot; yulf = 1. m

Sequence space versions of Theorem 1 have been obtained in [S] and
[B,]. In [B,], the result is obtained for the dua} pairing {co, {», but an
additional argument (see for instance [S]) shows that the proof in {B;]
carries over to the general case, too. ‘
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Note that in both papers, the AK-condition on the space E (in our
terminology) is redundant in view of Proposition 2.

Limiting examples for Theorem 1 may be found in [B,]. For instance,
neither the AK -condition on F nor the assumption that E is a normed space
can be weakened considerably.

We shall now prove a slightly generalized version of Thecrem 1 which
applies to systems of sections on (E”, E'> rather than on (E, E'>. This
generalization is compensated by an additional condition on E resp. E”.

Let a system of sections be fixed on (E”, E') and let || j! be a norm on
E”. Suppose that for fixed xeE", neN, we have

fixl] = max {|lx"], [lx—x"f}.
In this case we call || {| a sup-norm.

TreoREM 2. Let E be a normed space with dual E' and bidual E'' and let o
system of sections be fixed on (E", E'> such that E' is a normed AK-space.
Suppose E" admits an equivalent sup-norm. Let G be a linear subspace of E"
containing its sections and E. Suppose G™ is barrelled with respect to
(G, EM™Y for every neN. Then G® =E' implies that every o(E', G)-
bounded subset of E' is in fact norm bounded. '

Proof. Our prootf follows the pattern of Theorem 1. We start with a
sequence (y,) in E’ which converges to 0 with respect to o {E’, G) and satisfies
Hydl = 2", Again we seek for a contradiction.

As in the proof of Theorem 1 we select sequences k; <k, <... and n,
<ny < ... of integers satisfying conditions (1) and (2). Denoting by z7 the
difference vector zM1 -zl we define

x
kioki g 1]
ze= ) Bilyn M,

i=1

B = /(v 1),

k=1,2,... Clearly we have z, eE™, zZ{1=7 for r <k, hence (z) is an
element of E'*. We prove that (z,)eG%¥7, -

Let xeG, |x|l <1, be fixed. Let keN and choose j=j(k) having
k; <k <k;i;. Then we have

"

-1
&,z = % B o, Py g (x, UMy,
i=1
For i £j—1 we note that
Loy 4. 1] i i+ 1
ﬁi <xa yni e >= ﬁi <xa yni>“ﬁi <x: yEl;‘C])—ﬂi <x$ ynl—"yg: +11>
= Bi <X, Y, >+ By 6:(x) + Bimi (%)

for certain |6 (x)| € 27, I5;(x)| < 27" in view of conditions (1) and (2). Hence
the first summand. in the above representation of (x,z,) converges in
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view of <x, y,> =0 (i ~<0). But the second term converges to 0 (k —o0)
in view of
[k ;,k] [k ok
1By <, ya? Dl = 1G5, g ytiealy
< [l x5
<=0 (k =00, j=j(k).
This proves (z,) eG¥>.
As in the proof of Theorem 1, we achieve a contradiction by showing
that (z,) is not represented by an element of E'. Indeed, otherwise the

sequence  {x, ij> would have to be uniformly convergent (j —c0) on
)| < 1. But

J=1 j-1
[heg k4 41 [heguky 111
<x: ZJi:J>m Z 38:' <JC, ynii +1>= z <x= ﬁiynl- '+1>
i= 1 i=1
is not uniformly convergent on ||x|| < 1. Indeed, for i <j—1 there exist
certain x; having ||xf| € 1 and
[, Bty -1 < 27

. Kiak; kok; ki ks
Observing that <x, §, yf,'_’ '“]): Glfrkiral, iyE,i‘ i+1ly e define

i-1
N ki ks
x())= E x}:x ;+I},
i=1

which provides a vector having [|xY| < 1 in view of the sup-property of the
norm || ||. We obtain

i-1 By g1, It L =
T Y By = Y Buyw VD= 3 Uit 3 6,
i=1 i=1 i=1 i=1

where |6 < 27" This provides the desired contradiction. w

Theorem 2 has the following consequence which we shall need in the
next section.

CoroLLARY 1. Let E be a normed space and let a system of sections be
fixed on (E", E'> such that E' is a normed AK-space. Suppose E” admits an

equivalent sup-norm. Let G be a subspace of E" containing its sections and

suppose E is a subspace of G of finite codimension. Let G™ be barrelled with
respect to t(G™, EU) for every n and let G¥> = E'. Then G is barrelled.

