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A geometric condition equivalent to commutativity
in Banach algebras

by
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Abstract. Under certain geometric conditions, it is shown that the generalized spectrum
and radical defined by T. Ransford may be put into the context of Banach algebra theory. As a
consequence, it is proven that commutativity of A/R:Ld(A) is equivalent to the convexity of the
set of invertible elements of A with respect to the family of functions —Infy|, where ¢ is a
continuous linear functional on 4.

Introduction. Let E be a complex normed space, and € an open subset
of E such that 0¢€ and 1Q = @ for all A&C* (nonzero complex numbers).
Let 1 be any fixed element of Q. Then T. J. Ransford has defined [5] the
fellowing notions of Q-spectrum and Q-radical:

spP(x) = {A: x—A1¢Q}, Rad?(E) = {x: x+Q = Q},

where Q plays the part that the set of invertible elements would play if E
were an algebra.

By imposing a geometric condition (pseudoconvexity) on €, Ransford
goes surprisingly far into developing the usual theory of spectra for his
generalized spectrum. Thus, it would seem, multiplication itself becomes
redundant, provided one has enough knowledge of the geometry of Q.

One is tempted to try to define a product on E compatible with the
above definitions of 2-spectrum and Q-radical. Clearly, however, one cannot
expect to obtain quite as much, for if E is any subspace of a unital algebra
A, containing the unit, and Q is the intersection of E and the set of invertible
clements of A, then Q is as above, but E need not be closed under
multiplication. Instead, one should perhaps try to obtain the situation

h: E—A

where A is a complex unital algebra, (1) = 1, £ is the preimage of the set of
invertible elements of A, and the Q-spectra and Q-radical are similarly
related to the classical notions of spectra and radical in A.
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In Theorem 1 we show that by imposing a “convexity” condition on £2,
this can be done, and with a commutative 4; the important point being the
relationship between the geometry of Q and commutativity.

As it turns out, if A is any complex unital Banach algebra, and A™!
its set of invertible elements, then the commutativity of A/Rad(4) is equwa-
lent to the convexity of 4! with respect to the family of functions

F = {—~Inly: y is a continuous linear functional on A}.

This is Theorem 2 of our paper. Note that # depends only on the Banach
space structure of 4. This condition for commutativity of 4/Rad(4) is similar
to that given by Fong and Soltysiak [1], in that they both have to do with
the existence of sufficiently many characters.

1. Throughout, E will denote a complex normed space, and E’ its dual,
with the weak* topology.
 Take € as a nonempty open subset of E, with the following restriction:
Q is contained in the complement of some complex hyperplane of E. We will
think of  as a set of invertible elements of some Banach algebra, and this
condition is intended to prevent 0 from becoming “invertible”. Denote by 1
any fixed arbitrary element of @, and define the following subset of E', which
will obviously play the part of spectrum [2, 3, 6]:

Mg={yeE: y(1) =1 and 7(®) = C*}.

" For example, if ||1)] = 1 and Q is the open unit ball centered at 1, then My, is
the state space of E. It is not difficult to verify that M, is a compact subset
of E'. We will not prove this here, but let us mention the following related
inequality.

Prorosmmion. For all y in Mg, [iyll < d(1, 2)7*

Proof. Let x be an element of norm one, and set d = d(1, 2°. Then
the ball centered at 1 with radius 4 is contained in @2, so for all scalars A

with [4] <d, 1+4ix is in Q. Hence, {1+ 4ix) ¢ 0 for every y in M,. Then

Ap(x) # —1.If we had | (x){ >d™?, then we would have |—(y(x))™*| <d, so
-1 % 1. Therefore, |y(x)| <d ", so [iy|| <d~* for every y in M, =

Now if the elements of 2 are to be, in some sense, invertible, there will
appear others that will necessarily be invertible as well. For example, if x is
invertible, then so must be Ax, for nonzero 4. We must replace 2 with
something large enough to accomodate these other elements, Define

Q=N{Kery): yeMg).

Note that the condition we have imposed on £ is equivalent to any of the
following: 0¢, @ # E, M, # @. An example with M, = () can be obtained
by putting E=C""", Q=GL({n, €, n> 1. '
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Before we go on, we shall prove a few simple statements about &.
ProrosiTioN. Let Q be as above. Then:

iy QcG, and Q, =2, implies §, = Q,.

(i) A3 =@, for all 2eC*.

(iii) For each y¢@Q, there is a yeM, with y(3) = 0.

(iv) @ does not depend on the element chosen as unit.

(v) g is open.

(vi) @=4.

Proof. The fist four are easy.

(v) Let y be in thé closure of Q° There is a sequence (y,) < @°
converging to y. For each n, there is by (i) a y,eM, such that y,(y,) = 0.
Let (y,) be a subsequence of (y,) converging to an element yeM,,. Then

YO = [y W) =2 N < 190, B — Vg D) A 17, G) =7 ()]
= [y Py = DV, )= O
< d(l, Q)7 Y= Yl +17a, ) =y O

which tends to 0 as k grows. So, ¥(y) =0, with yeM,, and therefore y e
(vi) Just check that Mgz= M, =

We wish to describe & in terms of convexity with respect to a certain
family of functions fi E —(—oc, co].
Given any subset O of E, define

0% = {xeE: —In|yx)| < sup(—In|y), for all ye E'}.
o

Note that both sides of the inequality may well be infinite. Now if
Q =, and yeM,, supy(~Infy) may be infinite, although in this case the
supremum is cettainly never attained. We shall say Q is well-contained in € if
this supremum is finite for each y e M. Note that this does not depend on
which element of € has been designated as 1. Any weakly compact subset of
¢ is well-contained, but £2 is not well-contained in itself.

