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On the Forelli-Rudin construction
and weighted Bergman projections

by

EWA LIGOCKA (Warszawa)

Abstract. We apply the Forelli-Rudin construction to study the Sobolev spaces of
holomorphic functions on some smocth Hartogs domains and the regularity of weighted Bergman
projections on weakly regular pseudoconvex domains. We also study the kernels of weighted
Bergman projections on strictly pseudoconvex domaing,

1. Introduction. The main idea of the Forelli-Ruodin construction [9] is to
imbed the unit ball B, of C" into the unit ball B, .,, of C"*™ via i(z) = {z, 0) and
use the reproducing property of the Bergman kernel of B,.,, to obtain a new
reproducing kernel on B,, namely

(12"
(1 — (Z, t))n+m+ 1

¢(n, m)

In the case of the unit ball, this construction plus extension to an analytic
family of operators leads to the family of reproducing kernels
1 [g2F : cln, s
%{, Res > —1. Note that G—H—Z'L,#_rﬂ_—f
Bergman kernel with respect to the weight (1—|t*)". (See Rudin’s book [22] for
further details)) In the present paper we apply the same method to the large
class of Hartogs domains in order to study either the weighted Bergman
ketnels and projections or the Sobolev—Besov spaces of holomorphic functions
on some Hartogs domains. We have already used this approach in [14]. The

present work is thus a continuation of [14].

c(n, s) is the weighted

2. Bergman kernels of Hartogs domains, Let D be a bounded domain in C”
and ¢ a bounded poesitive continuous function on D, We define the Hartogs
domain DY in C"*" as D% = {(z, w)e C"*™; ze D, |wj < @(2)}. Each holomor-
phic function f on D} is the sum of a locally uniformly convergent series
flz, w)= Zﬁamo [.(2)w*, where the f, are holomorphic on D. Consider the space
L*Hol(D%) of square-integrable holomorphic functions on D}. The following

fact is basic for our study.

5 = Studia Mathematica 94.3
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PropPosiTION 0. (a) Let fe I*Hol(Dy). Then

w
Jzw) = 3 filzw,
la] =0
where for every u, f,e I*Hol(D, g,), the space of functions holomorphic on D,
Square-integrable with respect to the measure g,dV,,, and

gin= |

B(0,w(z))

g2 w2 8V, = ¢, @1 (2).

(B0, ¢(2)) is the ball in C™, dV,, and dV,,, are the Lebesgue volume elements in
C" and C™ respectively.) Moreover,

o2
1f(z, W)”Iz.lcpz;;) = Z ”j;:H%P(D,g“)'
la| =0
(b) Let K be the Bergman kernel function of Dy and let K, be the
reproducing kernel for IZ Hol(D, g,), the weighted Bergman kernel associated to
the weight g,. Then

o

(#)  Killz, w), (t, 9] = > WKz, 05,

el =0
z, teD; w,5eC7, (Wl < o(2), |5l < olb).

Propostiion 0 is of course well known and quite easy to prove. In order to
check it one needs only to consider the sequence of domains Q, = D, _,,.
where D, € Dy, €D, (iD= D, 510, o—z, >0 on D,. For each k we
have

If(z, w) Hizmk) = I ; [ 1z (Z)Wm“iz(ﬂk)
2| =0
since f,(z)w* L f{z)w® if o« # B, @, € D} and the series } f,(z)w* converges
uniformly on £,. Thus f,(zyw*e I*(DE) for every « and (a) is true. This implies
that the right side of () is a well-defined reproducing kernel for D and hence
must be equal to the Bergman kermel of Df.
If m=1 then (¥) has the loliowing form:

Killz,w), (1, )] = Y WK, (z, )§-QI+2), z, teD; w, seC,
i=0
where K,(z, t) is the weighted Bergman kernel on D associated to the weight

q’Z(H-l).
Proposition 0 yields the following

CoroLLARY 2.1, Let D be a bounded domain in C" and let o be a positive

continuous function on D, = \/q; The restriction of the Bergman kernel
function of Dy to the subspace {w = 0} is equal to the weighted Bergman kernel
. on D associated to the weight ¢™/2m.
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Note that D = {(z, w)}; |w|?—¢ < 0}. In the case of the unit ball D in C”
and ¢ =1-|z> we get exactly the Forelli-Rudin construction.