Proof. For simplicity we treat the case G = E+lin {¢} for some e¢E.
Let U be a barrel in E. There are two possibilities. Either U, the closure of U
in (G, 0 (G, E'), is absorbing in G, or it is not. In the first case, the {G, E'>-
polar U® of U is ¢(E’, G)-bounded, bence is norm bounded by Theorem- 2,
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and thus U°° is a norm neighbourhood of 0 in G. But then U = U nEis a
norm neighbourhood of 0 in E.

Let us consider the case where U is not absorbing in G. This implies
e¢linU. Let :

V=U-+{ge: o<1}

Then V is circled, convex and absorbing in G. So V° is g (E, G)-bounded,
hence norm bounded, hence V°° is a norm neighbourhood of 0 in G and so
V°° ~E is a norm neighbourhood of 0 in E. It remains to prove that
Vo° AE = U. Let yeV° nE. There exists a net (y,) in V' converging to y
with respect to (G, E'). Let y, =z,+¢,e, z,€U, g € 1. The latter condi-
tion permits us to find a cofinal subnet (also denoted by (y,)) such that (g,)
converges to some g. So (z,} converges to y—ge, and this gives gecE+ U,
hence ¢ =0 and so yeU nE = U. This proves that E is barrelled. Since E
has finite codimension in G, the result follows. m

Instead of postulating that G™ is barrelled in Theorem 2 and Corollary
1 we might have imposed the weaker {but more complicated) condition that
every o(E™, G"™)-bounded set in E™ is norm bounded.

4. Applications to sequence spaces. In this section we will present various
applications of the main results to the study of sequence spaces. Besides
some nice consequences to be obtained in the standard duwality <x, y)
=Y;xy; combined with the usual notion of sections, we shall apply
Theorem 1 and Corollary 1 to certain nonstandard dual pairings resp.
nonstandard notions of sections. Let us, however, start with some applica-
tions in the standard constellation,

Treorem 3 (cf. [S], [B,T). Let E be a normed K-space whose dual (via
G, vy =Yux:y) is a BK-AK-sequence space. Then E has the Wilansky
property (in the sense of [B;]), i.e. any subspace F of E satisfying F# = Ef = E'
is necessarily barrelled.

Proof We apply Theorem 1 to the dual pairing (F+®, E'), where ¢
denotes the space of finite sequences. We define sections as in Example 1.
Then the barrelledness of F+ & is equivalent to (F+@)* = E. But Ff =
(F+ @), so F? = E' implies that F+ & is barrelled, and by the Levin-Saxon—
Valdivia theorem (see [W,, p. 250]), this implies the barrelledness of F. w

Using his counterpart to Theorem 3, Bennett ([B,]) was able to charac-
terize dense barrelled subspaces of the spaces ¢ and cs. As both these spaces
do not satisfy the conditions of Theorem 3, his proof requires additional
arguments. Here we show that both results may be derived directly from
Corollary 1. ‘ : ’
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THEOREM 4. A dense subspace E of ¢ is barrelled if and only if EF =1, i.e.
¢ has the Wilansky property. More generally, every subspace G of m contaimng
co as a subspace of finite codimension has the Wilansky property.

Proof. We prove the first statement. Clearly every demse barrelled
subspace E of ¢ satisfies Ef =]. The converse follows from Corollary 1.
Indeed, we may assume that E coritains the space ®-+linf{e}, where
e=(1,1,..). Now E contains its sections in (m, l), has p-dual I and
contains E me, as a subspace of codimension 1. Thus Corollary 1 applies
and vields the result. w

Theorem 4 is no longer valid in the case where G is a subspace of m
containing ¢, as a subspace of countable codimension since a space G = Co
+H with dim(H) countable need not be barrelled.

FxampLe 3. Let E be a Banach space and let x;, x,, ... be linearly
independent vectors in E" having x;¢ E. Then G = E+1lin {x,: neN} is not
barrelled, for we may define a sequence (f,)} of continuous linear functionals
such that f, =0 on E+lin{xy, ..., X,1}, fu(xa) # 0, |Ifll = co. Then (£}
converges to 0 pointwise but is unbounded. This shows that a linear
subspace G of m containing c, does not have the Wilansky property unless it
contains ¢g as a subspace of finite codimension.

