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Clearly Proposition 9 and Corollary 3 are both false in the case
p =1, g = co. This may be seen by considering the dual pairing {*, m> and
taking an example as in [B,]. Notice that Corollary 3 again becomes false if
we omit the condition of monotonicity on E. Take e.g. the subspace E of
F (p > 1) consisting of all vectors x having X1 = Xz, eventually. Then E*
=%, but E is not barrelled (since the f-dual is not [).
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Weighted integral inequalities for the ergodic maximal
operator and other sublinear operators. Convergence
of the averages and the ergodic Hilbert transform

by
DIEGO GALLARDO {Milaga)

Abstract, In this paper we study those pairs of weights (u, w) for which the ergodic
maximal operator and other sublinear operators, associated to an automorphism of a ¢-finite
measure space (X, ., p), are of weak or strong type (¢, ¢) with respect to the measures wdp
and udu, where ¢ is an N-function. As consequences, we get the p-almost everywhere
convergence and the norm convergence of certain weighted averages (which include the Cesdro
averages), as well as of the ergodic Hilbert transform, for every function in the Orlicz space
Ly (wdy), where the weight w belongs to a certain class.

1. Introduction and preliminaries. The A, (7, u)-condition. Let (X, .#, p)
be a o-finite measure space and T an invertible p-measure-preserving
transformation from X into itself. Such a transformation will be called an
automorphism of (X, .#, ). Let M= M(X, .#, y) be the space of .#-
measurable and p-almost everywhere (y-ae) finite functions from X to R or
to C.

For each pair of nonnegative integers, m and n, and every f e we
consider the average

Ly Rpuf () = mn 1)t 3 (T

1=-m

and let My be the ergodic maximal operator, acting on M defined by
(1.2 My f = sup R,,fl.

mnz0

The role of the operator My in the study of the convergence of the
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Cesaro averages Ry -, f and R, ,f is well known. On the other hand, it is
also known that for every feL,(u), with 1< p <oco, the averages Rg, f
converge almost everywhere and in norm (see [137). The convergence of the
averages corresponding to the functions felL,(v), 1 <p <cc, where v is
another measure absolutely continuous with respect to u, was studied in [14]
by Martin-Reves; more precisely, he studies the .#-measurable functions
w: X —[0, co) such that for each fin L,(wdy) the Hopf averages converge
u-a.e. and in norm.

By a weight on X we shall mean an .#-measurable function with values
in [0, o0).

A part of our aim, in this paper, is to study the weights w on X for
which we have the p-a.e. convergence and the norm convergence of certain
weighted averages (which include the Cesdro averages) of every function
feLy(wdy), where ¢ is an N-function and L,(wdy) is the Orlicz space
associated to it. This is studied in Section 4.

First, in Section 2, we characterize the pairs of weights {(u, w)} which
satisfy a weighted integral inequality of the form '

C

¢u)!j;¢{!fl)wd.u,

with C independent of f €M and A > 0, where My is the ergodic maximal
operator defined by (1.2). (We write u(E) for [yudy when Ee.#.) When (1.3)
hol,ds we shall say that M, is of weak type (¢, ¢) with respect to the measures
wdy and udu (or simply with respect to (4, w)). Moreover, we shall prove that
the weak type (¢, ¢) of My is equivalent to the uniform weak type (¢, ¢) of
the averages, ig.

e sup (e X R f () > 4 < 5 (6 (D wi,

mn=0

(1.3) u{xeX: Myf{x)>A} <

where C is independent of f and A, and also to the uniform strong type (¢, ¢)
of the averages, ie.

(1.5) sup @ (R fDudp < C [¢(f)wdn,

mnz0 X

with C independent of f.

The above results extend partly Theorems 2.7 and 2.26 in [14], given for
the I,-case, 1 < p <oco. Finally, in the case u(X) < oo, we determine those
weights w for which there exists a positive weight u such that M, is of weak
type (¢, ¢) with respect to (u, w).

In Section 3 we study weighted strong type integral inequalities for My.
More precisely, we characterize the weights w which satisfy

(1.6) ' [# My flwdu < C [ (f]) wdn,
X X

with C independent of fek.
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In Section 4, as we mentioned at the beginning, we obtain the almost
everywhere convergence and the norm convergence of the weighted averages

n—1 n
Y bfoT, (2n+1)7* Y b foT*

k=0 k=-n
for every f €L, (wdp), where w belongs to the class characterized by (1.6) and
(by) is a bounded Besicovitch sequence. The Besicovitch sequences as weights
in the averages were used by Olsen in [17].

In Section 5, we obtain an extrapolation theorem in the theory of weights
for sublinear operators S defined on M, which permits us to get weighted
integral inequalities of the type (1.6), with S instead of My, by obtaining
weighted integral inequalities for a particular case of the form ¢ (s) = s, with
1 < p < oo. In this way, some of the results obtained in the theory of weights
for the L,-case can be trivially extended to Orlicz spaces. This occurs, for
example, with the ergodic square function associated to T, studied in [15].

Finally, we obtain weighted integral inequalities for the ergedic maximal
Hilbert transform associated to T, and thus we get the existence, in the
pointwise and the norm sense, of the ergodic Hilbert transform

n
Hy f(x)=lim ) f(T'x)i
nerad f= —p
of each function f €L, (wdy), where w is a weight of the class characterized
by (1.6).
’ (Ngw, we shall present the basic definitions and results concerning
N-functions and Orlicz spaces which will be used in this paper.

An N-function is a continuous and convex function ¢: [0, o0) = R such
that ¢(s) >0, s >0, 57 ¢(s) >0 as s =0 and s P(s) 200 as 5 o0,

The function ¢ is an N-function if and only if it has the representation
¢ (s) = 3 where @: [0, o) = R is continuous from the right, nondecreasing
and such that ¢(s) >0 for s >0, (p(d)=0 and ¢@(s) > as s > . More
precisely, ¢ is the right derivative of ¢ and will be called the density function -
of ¢. . :

¢Associated to ¢ we have the function ¢: [0, o) =R defined by o(t)
= sup {s: ¢(s) <t} which has the same properties as ¢. We will call ¢ the
generalized inverse of ¢. -

We have o{o(t) =¢, t 20, and @(e(t)—e) <t for any positive reals ¢
and ¢ such that ¢{t)—e = 0.

The N-function  defined by # (2) = [yo is called the complementary
N-function of ¢. Thus, if ¢(s)=p"'s, p> 1, then ¥ (1) = g~ 't® where pq
? Ygung"s inequality asserts that st < ¢(s)+y (t} for s, t =0, equality
holding if and only if ¢(s—) <t < @(s) or else gt=)<s<e(®.

Another inequality we shall use 18 s < d (Y <25, 520,
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The so-called A,-condition for an N-function is a very important
condition, which plays a fundamental role in many questions. An N-function
¢ is said to satisfy the A,-condition in [0, co) (or simply the A;-condition) if
SUP;» o @ (25)/d(s) < oo. If @ is the density function of ¢, then ¢ satisfies 4, if
and only if there exists a constant o > 1 such that s(s) <wa¢(s), s> 0.