Now define

d=Uio* g=8)
where the union is taken over all well-contained subsets of Q. We then
obtain the following proposition.

~

above, with AQ < @ for all AeC*. Then @ = (.

Proof. «. Let Q = be well-contained. It WxIl be enough to see
0* = (. Let x¢(, and take y €M, such that y(x) = 0. Now supg(—In|y|)
<00 = ~Inly(x)|, so x¢Q%.

ProrosiTion. Let E be a normed space, and £ an open subset of E as
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=. We shall see Q¢ <= §¢; ie. if x €E is such that for each well-contained
Q0 <=, x¢Q”, then x¢Q.
We define, for each neN,

U,=1{ye@: [y(») > 1/n, for all yeMg},
Qn= {ye@: [y = In, for all yeM,).

Note that all U, are open in the norm topology of E. Also, the Q,
are well-contained in Q. We have .. cU,«Q,<cU,., @...cQ, and
Un Uy =@, so

"'DMUHDMQHDMU"+1:"':Mﬂﬂ and OMU,,=M.Q"

n

Also, all the My _are compact, just as M, is. Since, for each neN, x¢Q%,
there are y, such that

—infp, () > sup(=Injyl), ie, {y.(x)} <infiy,.
Qy y

Note that 1 belongs to Q,, so 7,(1) % 0. Multiplying by convenient
scalars, we may suppose 7,(1) = 1 for all n. Also, since y, 18 never null on Q,,
it is never null on U,, and we have v, €My . There is, therefore, ‘a
subsequence (3, ) converging to, say, y. We shall prove that yeM,: if this
were not the case, there would exist disjoint open neighborhoods U, V of
Mg, and y respectively. (My ) is a decreasing sequence of compact sets whose
intersection M, is contained in U, so My, < U for sufficiently large n. This
implies My AV = O, which contradicts the convergence of Y, t0 y. We then
have a yeM,, for which ’

Iy (x)] < inf {|y(w)]: weQ} =0.
Hence x is an element of Kery. But yeM,, so x¢f§. »
Dermarion. Let & be the family of functions
F ={—Inph: yeE?}

and  an open subset of E such that 1Q = @ for all 1eC*. We say O is
#-convex if one, and therefore all, of the following hold:

(a) Q,_# =, for all well-contained Q < Q.
(b) & =0
©) Q=20.

We have the following theorem.

Treorem 1. Let E be a normed space, and Q an open subset contained in
the complement of some hyperplane. Then there are a commutative unital
Banach_algebm A and a continuous linear function h: E — A such thar h(1)
=1and Q=h""{A"Y. Also:
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() @ is the smallest open set containing Q that has this property.
(i) Rad?(E) = () {Kery: yeM,} = Kerh.
(i) sp?(x) = sp4 (h(x)).

Proof Take 4 = C(My), and h: E = A the Gelfand transform, k(x)(y)
= y(x). Then h is a continuous linear map, its norm being < d(l, Q9"
Also, h(l) = 1, and

AT = (X€E: y(x) #0 for all yeMy) = () {(Ker y)t: yeMgl = 0.

(i) Suppose B is a commutative unital Banach algebra, and g: E > B a
continuous linear function such that g(1) =1 and Q = g~'(B™1). Let us see
that we also have @ =g~ (B~ 1),

Let  be a character of B; then yg e Mg, for y(g(1)) = ¥ (1) =1, and
Y {y() =¥ (B~') = C* Then for each x e, W (g (x)) # 0. Since this is so for
any character, g(x)eB™ .

(it) The second equality is trivial. Let us see the first.

<. Let x €eRad”(E), and suppose 7 is an element of M, with 7(x) # 0.
Then —x/y(x) eRad?(E), and (—x/y(x))+1eQ, but

Y((=xr )+ 1) = (~ 7y () +1 = 0;

absurd, for yeMg= Mgy, so y(@) = C* Then y(x) = 0.
. Let x¢Rad?(E). Set ¢ such that x+a¢@. Now let yeM,, such
that y(x+a) = 0. We have y(x) = —y(a) # 0, so x¢Kery,

(iii) sp?(x) = [1eC: x—21¢3) = AeC: x—ilgh (4~ Y)
={leC: h(x)—Al¢A™") =spy(h(x). =
Note that if @ is %-convex, then the problem we posed in the

introduction is solved with a commutative Banach algebra.
We end with the following characterization of commutativity.

Theorem 2. Let A be a complex Banach algebra with unit, and denote by
I its set of invertible elements. Then the following are equivalent:

(i) I is F-convex.
(i1) A/Rad(A) is commutative.

Proof. ()=(ii). By [2, 3, 6], the clements of M, are multiplicative
linear functionals of A, so h: A = C(M)) is an algebra morphism. But C(M )
is commuiative, so

ab—ba eKer h = RadT(A) = Rad"(4) = Rad (4),

the last equality by [4].

(ii) = (i). Let m: 4 — A/Rad{A) be the projection map. We must see that
F eI, Take x¢I'. Then 0esp, (x) = SPamaatay (T{X)), 80 m(x) is singular. By
the commutativity of A/Rad(4), there is a maximal ideal J, a hyperplane of
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A/Rad (4}, to which n(x) belongs. Let H = =Y (J). H is a hyperplane of A
to which x belongs, and HnI'=Q, for if yeHnTI, n(y) would be an
invertible element of J; absurd. Take ysA’ such that y(1) =1 and Kery
= H. Then yeM, and y(x) =0, ie, x¢l.
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