We shall now turn towards the problem of characterizing dense barrel-
led subspaces of summability domains. Recall that, given a normed K-space
E and an infinite matrix A, the summability domain E, consists of all xew
such that Ax exists and lies in E. Now E, is a K-space when endowed with
the topology coming from the seminorms x —lldxl], x =ix}, i=1,2, ...,
and g (x) =sup, Yo @) i=1,2,... :

ProrosimioN 4. Let E be a normed K-space whose dual E (via {x,y>
=Z‘-x; y) is a BK-AK-space. Let A be an infinite matrix such that & is
contained in A(E,). Suppose the K-topology on E, is generated by the
seminorms x —+||Ax|| and finitely many x =1, i = 1, ..., N. Let D be a dense
subspace of E,. Then D is barrelled if and only if ADY =E'.

Proof Since the topology of E, is generated by JF"’HAJC“ and the
x —+|x|, i =1, ..., N, the dual of E, (and hence of D) may be identified with

E'+ K" via the bilinear mapping

b N
X, y+nd =3 (Axhw+ 2, Xt
{1 i=1

Suppose now we have ¢ = 4(D). We define a system of sections on
(D, E'+K") by setting (y+7)i = yii+y, where y" denotes the usual
section in E". We note that y+y# —~(y+n)™ is continuous with respect to
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o(E'+ K%, D). Indeed, for fixed xeD we have

o N
&, Y+ = Z (Ax) (") + Z Xi ¥

= Z ((AX‘"]) yit Z X,

proving that y+» -*(y+11)["] is weakly contlnuous in view of & = A(D). We
next claim that E'+ K" has sectional convergence with respect to the norm
topology. Let y+neE'+ K", Then we have

w0

G =+ = Y (Ax)yw,

i=n+1

which tends to 0 (n — o) uniformly on ||Ax]| <1, E' being an AK-space by
assumption.

Applying Theorem 1 to the dual pairing <D, E'+ K¥>, we deduce that D
is barrelled if and only if D¥> = E'+ K™, since the section spaces D" are
finite-dimensional. But note that D> is just the subspace of w+ K¥ con-
sisting of all vectors y+# such that 3 (Ax); y; converges for all x eD, hence
the equality DY> = E'+ K¥ amounts to A(D)’ = E. This proves the result in
the case @ — A(D).

The general case is easily deduced if we consider a linear subspace ¥ of
E, of countable dimension having A (¥) = &, for then the barrelledness of D
is equivalent to the barre]ledness of D+ W, »

Various situations are known in which a summability domain E, is
normable and its topology is gemerated by ||Ax|| and finitely many x — x|
alone.

If A is row-finite, then it is well known that the seminorms g, may be
discarded, so that if E, is normable, finitely many x —!x,| and ||Ax]| suffice.
The latter is the case eg. when A4 is a lower tnangu]ar matrix with only
finitely many diagonal entries =0.

If Ais an mvertlble matrix, then the topology of E, is induced by |[Ax]|
alone,

An interesting case is the following one. If E, is a BK -space containing
& and having bounded sections {in the usual sense), then the seminorms g,
may again be discarded, as executed in [K, Thm. 2).

Proposition 4 being based on Theorem 1, we now obtain a similar
version based on Corollary 1. We state it in a particularly interesting case.

ProrosimioN 5. Let A be an infinite matrix such that ¢, is normable and
the topology is generated by the seminorms x ~+||Ax||, and finitely many
x—|x|, i=1,...,N. Suppose 4(c,) contains ®+lin {e}. Then a dense sub-
space D of ¢, is s barrelled zf and only if A(DY¥ = 1.
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Proof. We may again assume that 4(D) contains &+lin {e}. Now
apply Corollary 1 to the pairing <D, I+ K", where (x, y+#) is defined as
in the proof of Proposition 4. Notice that D may be given an equivalent
porm having the sup-property, for [+ K¥ =/ has an additive norm if we
introduce sections as in the proof of Proposition 4. =

As a consequence we obtain
THEOREM 5. A dense subspace E of cs is barrelled if and only if E* = bo

Proof Let § = (s;} be the summation matrix, ie. s;=11i1fi>j, 5;=0
if i <j. Then cs = ¢g and is normed with |[Sx||, alone. Hence by Proposition
5, a dense subspace E of ¢s is barrelled if and only if S(E)f = I. So it remains
to prove that S(E)’ = [ is equivalent to E* = bv, at least when & — E.