3. The factorization of weighted Bergman kernels on strictly pseudoconvex
domains. Let D be a bounded smooth strictly pseudoconvex domain and let
g be a defining function for D. (This means that pgeC®(C"),
D ={z;0(z) <0}, gradg #0 on dD.) We shall assume that ¢ is strictly

plurisubharmonic in some neighborhood of D. Put ¢(z) = / —e(z). For every
integer k > O we shall consider the spaces

4, = BHOID, o), B, = FHol(D, |gf*"*).

Let L,{z, t) denote the reproducing kernel for the space B,.
We now use Corollary 2.1 and a deep result of Boutet de Monvel and
Sjostrand to prove the following factorization theorem:

3.1. TueoreM. For every k,
Ly(z, 1} = hoy(z, 1)+ hy (2, 8)-hy iz, 1),
where the h;, are holomorphic in z and there exists a constant c(k) such that

c(k)

(LA QETIFHES @ i=0,1,2.

Proof Consider the domain D} for m = k+n--1. By Corollary 2.1 the
kernel L,(z, t} is equal to Kj[(z, w).(t, 9)]lw=0s=0. (Recali that K} is the
Bergman kernel function of Dj.) The domain D} is a2 smooth bounded strictly
pseudoconvex domain in C"*™ with defining [unction §(z, w)=
g{z)+|w|% zeC", we C™ The function § is strictly plurisubharmonic on some
neighborhood of Dj.

The Boutet de Monvel-Sjostrand theorem [5] implies that

K::E[(z! w), (¢, §)] = K:;'(“» v}

_ Flu, 0)+y(u, v)Gly, v)lny (1, v)
- l,’l(u, v)u+m+l

_ &y, v)
- [‘t’(ﬁ, v)k/2+n+ 1]2’

In the above formula the functions F, G,y are in C™(D7 x D7) and the
phase function i{u, v) has the following properties:

(@) Yl up = ~(1/)aw).

.. {b) 8,4 and 8, vanish to an infinite order along the diagonal in D} x DJ;.

© [, ) = c(lu—vf ~ g ~a ).

u=1(z, w), v=1_(,9).
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These properties of W yield that 3, (14*2*"T)eC> (D" x D% and
J (BTt e O (D x D). By Kohn's now classical estimates on the
J-problem (see [8]) there exist g, e C* (D7 x D) and g, € C* (D} x D}) such that

o - !
51=Wﬁ“91 and Ez“Wﬁ""gz

are holomorphic in u. We have

Ko = (ﬁ1+g1)(ﬁ2 +¢,)

@ 1
= EIHE“F(W“gl)gz‘*“(wmﬂH”’gz>g1+9192
= F152+E0‘
h, is holomorphic in u since K7, i, and K, are. We have

Pg,+4g,
hy =“!/]“Ef‘z%$}"¢“f“‘-9192-

It is now clear that there exists a constant ¢ such that |f,| < ¢/jr[***"** on
D"x D", i=0,1,2. Let

hy(z, 1) = h,(z, 0, (¢, 0)].
Then

. c
|h£(2, t)l S hb[(z, 0)’ (t, 0)]|k/2+n+1

4
lz—tl*—e()—e)"* """
Thus we get the following estimate:

< i=0,1,2
(

_ , le@IMav,
I{hl”ik - glhi(z! t)lz |Q (z)lkdez "<*- c };({Z—- tll_e(z)_g(t))k+2n+2
dav, Cy

< C" i
JI)(|Z—112—Q($))W”2"+2 = |Q(t)|k,‘2+n+2

i=0,1,2.

Our theorem is thus proved.

The above theorem is an answer to a question posed to me by I, Peetre. It
could be useful in the theory of weighted Hankel forms developed by
Janson—Rochberg—Peetre [10], since the recent result of J. Peetre [21] shows
that the factorization of weights is a sufficient condition for the weighted
Hankel form theory to be valid.

4. The Szegd kernel in terms of weighted Bergman kernels. We now return
to the more general Hartogs domains.
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Let D be a bounded Lipschitz domain and let ¢ be a continuous function
onD, ¢ >00onD, ¢ =0onadD. We also assume that ¢ is of class C* on D\E,
for some closed set E of measure 0, and that {5 |grad¢| < co.

Consider now as before the domain

Dr = {(z, e C"®C™; z&D, {w| < ¢(2)}.

" We define the Hardy space H*(D?y as the space of all holomorphic functions

f on Df for which

sup sup [P <.