The 4,-condition for ¢ does not necessarily transfer to the complemen-
tary N-function. The latter satisfies the A,-condition if and only if there
exists a constant S > 1 such that B¢ (s) <s¢(s), s > 0. As examples of
N-functions which, together with their complementary N-functions, satisty
the 4,-condition we have ¢,(s)=4s, p>1; ¢a(5) =5 (L+log(l+s),
p>1: ¢y(s) = (1+1log¥s), p>1; ¢y(s) = foo where o: [0, c0) ={0, 0)
is defined by o(0)=0, g®)=2"" if te[27",27"7Y) and o) =2""" if
te[2%1, 2%, n a positive integer.

If (X, #, ) is a o-finite measure space the Orlicz spaces L,
=L,(X, #, 1) and L} = LY(X, A, p) are defined by

Ly={feM }j;d.')(!fl)d,u <}, Y= {feM fgeL, for all geL,},

where ¥ is the complementary N-function of ¢. We have L, = L} and if ¢
satisfies A,, then L, = L}.
% 15 a Banach space with the norms

(I fllp = sup {ilfgl du: g €S, }, wherc Sy ={gely: [Ylghdu<1}, and
. X

[fllp = inf 1> 0: [G Y fDdu< 1),
X

which are called the Orlicz norm and the Luxemburg norm respectively. Both
norms are equivalent, actually [|fllg < [If1le € 2|l filey-

Hilder’s inequality asserts that for every f eL} and every g eL% we have
ol < | flleg llglly, where ¢ and  are complementary N-functions,

If ¢(s)=s" with p>1 then L§=Ly=1L, |flky=IIfll, and [gl,
= ||gll, where pg = p+4.

The convergence f, —f in [L¥, || [i;] implies the mean convergence
lim, ., p jx(} So—fdu=0 but, in general, mean convergence only implies
norm convergence when ¢ satisfies 4,. Then the set & of simple functions
(with support of finite measure) is dense in [L,, || [|,] if ¢ satisfies 4,.

If ¢ and o satisfy 4,, then [Ly, || |l ] is reflexive.

The proofs of most of the above-mentioned results can be found in [12]
or in IV-13 of [16].

We shall also use in this paper an interpolation theorem; namely, given
an N-function ¢, let a, and f§; be defined by
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oy = Hm —loghy(s)flogs = inf —logh,(s)logs,
0<s<1

=0

B4 = lim —log ki, (s)/log s = sup—log h, (s)/log s,
5—+o0 s>1

where i, (s) =supd ™1 (0)/¢ " (st). We have O0<f,<Sop<1; B3>0 if )
t>0

satisfies the d4,-condition, and if the complementary N-function of ¢ satisfies
4,, then a, <1. We call g, =oaz' and p, =f;" the lower and upper
exponents of ¢ respectively, Then we have

TuroreM 1.7. Let (X, A, 1) and (Y, F, V) be two o-finite measure spaces,
¢ an N-junction satisfying, together with its complementary N-function, the A,-
condition and. g, p, the lower and upper exponents of ¢. Let T: L.+ L,
—+IR(Y) be a quasi-additive operator which is simultaneously of weak type
(r,7) and (s, s} where 1 <r <gqy, py <5< 0. Then T maps Ly (m) into Ly (v)
and there exists a constant C such that

fOUTIav < C[d(fhdu  for every fel,(u).
Y . X

A direct proof of Theorem 1.7 can be found in [6].

A condition similar to the A,-condition, given in [6] for the Hardy-
Littlewood maximal operator, plays a fundamental role in this paper. We
shall call this condition the A,(T, w)-condition.

Dermmion 1.8. Let ¢ be the density function of the N-function ¢, ¢ the
generalized inverse of @, and let u and w be weights on X. We shall say that
the pair (u, w) satisfies the A, (T, w)-condition, or that it belongs to the
Ay (T, whclass, if there exists a positive constant C such thai for every
positive integer k, every positive real & and pae. x

k-1 k=1

(1.9) (k=* Y (T X)) p(k™" 3, Q(l/aw.(Tix))) <C.
=0 .

i=0 _
Since g(s) =+ o0 and ¢(s) o0 as s >0, if for some i with 0 < i gk-—l,

w{T' x) = 0, we assume that (1.9) holds if k=1 (T x) = 0, i.e. the pair (u, w)

satisfies A, (T, p) if (1.9) is satisfied for ae. x in _

(1.10) Y=X- |J T {xeX: w(x) =0}

and p(E) =0 where
(L.11) E={xeX: w(x)=0}— j T {xeX: u(x) =0}

When (w, w) belongs to the Ad,(T,_ j1)-class we shall simply say that w
satisfies Ay (T, 1). - .
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If ¢(s) =p ', p>1, ¢ does not take part in (1.9) since ¢ is multipli-
cative and moreover it is the inverse of ¢. Thus, in this case, (1.9) reduces to
saying

(1.12) (k"l'fft«t(T*X))(k'1 2

i=0

W(Ti x)-qlp)v/q <C

for every positive integer k and p-a.e. x, where g is the conjugate exponent
of p, ie. 1/p+1/gq = 1. In this way, we obtain the 4,(g, T, p)-condition, for g
=1, given in [14] (see also [3]). When (1.12) holds we shall say that (u, w)
satisfies A, (T, ).

In [2] the A, (T, y)-condition, similar to the well-known Muckenhoupt
A,-condition, is defined; namely, the pair (u, w) satisfies A, (7, ) if there
exists a constant C > O such that for y-a.e. x we have M, u(x) < Cw(x}. It is
easy to see that if ¢ satisfles the A,-condition then every pair (u, w) of the
Ay (T, p)-class is in the Ay (T, p)-class (see a similar proof in [6] for the real
case).

In what follows, unless otherwise stated, we shall always assume that ¢,
together with its complementary N-function, satisfy the 4,-conditicn,
(X, .#, p} is a o-finite measure space, T' an automorphism of (X, .#, p), and
R, ., My are defined by (1.1) and (1.2) respectively. Sometimes we shall
assume that T is ergodic, ie. if Ec .# is T-nvariant then u(E) = 0 or u(X
—E) = 0. On the other hand, we shall consider two sets “equal” if they agree
up to a set of measure zero and we will use the convention that C denotes
an absolute positive constant which may change from line to line.

2. Weighted weak type integral inequalities for the ergodic maximal
operator and the boundedness of the averages. The characterization of the
weights 4 and w for which the ergodic maximal operator My is of weak type
(¢, @) with respect to the measures wdp and udy, ie. My satisfies (1.3), can
be given via the A,(7, w)-condition. Moreover, the same condition characte-
rizes the uniform strong type (¢, ¢) of the averages R, ,; more precisely:

THEOREM 21. Let u and w be we:ghzs on X, The following conditions are
equivalent:

(a) There exists C such that for every f ellt and every A >0

u{xeX: My f(x)> ~= [ @ (S wdp.
X

s

(b} There exists C such that for every f €M and every 1> 0

supu{x X [Rywf (x)] > A} <—~§¢>(|fl wip.

kz0
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(¢) There exists C such that for every f e
sup { ¢ (R, fudu < C [ & (S wdp.
kz0Xx X

(d) The pair (u, w) satisfies A4(T, ).

Notes. It is easy to see that conditions (b) and (c} in Theorem 2.1 are
equivalent respectively to conditions (1.4) and (1.5). Observe that condition
(1.5) implies the uniform boundedness of the averages: more precisely,

SuP [7: nf”(m,ua'p max{Ll, OV i wdu

mn=0
where the norms are those of Luxémburg with respect to the measures udu
and wdu respectively.