Suppose Ef = by, We have to prove S(EY —I. Let yeS(E)", and choose
z €@ such that y, =z, —z,, ;. It suffices to prove z ebv. So let xcE. We have
to prove xz ecs. Now for fixed neN, '

_Zl (Sx); (z;— 24 1) = ‘21 X; Z;—(SX)p 2y 1,
so y €S (E) shows that the right-hand side converges {(n — o) for every x €E.
Inserting the unit vecter (1,0, 0, ..) eE proves z ec, hence, in view of §x ec
for every x €E, the second term on the right side converges for every x €E,
and consequently, so does the first. This proves z eEF, hence yel.

Conversely, suppose S(EY = [. Then S(E) is a barrelled subspace of c,
hence E is barrelled in cs, and hence EP = by follows. =

CoroLLarY 2. A dense subspace E of (cp)s is barrelled if and only
ifE=bv. m ‘

We conclode this section with two applications of Theorem 1 to the
study of scarce copies. For definitions we refer to [B,;]. In this paper it is
stated that most classical sequence spaces (prominent exceptions @ and ) do
not have any barrelled scarce copy. Here we obtain the somewhat more
general

ProrosiTioN 6. Let E be any AK-sequence space having E cm and
E* —cs. Then no scarce copy of E is barrelled.

Proof Let X(E, r} be a scarce copy of E and suppose it is barrelled. E
being an AK-space, this implies E' = Ef = Z (E, r)*. We claim that Z(c,, 1) is
now a barrelled scarce copy of ¢, and this will provide a contradiction, since
¢y does not have any barrelled scarce copy.

Let yél. Choose xe&c, having xyé¢cs. So, by assumption, xy¢E?
= Z(E, r}’. Choose z e X (E, r) such that zxy¢ cs. By the definition of Z(E, r),
there exist z,...,z,€0(E,r) such that z=2z,+ ... +z,. This implies
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z; xy¢cs for some i. But note that x €co and z;eE =m give z; X €cq, While
(2 %) < Clz) S 1, for all m implies z;x €a(co, 1) = Z(cy, r). Hence we
have proved that Z(co, rf¥ =1 and hence Z(co, 1) is barrelled. =

In [B,], Bennett proves that X (E), the linear hull of all scarce copies of
a space E, is a barrelled subspace of E in case E is a solid FK-space. Here
we prove that the same result holds for monotone (ie. mg E < E) BK -spaces
whose dual is a BK-AK-space.

ProrositioN 7. Let E be a monotone BK-AK-space whose dual is a BK-
AK-space. Then Z(E) is a barrelled subspace of E.

Proof. By Theorem 3 it suffices to prove % (Eff = E®. Now recall that
X (E) is precisely the linear hull of all vectors of the form ix, where x €E, y)
= (4,) a sequence of 0 or 1 entries only and satisfying lime A= 0, where Cy
refers to Cesdro means. It will therefore be sufficient to prove the following
(classical) lemma in order to complete the proof.

Lemma. Let (x,) be a positive sequence having Y ,x,=coo. Then there
exists @ sequence A= (L) having A,€{0, 1} and lim¢, 2 =0 such that sl
N nAn Xy =00,

Proof. We give a sketch of the proof since we do not know of a
reference.

We define a binary tree of countable infinite height whose nodes are
infinite subsets of N. Start with the root N, Then, given any node N in
the tree already defined, define two successors N', N” of N as follows. Let
N={n,n, ..}, where n <my,. Then set N'={n, ns, ns,...; and
N = {ny, ng, tg, ...}

Let us now select a cofinal branch in the tree. Let N'={1, 3, ...} and
N" =1{2,4,...} be the successors of N. Then cither } .y X, or Y enr X, I8
. Accordingly, let N, =N or N;=N" Choose n, such that
Yily ien, % > 1. Now It N', N7 be the successors of N,. Then either
Yy e X OF S ismy,ien % is infinite. Accordingly choose N, =N’ or
N, = N”. Then choose n, > 2n, such that Y2, 11 ien, % > 2, etc.

Suppose Ny, N;, N, ... have been chosen in this way, Define 1= (1))
by setting A,=1 if n_, <n<m and neN, 4,=0 otherwise. Clearly
Y/ Xy = 00. It remains to prove that lim, A = 0. For neN, n,.; <n<n,
we have :

L3

n r=1 Hj
n“l 2 /I'::n_l Z Z j..i“l‘n“l E j.,'
i=1

J=li=ay_ g+t i=n._q+1

r=1
€n 'Y 27 4n" H(in—n_4) 27"
=1

st r—Dn_ 277 427720

_ (n =00, r=r(n).
This proves limg, 4 =0 as desired. =
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5. Two special cases. In this final section we consider two particular
cases of systems of sections with infinite-dithensional section spaces.