UeD e<infp |w|=ap{z) &
zell zel/

If fe H*(D™ then f has nontangential boundary values almost everywhere on
oDy and

Iflf= [ Iff*do.

g -
Let S[(z, w), (z,5)] be the Szegd kernel for H*(D’). We have the following
4.1, ProrosiTioN. (a) Let fe H*(DY). Then

fe W= Y LEW,

Ja| =0
where
f.eBPHol(D, o), of =g+ 2 /o2 1|V 4,
and
U= T, Wlmaion
(b) We have '
Sz, w), (t, 8)] = | iuw“Ka(z, 3%,

where K (z, t) is the weighted Bergman kernel associated to the weight w,

Proof. The proposition can be proved in the same manner as Proposition
0. It suffices to take the sequence of domains...D, € Dy.y
€D, | oD, = D,and the sequence of surfaces ¥, = {{z,w); ze Dy, |w| = @(2)
—g,},where &, 0 and &, < infp, ¢. The rest of the proof is the same except that
we must consider surface integrals over V, instead of integrals over the domains €2,.

We now produce a very simple example, and show how the above
proposition can be used to calculate the Szegd kernel of the I'-ball in C% e,
the set {|z,|+|z,| < 1}. We shall not need this in the sequel, but we think it is
amusing.

We must first state Bell's transformation rule for proper holomorphic
mappings. :
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Let £2 and D be two domains in C* and let H be a proper holomorphic
mapping from @ onto D with finite multiplicity p. Let w >0 be a weight
function on D, and let K, denote the corresponding weighted Bergman kernel.
Put g = woH and denote by K, the corresponding weighted Bergman kernel
on Q. Let zeQ, weD, h™Yw) = {t,, ..., t,} = £ We shall denote by JH the
Jacobian of H. Then '

P L JH() K (2, 1) = JH@K,(H(2), 1)

for all ze Q and teD\H({JH = 0}).
The above formula was proved by S. Bell [1] in the case w =1 (the
Bergman kernel). The proof in our case is the same.

42 ExampLE. Let D be the unit disc 4, ¢ = 1—|z, m = 1. Then D} is the
{-ball |z]+|w| < 1. Proposition 4.1 implies that the Szeg6 kernel S of D, can be
expressed as :

Sz, W), (& 9] = —— 3. WK, (z, OF,

Zﬂﬁpﬂo

where K (z, 1) is the weighted Bergman kernel on the unit disc 4, taken with
respect to the weight (1—[z[)****. The Bell transformation formula yields that

p+1 1 ¢ 1 1 )
NN AN AN SR O G
This can easily be checked, by taking @ = D = 4, H{z) =z, o = (1—z)*"*%
Then g=(1—2/%)?**! and the reproducing kernel for g is equal to
2p+1) 1
. (I—{pPPY

K, (z,1)=

Thus the Szegd kernel S[{z, w), (¢, s)] is equal to

\/5&1\/%\/?(1—\;E\ﬁ)ﬁ[pi“’“’(ﬁf%)l,
-3 “’*”(H‘;‘"ﬁ]‘f;ﬁﬂ'

It is quite epsy to calculate both sums.
As a final result we get

1 3—2zf—2ws—z¥1? — w5 4 ziws
Sz, w), (t, 8)] = = -
[Cz, ), (2. 5] 2,/2n (1—2zt —2w5 + z£ 2 + w3?)*

It is clear that the same method can be used to find the Szegd kernel for

the I*-ball [z,|+ ... +1z,| < 1 in C", but the calculations will be more lengthy
and tedious.
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4.3. Remark. The method of expressing reproducing kernels as a sum of
(weighted) reproducing kernels over a domain in lower dimension was already
used by J. Peetre [20] in a study of reproducing kernels of Siegel domains of
type I1 and by N. Jewell {11] in a study of Hardy spaces.

44, Remark. Results analogous to Propositions 0 and 4.1 can be proved
for any weighted reproducing kernel on Dy, taken with respect to a weight
function w(z, lwl).

5. The Sobolev spaces of holomorphic functions on some smooth Hartogs
domains. Let D be a C* smooth bounded domain in C". We shall denote by
Holi(D) the Sobolev-Besov spaces of holomorphic functions on D.