Proof. It will suffice to prove {d)=-(c), (d)
(a) =(b) and (c)=(b) are ecasy.

=(a) and (b)=-(d) since

Proof of (dy=={c). Let keZ™, where Z is the set of the integers;
e>0, feMand let xeY, where Y is the set defined by (1.10). We consider
the measure space (Z, &, d,) where & is the o-algebra whose elements are
all the subsets of Z and §, is the measure such that §,()) =ew(T'x) if ieZ.

ILet g and h be deﬁned by

g = ST x-2m20 @D, AE) =(w(T' X)) Y-l (€2),

where [—2k, 2k] denotes the interval ‘in the integers {ieZ: —2k<i< 2k}.

Since gel,(d) and hel,(d,), using Holder's inequality, we have

2k

(2.2) Y AT =} g s.6 <

i=—2k icZ

2 ”g”(m.éE A !(w),as,

where  is the complementary N-function of ¢ and the norms used are those
of Luxemburg with respect to the measure 3,.

It follows from the equality cases in Young’s inequality and the 4,-
condition for 1y that there is a constant B>1 such that
Y (s) < sels) < By (s), s =0. Then the A,(T, w)-condition for (u, w) shows
that there is a constant C > f such that for all keZ*, ¢ >0, A >0 and for
p-ae. x in Y

2k

) Y((ew(T' ) ew(Tx) <A™t 3

i=-2k j= - 2k

o((Aew (T x))~ 1)

< A7 (dk+1)o(C(4k+1)/ E Aeu (T x)).
i= -2k

Therefore, for 4 = C(4k+1) ¢~ {1/m(x)), where m(x) = &}y <2 (7" x), and
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taking into account that s < ¢ '(s)y~"(s), s= 0, we have

2 1) gy < I (1m0
X (ew(T ) ew (T < == o

< ﬁc_l m(x)l// (qb'il(T/(n?(x))) <1

and consequently [}l s, < C(#k+1) ¢~ (1/m(x)).
In this way, it follows from (2.2) that for all keZ™, ¢ > 0, f €M and for
u-ae xeY

2k

2k
@e+1)7" 3 AT <2671/ % eu(T X))ilglpr,-

j= =2k i=—2k

Then taking :3=(le—lﬂkq5(|f(Tix)|)w(T‘x))”1 we have |[igllg,s, =1 and
therefore, since ¢ satisfies 4,, '
2k 2k

2k '

G+ T ST Y wT'H<C T (AT H)w (T,
i=-2k i= -2k i=—2k

where the constant C is independent of f, ¥ and x. Hence, keeping in mind

that T preserves the measure u,

2k

k
Ek3[¢((4k+1)“ 2 foT udu< C@k+13 [ (S wdn

= Jj=-2k X

and thus we get

Jad @R fNudu < C ){ P (LS wdu

X

with « = (4k+1)7'(2k+1), whence (c) follows easily.

In order to obtain (d) = (a) we shall use transference methods. We shall
see that the general result follows from the case in which X =Z, u is the
counting measure and 7T is the shift transformation, i.e. T(k) = k+ 1. On the
other hand, we shall prove that the result in the integers case follows from
Theorem 2.3 in [6], for the Hardy-Littlewood maximal! operator.

For a given function F defined in Z and keZ let

(2.3) mF (k) = sup (m+n+1)~1 i |F (k+1).

. mn=Q i=-—m

For the maximal operator m we have the following lemma:

LemMa 24. Let u, w: Z =R be nonnegative mappings. The following
conditions are equivalent:
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(i) There exists C such that for all 2 >0 and every mapping F: Z =R

C
uk) <— ¥ ¢(IF@)wk).

{keZ: mF(k) >1} d’(’l)kez

(i) There exists C such that for every pair of positive integers, n and k,
and every positive real &

n-1

n-—1
(' Y eulk+iho(n ' Y o(few(k+))<C.
=0 i=0
Proof of Lemma 2.4. In [6] the author proved the following result
for the Hardy-Littlewood maximal operator defined by

*(p) =suplQl™! [Ifldy  (f €LudRY),
2

yel
where the supremum is taken over all cubes Q containing y:

THEOREM 2.5. Let u and w be weights on R". The following conditions are
equivalent:

(a) There exists C such that for every A >0 and every f ELlhc(R")_

C
(2.6) u{yeR" f*(y) >4} ﬂm‘{"tﬁ(lfl)wdy-

(b) The pair (u, w) satisfies A,, i.e. there exists C such that for every cube
Q and every positive real &

2.7) (1017 * feudy) (@17 g o(l/ew)dy) < C.
Q

(In condition (b) of Theorem 2.5 we assume that (2.7) holds if for some
cube Q, fpo(l/ew)dx =co and u(Q) =0 and, likewise, if u(Q)= oo and
foo(t/ew)dx = 0.} -

Assume that (i, w) satisfies condition (i} of Lemma 2.4. It is easy to see
that the pair of functions &, W: R —R" defined by i{(y) = u([y]) and W(y)
= w([y]). where [y] denotes the integer part of y, satisfies 4, and therefore
we have (2.6) for (7, W). _

Given F: Z R let /: R—R ‘be defined by () =F([¥])). Fix keZ
and  yel, = {xeR: k<x<k+1}; then for every average (m+n
4+1)" YU |F(k+17) there is an interval J containing y such that

M=t {Ifldy = (m+n+ 7" i 1F (k+)
1

i=—m

and therefore mF (k) < f*()). Consequently, for every 4 >0 we get
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W) TR f*) > A) < -‘5»2 S(F () w(k)
{keZ: mF(ky> A} ¢ keZ

and thus we obtain'(i).

The proof of (i) =(ii) of Lemma 2.4 is similar to the proof of (a) = (b) of
Theorem 2.5 in [6]; anyway, for our purpose the implication (ii)=-(i) is
enough.

The following result for the operator m follows from (i) = (i) of
Lemma 2.4.

CororLary 2.8. If the pair (u, w) of weights on X satisfies Ay(T, ) then
there exists C such that for all 4 >0, for every mapping F: Z — R and p-a.e x
in X

(2.9) Y u(T*x 2. ¢(F (k) w(T* x).

(ke Z:mF(k) >} ¢(A') kel

Proof of Corollary 2.8. It is enough to obtain (2.9) for ae. x in ¥,
where Y is defined by (1.10), since if w(T*x) =0 for some integer k then it
follows from A4(T, ) that u(77x) =0 for every integer j.

For x in Y let u,, w,: Z —R be the mappings given by u, (k) = u(T*x)
and w,(k} = w(T*x). The 4,(T, y)-condition for (u, w) shows that, for y-ae.
x in Y, we have condition (ii} of Lemmma 2.4 for (u,, w,) with a constant C
also independent of x, and therefore we get (2.9).

.Proof of (d) =(a). For every integer L3 1 we_consider the truncated
maximal operator My, defined by

MT,Lf— sup Rmnifl

OsmnursL

(f e,

For a given mapping F defined in Z let

sup (m+n+1)"t Y [Fk+i)

Q<€Emn<L fam —m

m F(k) =

and for glven geM and x&X we denote by g, the mapping defined by
gx(k) = g(T*x).
Fix A > 0 and f e Since T preserves the measure u we have

(2100 ul{xeX: Mepf(x)> A =L+ 1)) Y u(T"x)x,,k(x)d,u(x),
X k<L
where 4, = {xeX: my f.(k) > 1}.