Let T be a locally compact space and let Co(T) be the space of scalar-
valued continuous functions on T vanishing at infinity. Let Co(T) be
endowed with || ||»; then its dual may be identified with M (T), the space-of
ﬁni;e Radon measures on T. The corresponding bilinear mapping is {f, u>
= [ fdu.

Suppose that 7, in addition, is countable at infinity. Let (7)) be a
sequence of compact sets with union T having T, cintT,.,. We define
restriction mappings p — ¢ on M(T) by setting

[Fdd™ = [ fdu,
T Ty

feCoo(T). This provides a system of sections on {(Co(T)", M(T)>, since
4 ™ is norm continuous. Notice that, in general, sections do not exist
within Cy(T). They do e.g. when the sets T, are compact and open. With this
notation we obtain

ProrositioN 8. Let E be a subspace of Co(T) containing Coo(T). Then
the following statements are equivalent:

(1) E is barrelled.
(2) Every Radon measure yt on T such that lim,, ., jT" [ du exists for every
f eE is necessarily finite.

Proof (1)={2). Observe that ™ converges pointwise to the linear
functional ¢ defined by

@(f) = tm [ fdu,
n—o T,
hence ¢ is continuous by the Banach-Steinhaus theorem, ie. there exists
veM(T) having o(f) = [fdv for all feE. Since Coo(T) < £, this implies
u=v and so u is finite. '
(2) =(1). Observe that M(T) is a normed AK-space in view of

<Fopm sl =] [ S < el TAT),

which converges to 0 (n —oo) uniformly on |[flle < 1.

Let B be a barrel in E. We may assume that B is contained in the unit
ball of E. Let B denote the closure of B in (E”, o(E", M (7). Let G be the
linear hull of B. We claim that G contains its sections. _

Let f€E, |flle < 1, be fixed. We prove that " = fr,eG, where yx,
denotes the characteristic function of T,. Observe that Coo(T) < E implies
that E, = {f €E: supp(f) = T} is barrelled, so there exists o > 0 such that

ifllo <1 and supp(f) < T,+, imply f€xB.
Let usM(T) and ¢ > 0 be fixed, Choose an open set G contained in
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int T,., and containing 7T, such that |u/(G\T) <e&. Let y: T—[0,1] be
continuous with =1 on T, and y =0 on T\G. Then ||fxlls <1 and
supp(f¥) < T,+, give fyeaB. Morcover, :

M= fo, wl < Jl1—xldle < |ul(G\T) <e.

This proves fI" eaB. Since f €E, ||f|lo < 1, and n N were chosen arbitrari-
ly, we obtain

(/U f €E, |f]l.0 < 1, neN} = aB,

This implies that G contains its sections, for let geB, (g,}) in B, g, =g
weakly; then |lg,/l < 1, hénce gi"exB, so g™ = lim, ¢! eaB, too.

Next observe that M (T)” may be identified with the space I(T) of all
Radon measures on 7T, for every sequence (u,) having pxf™ = u,,, m < n, gives
rise to a unique peWY(T), defined by [ fdu = [ fdu, in case supp(f) = T,.
Dually, every peM(T) defines an element (x,) of M(T)® by u, = ui7,. But
now E® is the space of all measures u e M(T) such that [r fdu converges
for every f eE. So statement (2) above translates into E%> = M(T), hence
G¥> = M(T), and hence Theorem 2 yields that every o(M(T), G)-bounded
set is norm bounded in M (T), since for every n, o(M{T), E)-bounded sets
are norm bounded. Now B is absorbing in G, hence B® is a norm
neighbourhood of 0 in G, and s is B = BN E in E. This ends the proof. =

The assumption that T is countable at infinity may be avoided in
Proposition 8. This yields

Tueorem 6. Let E be a subspace of Co(T) containing Coo(T). Then the
Jollowing statements are equivalent:

() E is barrelled.

{2) Whenever p is a Radon measure on T supported by a c-compact set
UE. T, T—y cint T, T, compact, such that lim, . an fdu exists for every
JeE, then u must be finite.