It follows from {15]-[19] that

Hols (D) = B},(D) nHol(D) = Wy(D) ~Hol(D) if 1<p<w, sekR,

Hol3, (D) = B, (DY N Hol(D)

A(D) A Hol(D), s>0,
= < (D, |d ™) nHol{D), s<0,
{ f eHol(D): suplo(z}grad f(z)| < co}, s=10.
zeD
(Here o denotes the defining function for D as in (3)) It was proved in
[16]-[19] that if 1 <p< o, s<l/por p=1,0<s< 1, then Holj(D) =
I7{D,lo|"*") nHol(D) and that Heli(D) is equal to the closure
Harm® (D) = ?Harm(D) in LI (D,le|™) if 5 <0.
We now consider the smooth Haritogs domains of the following type: Let
D be as above and let g be a defining function for D. Let ¢, = |o|*/**. We shall
study the Sobolev-Besov spaces of holomorphic functions on the domains
Dy = D, . Note that each DY is a smooth domain, since its defining function is
equal to o(2)+|wj*, zeC", wel™.

5.1. THEOREM. Let J belong to Holi(DY). The function f can be expressed as
. o
/2, W)=HZ Su2)w,
al==0
where feHoly W2~ mke (D) The mapping R,: fi—f, is continuous Jrom
Hols, (D) into Holy~1eli2k=mikr(p),
Fach mapping R, is onto because of the following

52, ProposITION. The function f,(z)w* belongs to Holp (DY) iff f.(2)e
Hol"\ei2k=mite(Dy,  The mapping  E,: fifow® i continuous  from
Hol§~leli2kmike(Dy into Holy (D).
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Proof of Thecrem 5.1 and Proposition 5.2. Let s < 1/p. In this case
Hols (DY) = (D, o+ w|*| ™) n Hol(D}). Thus

\FI5 = supKf, @dol,  a=—1—,
p—1

where the supremum is over @€ I(DY,|e(2)+w/**) with {of < 1.
Now observe that the mapping wu(z)>u(z)w*{g (z)—|w|**) ™ is an isomor-
phic imbedding of I4(D,Jo| ™% *™¥) into (DY, |o(z)+ lw|**). This implies that

I £15 = sup [Djr" S (— g {z) —w{?)

= sup| | £ (—a (w2
oy
= Cyzsup|[ falg[f1e =
= Gy sup ] (@g|H/2+ mike) (| gles2+ mike =)
D

where the suprema are over u in the unit ball of E(D,lgl'““’”""""”‘).
The mapping w—ug/®¥2**™k s an isomorphism between
I4D, jo|™a/2kt %) and F4(D). Hence

1115 2 | Sl ™ oy

= “j;‘”LP(DJNuP[Zk-PmIk...‘P) = "'f;”Hol-;;I“UZ"—Wkp(D)'

(Above we have used the simple fact that I*{DF,|o+w**™) is dual to
I2(DT, lo+ w|**{~#9) via the usual I?-scalar product <-, Y5, 1 < p < o, feR)
In order to prove our assertions for s> 1/p we must consider the
derivatives in the z direction. Let f(z, w)eHol}(D}). Then
ot o= o
5= lul:oa—zﬁfa(z)w -

Thus
of
W@zﬂf“(z) e Hol5™ 181~ =/ 2k ~mjkp (D)

provided |B] > s—1/p. Hence f,e Hols™1#/2*=m&2(D) and, by the closed graph
theorem, the mapping fi—f, is continuous.

Proposition 5.2 is already proved for s < 1/p. We can now consider the
derivatives D?(f w*) for i8] > |a|+s5—1/p and prove the rest of it.

Let us now consider the Hardy-Sobolev spaces HL(@D) of holomorphic
functions whose Ith derivatives belong to HP(éD) (I = 0 is an integer).
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5.3, TueEoREM. Let fe HL(8DY). Then
fz.w= Y fi2w,
|z|=0
where f,eHoli"1r-leli2k=mio(D) The mapping fi—f, is continuous.

54. ProposrTioN. The function f,eHolitVe-lalizk-mike(py iff f w'e
H'(8D}). The mapping f,i—f,w" is continuous.

Proof of Theorem 53 and Proposition 54. Let us prove our
assertions for I=0, Let @(z, w) = Y(z}w". We have

J loltde = | illg|a+2m=2)2k _flg| Lk 1 |7 g|2/g*~ 2
i

apg
= [ pltlglkrmh =t flaft = 4 Vgl
D

This implies that ¢ e II(DY) iff ye I4(D, |g|"9/2*+™*=1), Let f(z, w)e Hp(¢DY)
(= H?(@D}). Then, if 1/p+1/g=1,

1/, Wi = sup Iagn_fcﬁi z sx;p Iagr Pfdw |

AS@np

2 sup U lpj;lgilal/k+m;‘k~1l
v D

— sup [f (g2 mha )7 g 2k k=) |
v D

m | flol AR TR gy & |imeHGl;|z|,‘Jk—m/k,p+l.’l’(D)’

where the suprema are over ¢ and i in the unit balls of I#(DF) and D,
jolielarzk+mik=1) respectively.