If 1<k <N then my f,(k) < m(f, x—21,21)(k), where m is defined by
(2.3), and therefore Corollary 2.8 shows that for p-ae. x in X
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T, w(T*%) 0, (9 < x #(T*X)
|k €L {kez: mur,x[ 21,210 >4}

k k
<50 IMZ SUFT w0

with C independent of x, A and f. Thus, substituting these inequalities in
(2.10), we get ’

wixeX: My f(x) > A} = lim u{xeX: MTLf(x)>/1}~.,

L-omwm

Id—)(lfl) K

which proves condition (a).

Proof of (b)=(d). It suffices to prove that for every positive k €Z and
p-a.e. x in Y, where Y is the set defined by (1.10), we have

. k-1 k—1
(2.11) (k=1 Zou(T‘x))qo(k‘l ZOQ(L/w(Tix))) <C
with € depending only on ¢ and the constant of condition (b), and moreover
u(E} =0, where E is defined by (1.11).

u(E) =0 follows easily from (b) by taking f = yg since, then,
u{xeX: Ryyxelx) >4} =0 for every integer k and every 4 >0 and, thuos,
for all j we have u(TJE) Su{xeX: Rj;xe(x) > (2i+2)~'} = 0. This shows
that

_[ uoTidu=0.
Ej=—®
and therefore p(E) =0 because Y2, u(TVx)# 0 if x€E.

In order to obtain (2.11) we follow the ideas given in [3] and (14) and,
therefore, we first need the concept of ergodic rectangle, given in [3].

DerivimioN 2120 Let | be an integer with 21 and let B be a
measurable set with u(B) >0 such that "B T/ B=0, i#j, 0<i,j<!
—1. Then the set R = {J:=4 T B will be called the ergodic rectangle with
base B and length 1.

The following lemma is proved in [14].

LemMma 2.13. Let Y be a measurable subset of X and let k be a positive
integer. Then there exists a countable family {B;: jeZ*) of sets of finite
measure such that:

@) Y=Uj%08;

(i) B, NB; —(Z) if i3],

(i) For every j, Bj is the base of an ergodic recrangle of length I(j) <€
and such that if 1(j) < k then T'? 4 = A for every measurable set A CB
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Now, fix a positive integer k and let {B;}2, be the sequence given by
Lemma 2.13 for the set Y defined in (1.10) and the integer k. It is enough to
prove (2.11) for p-ae. x in B; with the constant C independent of B; and the
integer k. ]

For B; fixed and each integer r, we define

k-1
Hj,,. = {x EBJ': < k—l Z Q(]./W{Tlx)) L<.. 2r+1}'
i=0

For any 4 < H,,, with u(4) > 0, let R be the rectangle with base A4 of
length 1() < k and let f = o(w™' yy). Then R {xeX: |Ry, f(x) 3712}
and consequently

¢ (2)u(R) < C [de(I/w))wdp < C [o(1/w)du,
R L
where C depends only on ¢ and the constant in condition (b). Therefore,
there exists a constant C such that for every integer k and every measurable
set A <H;,
k—1 k=1

£¢(2’)k‘1 3 u(T x)du(x) Cjk* Z o (1/w (T x)}dp(x).

i=0

On the other hand, since ¢ satisfies A,, there exists « > 1 such that.

¢ (2s) < agp(s) and se{s) < a¢(s), s = 0. Then for every k and p-ae. xeH;,
we get (2.11) with constant Cax? and thus the same is obtained for p-ae.
x€B;, which proves that (u, w) satisfies A4(T, w).

In this way, the proof of Theorem 2.1 is complete.

In the case u(X) <o, Theorem 2.1 allows us to characterize those
weights w on X for which there exists a weight u > 0 such that My is of
weak type (¢, ¢) with respect to the measures wdy and udy. ' !

TuaroreM 2.14. Let (X, A, p) be a finite measure space and w a weight on
X. There exists a positive weight v on X such that My is of weak type (¢, ¢)
with respect to (u,w) if and only if =

(2.15) supep(Mpo(l/ew)(x)) <co  for p-ae xeX.
e>0
Proof. Taking into account Theorem 2.1 it suffices to prove that
condition (2.15) is equivalent to the existence of a weight u > 0 such that

(u, w) satisfies A, (T, p).
If (2.15) holds, then the measurable function

u(x) = sup(ep (M o(1/ew) () "

satisfies 0 < u(x) <0 g-ae. and the palr (v, w) satisfies. A, (T, y} with
constant C =1.
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Now, assume that there is u >0 such that (u, w) belongs to the
Ay (T, w-class, Tt is no restriction to assume that welL, (u). Then it follows
from Birkhoff’s individual ergodic theorem (see Theorem 1.2.3 in [13]) that
there exists a T-invariant function @ eL; (), with ||}, < [lull;, such that
k-1

im k™ Y w(T'x) = ii{x)

k a0 i=0

for p-ae xeX.

Moreover, for each T-invariant Ae# with p(A) <o, [ ddp= [4udu
Then if 4 = {x&X: #(x) = 0} we have faudu =0 and therefore #i(x) > 0 for
u-a.e. x in X. (Observe that 1f T is, in addition, an ergodic transformation,
then 4 (x) = pu(X)"" fyudu when p(X) < oo but 4 is the null function when
p(X) = c0.)

Therefore, for almost every x e X there exists a real x(x) > 0 such that
for all integer k > 0 and every real ¢ >0

(2.16) e (k! kf o (/sw(T' X)) <

Cla(x),

with C independent of x, k and &.

It is obvious that we can obtain an inequality as (2.16) with T~ ! instead
of T On the other hand, since ¢ satisfies 4,, it is easy to see that there is a
constant K > 0 such that

e+ < Klp@+o), ¢le@) <Kt
for any s, t2 0. Consequently, for almost every x in X there is a real
B(x) >0 such that for every pair of nonnegative integers m, n and every
e >0 we have ep(R, ,o(l/ew)(x)) < B(x) and therefore
o(Mro(l/ew) () < (e (e S(x)))
which proves (2.15).

"Remarks. 1) In the case ¢ (s) = s* with 1 < p < o0 condition (2.15) of
Theorem 2.14 reduces to the following condition:

< Ke™ ' B(x),

(2.17 Mp(w % (x) <o for u-ae xeX,

where ¢ is the conjugate exponent ol p.

2) In proving that condition (2.20) implies the BX1St6nCC of u > 0 such
that M. is of weak type (¢, ¢) with respect to (4, w), we do not use the fact
that p(X) < oo,

3) It foliows from Theorem 2.14 that if w satisfies (2.15) then My f1{x)
<o for p-ae. xeX for every f €Ly (wdy), since im, ..o, ¢ (s) = c0. However,
the finiteness of the maximal operator can be obtained with a condition less
restrictive, in general, than (2.15), namely:
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ProrosiTion 2,18, Let w be a weight on X such that
(2.19) Mro(l/w)(x} < 0 for p-oe xeX.
Then My f(x) < for p-ae. xeX for every fin L,(wdy).

Indeed, it follows from Young's inequality that M, f< M, (¢:(| fhw)
+Myro(1/w) for every f € M. On the other hand, My is of weak type (1, 1)
with respect to the measure p and therefore if f €Ly (wdy) we get My f(x)
< o0 p-ae.