Proof. For the proof that (1) implies (2} see Proposition 8. We establish
the reverse implication. We have to prove that o (M (T), E}-bounded sequen-
ces (4,) are norm bounded. Let (u,) be such a sequence. For every n let KM
be compact subsets of T having K{"; —int K[” such that

(T U KP) =0,

Using a diagonal procedure, we may therefore find a sequence (T} of
compact subsets of T having T,_, —int T} such that

m(T\ U T)=0

13
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for all n, ie. each u, is supported by | ), ;. Now let § = |J; ;. Then S is an
open, hence locally compact subset of T, which is countable at inﬁnit‘y. We
may assume the sequence (u) sited in M (8), hence it suffices to prove that
(4,) is norm bounded in M (S). If S is relatively compact in T this is clear in
view of Cyo(T) = E. So let us assume that § is not relatively compact in T,

Let F = {fIS: f €E}. Then F is a dense subspace of C,(S) containing
Coo(S). It suffices to prove that F is barrelled, for clearly (u,) is o{M(S), F}-
bounded, and this will imply that it is norm bounded. But note that § is
countable at infinity, so we may apply Proposition 8. Since condition (2)
above implies that (2) in Proposition 8 is satisfied for M (S) and F, we deduce
that F is in fact barrelled. =

We conclude our paper with an application of Theorem 1 to spaces
of integrable functions. Let (@, %, 1) be a o-finite measure space and let (Q,)
be an increasing sequence in % with union Q such that u(f) < oo for every
n. For p21 let ¥ = (Q, A, 1) denote the space of equivalence classes of
p-integrable functions endowed with the usual p-norm. For r > 1 we obtain
the following characterization of dense barrelled subspaces of £°. '

Prorosition 9. Let E be o dense subspace of @ (p> 1) containing all
2 =(Q,, U, u|Q,), neN. Then the following statements are equiva-
lent: '

(1} E is barrelied.
(2} Whenever g: Q@ —K is a measurable function such that g|Q,€$2 for
every n and lim, ., [o fgdu exists for every f €E, then ge .

Preof. Define a system of sections on (E, 22 {1/p+1/g = 1) by setting
f¥ = fx,, where y, denotes the characteristic function of Q,. Then & is a
normed AK-space in view of

1S g~ = |f fg (1= z) dpaf < 11 1lp lg (1 — xll; =0

The space (29” may be identified naturally with the space of all classes of
measurable functions g on Q having g|Q,e 2 for all n. But then statement
(2) of Theorem 1 translates naturally into statement (2) above. w

(n =+ o0).

CorolLarRY 3. Let E be u dense subspace of ¥F (p > 1) containing all &
and suppose feE and |g(0) =1 for all t€Q imply fge€E whenever g is
measurable. Then the following statements are equivalent:

(1) E is barrelled.
(2) Whenever g is measurable on Q having fg € 2* for all f €E, then g e €4

Proof. Statement {2) in Proposition 9 may be replaced by (2) above
since for a function # 3 0 the existence of lim,_, [o hdu may be expressed
equivalently by he ' =

2 — Studin Mutbematicn 94.2
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Clearly Proposition 9 and Corollary 3 are both false in the case
p =1, g = co. This may be seen by considering the dual pairing {*, m> and
taking an example as in [B,]. Notice that Corollary 3 again becomes false if
we omit the condition of monotonicity on E. Take e.g. the subspace E of
F (p > 1) consisting of all vectors x having X1 = Xz, eventually. Then E*
=%, but E is not barrelled (since the f-dual is not [).
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Weighted integral inequalities for the ergodic maximal
operator and other sublinear operators. Convergence
of the averages and the ergodic Hilbert transform

by
DIEGO GALLARDO {Milaga)

Abstract, In this paper we study those pairs of weights (u, w) for which the ergodic
maximal operator and other sublinear operators, associated to an automorphism of a ¢-finite
measure space (X, ., p), are of weak or strong type (¢, ¢) with respect to the measures wdp
and udu, where ¢ is an N-function. As consequences, we get the p-almost everywhere
convergence and the norm convergence of certain weighted averages (which include the Cesdro
averages), as well as of the ergodic Hilbert transform, for every function in the Orlicz space
Ly (wdy), where the weight w belongs to a certain class.

1. Introduction and preliminaries. The A, (7, u)-condition. Let (X, .#, p)
be a o-finite measure space and T an invertible p-measure-preserving
transformation from X into itself. Such a transformation will be called an
automorphism of (X, .#, ). Let M= M(X, .#, y) be the space of .#-
measurable and p-almost everywhere (y-ae) finite functions from X to R or
to C.

For each pair of nonnegative integers, m and n, and every f e we
consider the average

Ly Rpuf () = mn 1)t 3 (T

1=-m

and let My be the ergodic maximal operator, acting on M defined by
(1.2 My f = sup R,,fl.

mnz0

The role of the operator My in the study of the convergence of the
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