4) In the case ¢ (s5) = &%, it follows from Nikishin’s theorem [97] that the
finiteness of the operator My, ie. My f(x) <o p-ae. for every f eL,(wdy),
imptlies the existence of a positive weight u such that My is of weak type
(p, p) with respect to (u, w). If the above result could be extended to any
Orlicz space, then we would conclude from Theorem 2.14 and Proposition
2.18 that conditions (2.15) and (2.19) are equivalent for any N-function ¢. In
_ the case ¢(s)=s" 1 <p < co, this is true since both conditions reduce to
(2.17), but in general we think that (2.19) does not imply (2.15), though we do
not know any counterexample. Therefore, we think that the finiteness of the
maximal operator for every f €L;(wdy) does not, in general, imply the weak
type (¢, ¢ for some pair (u, w) with u > 0.

3. Weighted strong type integral inequalities for the ergodic maximal
operator. In this section we study the pairs of weights (u, w) for which My
satisfies a weighted integral inequality of the form

3.1) [ (M f)udp < ijrqb(lfl)wd# (feM,

with C independent of f; more precisely, we characterize the weights w for
which we have (3.1) with u = w.

In general, it is obvious that inequality (3.1) implies inequality (1.3), i.e.
the weak type (¢, ¢} for My, and therefore when (3.1) holds we shall say that
My is of strong type (¢, ¢} with respect to (u, w).

It follows from Theorem 2.1 that a necessary condition for M to be of
strong type is the A, (T, w)-condition for (u, w), but, in general, it does not
suffice, as example (3.1) in [14] reveals, in the case ¢(s) = s

In the L,case, 1 <p < oo, the strong type (p, p) with respect to (u, w)
for My is characterized in Theorem 3.5 of [14] by means of the 8T, p)-
condition. In our case, we can extend this condition to a condition which is
necessary to obtain (3.1). Namely, given two nonnegative integers r and s we
consider the truncated maximal operator M,, defined by

M, f= wax Rlfl (fem)

OSmEr0%nts

With this notation we give the following definition:
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Dermvirion 3.2 Let u and w be two weights on X and ¢ an N-function.
Let Y and E be the sets defined by (1.10) and (1.11) respectively. We shall say
that the pair (u, w) satisfies the 84(T, )-condition if u(E)= 0 and there exists
a positive constant C such that for every positive integer k, every positive
real ¢ and p-ae. x in ¥

k-1 k—1
(3.3) 2 W Migmie 1 (/W) (T X)) eu(T' ) < C Y. o {(1/ew) (T %)
i=0 =0
When (w, w) satisfies S,(7, p) we shall say that w satisfies S4(7T, p).
If ¢(s) =p~'s?, p>1, the S,(T, p-condition reduces to saying that for
every positive integer k and p-ae. x in Y
k=1 _ k-1 ‘
(3.4) z (Mi,k—i—l W_WP(Ti x))"u(T’ x) <C Z w—q!p('I“I x),

i=0 i=0

where g is the conjugate of p, which gives the S,(g, T, p)-condition for g = 1,
given in [147. We shall simply say that (u, w) satisfies S (T, p).

The Sy(T, uy-condition implies the A,4(T, w)-condition, since the left-hand
side of inequality (3.3) is greater than or equal to

k-1 k-1 k-1 _
B Y o(l/ew(Tix)p(k™! 3 o(1/ew)(T" X)) ZO eu(T" x),
i=0 i=0 i=

where § is such that ¢(s) = fse(s), s = 0.
The S4(T, u)-condition is a necessary condition for the strong type
(¢, ) of the maximal ergodic operator, as the following result shows:

ProposiTion 3.5. Let u and w be weights on X and assume that (3.1)
holds. Then the pair (u, w) satisfies the 5,(T. w)-condition.

Proof Since (3.1) implies the A4(T, y)-condition for (u, _w), we have
u(E) = 0. It follows from (3.1) that in order to obtain (3.3) it is enough to
prove that there exists a constant C, depending only on ¢ and the consfcant
of condition (3.1}, such that for every positive integer k and for p-ae xin Y

k-1 ) k—1 .
{(3.6) Y O(Mipies 0 (WH{T' ) u(T'x) < C 3 o(/wh(T" ).
i=Q i=0

Fix k; let {B;} be the sequence given by Lemma 2.13 for the .set Y. For
B, fixed, let A be a measurable subset of B; and R the rectangle with base A4
of length I{j) < k. Then we have

k

!

S 5(Mopoi-1.0 (e /) (T ) (T 9 du(x)

=0

3 - Studin Mathematica 94.2
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k-1
< I )y ¢(MTQ(X\_"/w)(Tix))u(T"x)d#(x)

Ai=Q
< 2kI() ! £¢(M1~Q(xm/W))udu < 2UI()Cfo(l/w)du
3 0
k—1

< [4C Y o(I/wW) (T x)du(x)
4 i=o

and thus we obtain (3.6) for y-a.e. x in B; with a constant independent of B,
and k, which proves (3.6) for u-a.e. x in Y.

It follows from Proposition 3.5 that every pair (u, w) of the A (T, p)-
class satisfies the S4(T, w-condition, since Theorem 2.7 in [14] shows that if
(u, w) satisfies A, (T, u) the maximal operator My is of weak type (1, 1) with
respect to (u, w) and, then, it follows from the interpolation theorem 1.7 that
My is of strong type (¢, ¢) with respect to (u, w).

It is an open problem whether or not the S, (T, p)-condition implies, in
general, the strong type (¢, ¢} for My. (In the case ¢ (s) =", p> 1, this is
true.} We shall see that this is so when u = w; more exactly:

TheoreM 3.7. Let w be a weight on X and let p=gq, be the lower
exponent of ¢. Then the following conditions are equivalent:

(a) There exists C such that for every feI
[o (M f)wdp < C Sy wdp.
X X

(b) There exists C such that for every feIR and every 1 >0

C
miﬁb(m)“’d%

(c) There exists C such that for every feiit
sup (@ (R, fwdp < C [¢(fl)wdg.
. X

mnz0yx

wixeX: Mp f(x) > A} <

(d) There exists C such that for every f e and every A >0

o
sup w{x€X: Ry, f(¥)| >} < ——
e 3 > A<

(e) w satisfies A (T, w).
(f) w satisfies A,(T, p).
(g) w satisfies S,(T, ).
(b) w satisfies S,(T, p).

@ {f1)wdpe.
X

Proof. Conditions. (b)He) are equivalent as a consequence of Theorem
2.1. We know that (a) implies (b), (g) implies (¢) and Proposition 3.5 shows
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that (g) follows from (a). On the other hand, (f) and (h) are equivalent as a
consequence of Theorem 4.1 in [14]. Therefore, it will suffice to prove
(e) =(f) and (f) = (a).

Proof of ({)=(a). The proof of this implication follows easily from
interpolation theorem 1.7 and the following results:

LemMa 3.8. Ler 1 <p < w. If w satisfies A, (T, p) then there exists v, with
1 <r < p, such that w satisfies AT, pu}.

LEMMA 3.9. Let 1 <r < oo. If w satisfies A (T, 1) then My is bounded in
L, (wdy).

The proofs of Lemmas 3.8 and 3.9 can be found in [3] where T is
ergodic and (X, .#, 4} is a nonatomic probability space. The proofs are valid
in our setting because these properties are not unsed. '

Proof of () =>(f). For xin Y let w,: Z — R be the mapping defined by
we(k) = w(T*x). The A,(T, w-condition for w implies that there exists a
constant C such that for g-ae. xeY, for every ¢ > 0 and for every pair of
positive integers n and k

n—1 n—1

(n Y ew k+D)ent Y o(l/ew, (k+i))) < C.
i=0 i=0 :
Let w¥: R >R be given by w¥(y) = w,([y]). Then for p-ae. xe¥ we
find that w¥ satisfies 4, with a constant independent of x, i.e. there exists C
such that for p-ae. x€Y, every interval I in R and every & >0

(-t ‘j:aw,’t e }[Q(lfsw_f) dy)< C.

In [11], Kerman and Torchinsky prove that w* is in the A,-class if and
only*if w* is in the A,-class, where p = g,. It follows from the proof given in
[11] that the constant in the A,-condition depends enly on the constant in
the A,-condition and on the N-function ¢. Consequently, we see that every
w¥ satisfies 4, with a constant independent of x. Therefore, for y-ae xe€¥
and for every positive integer k we get, taking I = [0, k],

k—1 k-1

(k_l Z W(T"x))(k” Z W(Tix)—q/p)p/q

i=0 i=0

= {1 fwxdy) (1™ jj(WQ”""’ dyplt < C
I

and thus we have the A,(T, y-condition for w.
We have finished the proof of the theorem.

Note. A direct proof of (g} = (a) can be given using a similar method to
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the one given i the proof of (d)=-(a) of Theorem 2.1 and taking into
account the result in [11] for the Hardy-Littlewood maximal operator,

4. Convergence of the averages. First, for the Cesdro averages we have
the following:

ProrosiTioN 4.1. Ler w be a weight on X satisfying My o(1/w)(x) < o for
u-a.e. x€X. Then the averages

(2n+1)"! Z foT

i=-n

n—1
nt Y foT,
i=0

converge u-almost everywhere for every f in L, (wdp).

Proof. It follows from Proposition 2.18 and the Banach principle that it
is enough to prove the almost everywhere convergence for all f in a dense
subset of V'=[L,(wdg), || li)waad. The set L, () N Ly(wdy) is dense in V
since the simple functions with respect to the measure wdy belong to L, (u)
and ¢ satisfies A4,. On the other hand, it is well known that for the functions
in L; () we have the a.e. convergence. Thus, we get the ae. convergence for
every f eL,(wdy).

Under the hypothesis of Proposition 4.1 we cannot assert that for each I
in Ly(wdy) the pointwise limit functions of the averages Ry,-,fand R, ,f

belong to L, (wdpy); however, this can be ensured if w satisfies Ay(T, p); in
fact, if w sarisfies Ay(T, 1) the mean ergodic theorem holds, ie. Jor every
JeLy(wdy) the sequence R, f converges in the norm topology, since for a
positive linear operator S on a reflexive Banach lattice B, the Cesaro averdges
(T+S+ ... +5""YYn) f converge in novm for every f B if. and only if. S is a
Cesdro-mean-bounded operator, ie. the norms of the Cesdro averages are uni-
formly bounded in B (see Theorem 4.2 in [5]) and our operator is Cesaro-
mean-bounded as follows from Theorem 3.7. It is clear that the same
happens for the averages R,1,0f and consequently for R,, f.

On the other hand, let us observe that if w satisfies Ap(T, ) then w
satisfies condition (2.19) when p(X) < co.

In the following result we consider certain weighted averages which
include the Cesiro averages.

DeFintrion 4.2, A sequence of complex numbers {b,} 1s called a Besico-

vitch sequence if for every & > 0 there exists a trigonometric polynomial o,
such that

n--1

limsupn™t Y |b,—a, (k)] <e.

n-re k=0

TreorEM 4.3 (Individual and mean weighted ergodic theorem). If w
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satisfies the A, (T, p)-condition, then Jor every f eLy(wdy) and every bounded .
Besicovitch sequence ‘{b,} there exists f €Ly (wdp) such that

n—1
ima=' Y b f(TFx)=f(x) pae,
k=0 ‘

n-+oo

n=1

fim ||n™! Z bkfoTk_f_”(d)),wdp =0.

n—w k=0

Moreover, the same happens for the averages (2n+1)"1 Yrnby fOTE

Proof. Fix a nonnegative integer m and let S be the linear operator
defined by §f =™ foT.

Since w satisfies A, (7, u} it follows from Theorem 3.7 that S is a Ceséro-
mean-bounded operator. On the other hand, if 4 e.# with w(4) <o the
sequence ¢ (8" /nl) is dominated by ¢{2M;y,) which belongs to L, (wdy);
therefore, Lebesgue’s dominated convergence theorem shows  that
lim, .o [x @ (18" z/n)wdy =0 and - consequently 1im, e |IS" x s/l 4y wan = O
since ¢.satisﬁes 4,. Since ¥=[Ly(wdy), || 1g) waed 15 reflexive and {y,: w(A)
< oo} is a fundamental set in V it follows from Corollary VIIL5.4 in [4] that
for every f eL,(wdy) the Cesiro averages

n—1
A f=n"1Y ™ foTk
_ k=0
converge in V. Therefore, Corollary VIIL5.2 in [4] (see also 2.1 in [137])
Shows that L, (wdy) is the closure of the direct sum of the set of fixed points
of § and the space (I—8)L,(wdpy).

On the other hand, it is easy to see that if f =h+g—Sg, with Sh=nh
and g a bounded function, then {4, f} converges p-a.e. Therefore, it follows
from Theorem 3.7 and the Banach principle that for every f eL,(wdpy) the
averages A, [ converge p-ae. and consequently for every trigonometric
polynomial « and f €L, (wdy) the limit

n—1
limnr™' Y afk) f(T*x)
n—rae k=0

exists and is finite p-a.e, _
Given a Besicovitch sequence {b,} and f €L, (wdp) N Lo (walps), we find
that for every & > 0 there exists a trigonometric polynomial «, such that

n— n—1
limsup|n~* Zl b f(T*0)—n"1 Y o (k) f(TFx)| <l flle s-ae
k=0 k=0

n—+too

and therefore the sequence

n=1
Lf=n"t% b foT
k=0
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converges p-ae. Thus, if {b,} is bounded it follows again from Theorem 3.7
that for every f eL,(wdy) the weighted averages T, f converge u-ae. to a
function from 'L, (wdy). We conclude, taking into account Lebesgue’s domi-
nated theorem, that the limit function of 7, [ in the pointwise sense is also
the limit in norm.

Finally, it is clear that once we have the convergence of T, f, we get the
same for the averages (2n+1)"'37__, b foT"

5. Weighted integral inequalities for other sublinear operators. The ergodic
Hilbert transform. In [18] Rubio de Francia proves an extrapolation theo-
rem in the theory of 4, -weights, for sublinear operators defined on a class of
Lebesgue-measurable functions in R". Another proof of this theorem is given
by Garcla-Cuerva in [7]. More exactly, the result is the following:

(5.1) Let S be a sublinear operator defined on a class of measurable
functions in R". Let 1 < p* < o0 and 1 < p < . Suppose that S is bounded in
Ly« (w) {respectively of weak type (p*, p*) with respect to w) for every weight
W €Ay, with a norm that depends only upon the A-constant for w. Then, for
every weA,, § is bounded in L,(w) (respectively S is of weak type (p, p} with
respect to w), with g norm that depends only upon the A,-constant for w. (As a
corollary of this result it can be deduced that the boundedness of S in L,(w)
can be obtained from the weak type (p*, p*).)

We observe that the proof given in [7] (see also Theorem IV.5.19 in [87)
can be easily adapted to weights weA,(T, ) and operators S defined on
M(X, #, 1) where (X, .#, u) is a o-finite measure space and, thus, we
obtain a similar result to (5.1) in this case. Moreover, such a result can be
strengthened to N-functions in the following way:

THEOREM 5.2 (Extrapolatio_n theorem). Let (X, A, W be a o-finite meas-
ure space, T an automorphism of (X, #, p) and S a sublinear operator defined

on a subclass of WM(X, M, y). Suppose that for some p*, with 1 < p*<e, §
satisfies

wixeX: ISF()f >} < CA [/ wdp  (feM, 2> 0)
X

Jor every weight weA (T, y), where C depends only on the Ay (T, p)-constant
Jor w. Then for every N-function ¢ (which satisfies, together with its comple-
mentary N-function, the A,-condition) we have

(5.3) [@USDwdp< C oG Dhwdn  (f €M
X X

Jor every wed, (T, u) with the constant C depending only on the Ay (T, w-
constant for w. ‘ .

Proof, Let weA,p(?i ). It follows from Theorem 3.7 that w &4, (T, w)
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where p =g, is the lower exponent of ¢ and therefore Lemma 3.8 implies
that weA4,(T, u} for some r such that 1 <r < p (r and the A,(7T, p)-constant
for w depend only on the A4(T, y)-constant for w). Also we 4, (T, p) for s
such that p, <s < oo, where py is the upper exponent of ¢.

Now, the result similar to (5.1} shows that S is simultaneously of weak
type (r, #) and (s, s) with respect to wdu with constants which depend only
on the A,(T, p)-constant for w, and therefore applying the interpolation
theorem 1.7 we obtain (5.3) with a constant depending only upon the
A4{T, p)-constant for w, since the constant C in Theorem 1.7 depends only
on ¢ and on the constants for the weak types (r, r) and (s, s).

Theorem 5.2 permits us to extend trivially to Orlicz spaces some of the
results obtained in the theory of weights for the L,-case, with 1 € p < 0.
Thus, for example, let S, and S, be the operators defined by

(54 S,7=0 % (K+D~ T,

k= ~m

(53) S. /= [§ IRy+1.0f —Reo I +|Rops1 S~ Rop fIT,
k=0

where 1 <7 < w0 and T is an automorphism of (X, ., u). For r=2, 8, f'is
the known ergodic square function associated to f, which appears in consider-
ing certain martingale inequalities.

In [15] it is proved that S, is of weak type (1, 1) with respect to the
measure wdy if and only if weA (T p) (the same r_esult holds for §,).
Moreover, if 1 <p <co and wed,(T, 4) then S, and S, are of strong type
(p, p) with respect to wdu. {In every case, the constant of type (P, p) depends
only on the A,(T; p-constant for w) Consequently, the following corollary
follows trivially from the above and from Theorem 5.2

COROLLARY 5.6. Let 1 <r < oo and let S, and S, be the operators defined
by (5.4) and (5.5). If w satisfies A4(T, p) then there exists C (depending only on
the A, (T. w-constant for w) such that for every feMm

[0S, NHwdp < €[Sl f)wdp, [¢(S. NHwdp<C iqs(m) wdj.
X X X :

Now, our aim is to study the existence, in the pointwise and the norm
sense, of the ergodic Hilbert transform

Hpf() = tim 3 7(T0)

of every feL,(wdy), where w is a weight of the A(,,(T,ﬂy)—c_]ass (¢ F{enotes
omission of the Oth term). For this, we nced to study weighted integral

. inequalities for the ergodic. maximal Hilbert transform, ie. for the operator S¥
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defined by
$f=sup| ¥ f(T%/

nzl j=-—p

or else for the operator H¥ given by

(5.7) Hif = sup | & f(T .
G€m=<n m<|if<n
More exactly, S% f < H¥ f < 28} f. _
In [1] and [2], Atencia and Martin-Reyes prove that, for a noratomic
prebability space (X, #, p), an ergodic automorphism T and a positive
weight w, the following resuits hold: '

(58) The operator H} is of weak type (1, 1) with respect to wdy if and
only if wed (T, u}.

(59) Let 1 <p <co; then H% is bounded on L,(wdy) if and only if
weAd, (T, y.

We shall prove that the hypothesis that (X, .#, i) is a nonatomic
probability space can be suppressed and that the ergodicity of T, and likewise
the positivity of w, are not needed to obtain the boundedness of H%.

First, in our setting, we get the following result:

Proposrrion 5.10. If w safisfies the Ay (T, y-condition, then there exists C
such that

(5.11) £¢(H5"~f) wdpt < ngb(lfl)wdu (f D,

where H¥ is defined in (5.7).

Proof Let 1 <p <oo. It follows from the extrapolation theorem 5.2
that in order to obtain Proposition 5.10 it is enough to prove that H¥ is of
weak type (p, p) with respect to wdp for every wed AT, 1) with a constant
depending only on the A,(T, w-constant for w. We shal] prove directly the

strong type (p,p).
For every L > 1 we consider the truncated operator H%, defined by

Hf f()= max | ¥ f(T'x/
0sm<nSL m<|i| <n
and for a mapping F defined in Z and keZ let
h*Fiky= sup | ¥ Fk+iyi,

Osm=<n m<|”<n

W)= max | 3 Flk+i/i.

Osm<n<lL m<|i| <n

F&_)r a given geM and xeX Jet g, be the mapping defined by g.(k)
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=¢g(T*x). Then, since T preserves the measure i, we get

(512 JUHEL S wdn = QL1713 (HE L fP (T x)w (T x) dpa(x)

X k€L

=Q2L+17 Y (

X|k|<L

<@L+ [Z (" (e 2= 21, 2 ()P w (k) dp(x).

£ (Bf (k) du(x)

On the other hand, there exists a constant C, depending only on the
Ap (T, p)-constant for w, such that for y-ae. xe Y, where Y is defined in (1.10),
cmd for every pair of integers m, n with m < n

S wall) (3 w
k=m k=

)T e Pl L Clnd-m+ 1P,

and therefore Theorem 10 in [10] shows that for y-ae. x in ¥ and every
mapping F

{5.13) Y FlkFw.(k) < C Y [FR)[Pw,(k),
keZ ke Z
where C depends only on the 4, (T, y)-constant for w. Moreover, if w{T* x)

= 0 for some integer k then w( T‘J x) = 0 for every integer j and consequently
(5.13) holds also for x in ¥ - ¥
Now, it follows from (5.12) and (5.13) that

[HE fPwdp < CQRIAHD)™[ Y |
X

X|k|<2L

JAT* )| w(T* %) dp(x)

AL+l
—ci d
02L+1 {11 wdy

and thus we get [y (HF /¥ wdy < 2C {x|fFwdy, which proves the proposition.

CororLary 5.14, If' w satisfies the A,(T, p)-condition then for every
f eLy(wdy) there exists a function Hy f in Ly(wdy) such that

im Y’ f(T"x)/i=H,f(x) w-ae

et = - p
lim | S 70T~ Hy fllgyan = 0.
i=—p

Moreover, there exists C such that

(5.15) 6 (H [ wd < C 1D wil (fem.

b
Proof. Since for every feL,(wdy} the Cesdro averages Rg,., f con-
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verge in norm we find that L,(wdy) is the closure of the set D = [[: f=h
+g—goT, with hoT=h and g bounded}. Let

n
S,/ =3 foT}.
i=—n
It is obvious that for every f €D the sequence {5, f} converges u-ae.,
since

Silg—goT) =g+goT-n"t(goT" 1+g0T™)
n—1 1
B IZI i(i+1)
Then the p-almost everywhere convergence of {S, 1}, for every f L, (wdy),
follows from Proposition 5.10.
Now, let Hpf(x)=1lim,.,S,f(x); it follows from (5.11) that
Hyfel,(wdy) and the ¢(S,f—Hy fl) are dominated by a function in

Ly (wdy). Thus, we get lim, o 1S, /' — Hy 1l wau = O-
Finally, the inequality (5.15) follows trivially from (5.11).

(JOTL+1+gDT l)

Now, if T is an ergodic automorphism, then the A, (T, w)-condition is
also necessary for the strong type of H¥; more exactly:

ProposiTion 316, Let T be an ergodic automorphism and w a positive
weight. Then the following conditions are equivalent:

(a) There exists C such that for every feM

[ (HY fwdp < C [ @ fNwdu.
X

X

(b} There exists C such that for every f eI and every 1 >0

wikeX: £ 5%5 [#07Dwd.

(c) w satisfies Ay (T, w).

Proof. It follows from Proposition 5.10 that it will suffice to prove
(b) ={c}.

First, notice that if (X, .#, u) is 2 finite measure space which has atoms,
then, since T is ergodic, every positive function in 9 satisfies Ap (T, ). In
fact, let 4 < X be an atom for (X, .4, ), i.e. p{A) > 0 and for every Eec.#
with Ec A cither p(E)=0 or u(E)=pu(4). The sets of the family
& = {T*A: keZ)} are also atoms and their union is T-invariant. Since T is
ergodic and p(X) <o, X can be decomposed into a finite number of sets
from #. On the other hand, every measurable function is essentially constant
over every atom, and therefore, since w is positive, we deduce that there exist
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constants €; and C, such that 0 < C, <w(x) < C, p-ac. and consequently
weA, (T, ), which shows that weAd, (T, 1.

Therefore, assume that the o-finite measure space is such that either

. #{X) =00 or X has no atoms. For this case we use the following:

LemMa 5.17. Let (X, .#, p) be either a a-finite nonatomic measure space
or a o-finite space with p(X)=oco. Let T be an ergodic automorphism of
(X, .#, p) and Y a measurable subset of X. Then for every positive integer k

the set Y can be written as a countable union of bases of ergodic rectangles of
length k.

A proof of Lemma 5.17 can be found in [14]. (This lemma generalizes
Lemma (2.2) in [3])

Taking into account Lemma 5,17, the proof of (b)={c), in this case, is
an adaptation of the proof given in [1], in the L,case, and of the proof of
(b)=(d) in Theorem 2.1. For that reason, we shall only peint up some teps.

It suffices to prove that for every positive integer k and p-a.e. x in X we

have
k—1 k-1

(5.18) k1Y w(T'x)ok™ " ¥ o(w(T'0)<C

=0 i=0

with € depending only on the constant of condition (b).
For k fixed, there exists a countable family {Bj: jeZ} of sets of finite
measure such that

a
X= B, BnB=0Q ifi#]

and every B; is the base of an ergodic rectangle of length 4k.
For B; fixed and each integer r, we define

k—1

D;, = {xeB; 2 < (2! ZQ(I/W(T'X) i,

and for A =D;, let R be the ergodic rectangle with base A of length k.
If f is a nonnegative function with support in R we have

k-1
LA 2 (207 Y f(T'x) (xed, k <n<2k~1).
i=0 .

Then for [ = g(w™ ! xy) we have
2k~ 1

0= | T'A<{yeX: Hfo(l/w)(y) > 27}
n=k

and therefore it follows from (b) that

(5.19) S(@)w(0) < C [o(1/w)du

R
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On the other hand, if fis a nonnegative function with support in Q we
get
2k—~1

517" > )71 T f(T'x)  (xed, 0<n<k—1).
i=k

Then it follows from (b) and (5.19) that
(2w (R < C fo(l/w)du.
n

The last inequality was obtained in the proof of (b) = (c) of Theorem 2.1
and the argument used there can be used here to obtain (5.18). Thus, the
proof of Proposition 5.16 is complete.

References

[1] E. Atencia and F. J. Martin-Reyes, The maximal ergodic Hilbert transform with
weights, Pacific J. Math. 108 (1983), 257-263.

[2] —., —, Weak type inegualities for the maximal ergodic function and the maximal ergodic
Hilbert transform in weighted spaces, Studia Math. 78 (1984), 231-244,

[3] E. Atencia and A.de la Torre, A dominated ergodic estimate for L,-spaces with weights,
ibid. 74 (1982), 35-47. i

{4] N. Dunford and I. T, Schwartz, Linear Operators I, Wiley-Interscience, New York
1938,

[5] R.Emilion, Mean-bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1983),
1-14.

(6] D. Gallarde, Weighted weak type integral inequalities for the Hardy-Littlewood maximal
operator, Israel J. Math, 66 (1) (1989), to appear,

[7] J. Garcia-Cuerva, An extrapolation theorem in the theory of A, weights, Proc. Amer.
Math. Soc. 87 (1983), 422-426.

[81 J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and

Related Topics, North-Holland, 1983,

[9] ). E. Gilbert, Nikishin-Stein theory and factorization with applications, in: Proc. Sympos.
Pures Math. 35 (1979), 233-267. :

(10} R, Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for the
confugate function and Hilbert transform, Trans. Amer, Math. Soc. 176 (1973), 227--251.

[11] R. A. Kerman and A. Torchinsky, Integral inequalities with weights for the Hardy
maximal function, Studia Math, 71 (1981), 277-284.

[12] M. A, Krasnosel'skii and Ya. B. Rutitskii, Convex Functions and Orlicz Spaces,
Noordhofl, Groningen 1961.

[13] U. Krengel, Ergodic Theorems, de Gruyter Stud. Math, 6, 1985,

(143 F. L Martin-Reyes, Inequalities for the ergodic maximal function and convergence of the
averages in weighted IP-spaces, Trans. Amer, Math, Soc. 296 (1986), 61-82.

[15] -, Weights for ergodic square functions, Ann. Inst, H, Poincaré 22 (1986), 333-345,

[16] J. Musielak, Orlicz Spaces and Modular Spaces, Springer, 1983. :

icm

Weighted integral inequalities 147

[17] ). B. Qlsen, The individval weighted ergodic theorem for bounded Besicovitch sequences,
Canad. Math, Bull. 25 (1982), 468471,

[183 J. L. Rubio de Francia, Factorization theory and Ap-weights, Amer. J. Math. 106 (1984),
533-547.

DEPARTAMENTD DE MATEMATICAS
FACULTAD DE CIENCIAS
UNIVERSIDAD DE MALAGA

Millaga, Spain

Receired July 16, 1987 {2341)