In order to prove our assertions for !> 0, it suffices to consider the
derivatives as in the proof of Theorem 5.1 and Proposition 5.2. This follows
from the well-known fact that a holomorphic finction belongs to Hy(8D) iff its
trace on the boundary belongs to Wp(2D).

55. Remark. Theorem 5.1 yields in particular that if fe Hol3(DF), then its
trace on D = {(z, w); w = 0} belongs to Holy ™*?(D). This shows that the
smoothness of the trace of a holomorphic function on a lower-dimensional
complex subspace depends on the geometrical shape of the domain (if p < o).

56. PropLEM. What are the recessary and sufficient conditions on
a sequence of functions f,eHoly™1*/2k~"*P(D) to ensure that

flz, w)= i S (2w e Hol3 (DF) 7

|| =0
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The same question can be asked in the case

o0

f,eHol izk—mitos1in(y - f(z, w)= Y f,w*ecHY(@DP).
|zj=0

The above question seems to be a difficult one.

Observe that if f(z, w)e H3(OD), then f,eHol I®i2k-mketiip(Dy and if
f(z, wye Holl/?(D{", then f, also belongs to Hol, 1/~ mkr*1r(D). However,
HY(@Dy) = HolyP (D) if p # 2. Hence it is exactly the type of convergence of
the series » f,w* which makes these two spaces different.

6. Weighted Bergman projections on weakly regular domains. The class of
weakly regular domains was intreduced by D. Catlin in [6]. Recently N.
Sibony [23] proved that weakly regular domains are.in fact pseuvdoconvex
B-regular domains and found various conditions on domains which are
equivalent to the weak regularity. We shall use the simplest one as a definition.

6.1. DermITION ([22], Th. 2.1). The bounded smooth domain D in C* is
" weakly regular if there exists an exhaustion function ¢ € C(D) » C*(D) such that

Lz, t)=5 Fo t.; = t]?, zeD, teC"
i ) ijaZiBEJLJ ¥ H

Recall that o is an exhaustion function for D if ¢ =0 on 6D, ¢ <0 on
D,D=\J,s0{c < —&} and {¢ < —&,} € {o < —&;} iff &, <&,.

Catlin proved in [6] that if D is weakly regular, then the compact estimate
for the ¢ Neumann problem holds. This implies in particular that the Bergman
projection is bounded from W3(D) into itself, 0 < s < co. We shall prove in this
part of the present paper that weighted Bergman procjections with respect to
weights (—g), s> 0, s rational, where p is some defining function, are also
bounded in W§(D) norms.

Let D be weakly regular domain in C" and let ¢ be a defining function for
D such that —(—g)'* is strictly plurisubharmonic inside D if k is sufficiently
large. Diederich and Fornzss proved in (7] that such a defining function exists
for every smooth bounded pseudoconvex demain.

Let D, ¢ and k be as above. We have

6.2. PROPOSITION. For cvery integer N >0, the domain DYy is weakly
regular. :

Prookf In [23], Th. 2.1, it was proved that weak regularity is equivalent to
the fact that for each z,€dD there exists ue C(D), u plurisubharmonic on D,
such that u(zy) = 1 and u < 1 on D\z,. Since the boundary of D}, is defined by
[wi? = (—g)'/N*, all points of DG \{w = 0} are points of strict pseudoconvexity
and have the above property. If w = 0 then z,e 8D and we can take u(z) with
a peak point at z, since D is weakly regular.
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6.3. THEOREM. Let D be a weakly regular domain and let ¢ be as above. The
weighted Bergman projection B, with respect to the weight |of°, s> 0, maps
2D, lol™*) = {¢" B(D)} continuously into W3(D) provided s is rational and
—~s/2Lr

6.4. Tueorem. Let D and g be as above and let s> 0 be rational. The
mapping h> B(g*h) is an isomorphism between Hol3(D) and Holz* (D) for every
reR.

6.5. TuroreM. Let D and ¢ be as above and ler s >0 be rational. The
mapping B, maps Wi(D) continuously into itself for r z —s.

Proof of Theorem 6.3. If 5 is rational we can always find m and N such
that § = m/Nk. Congider the domain D;. Let B denote the Bergman projection
for D, and let § = —go(z)—Iw|*™. Then § is a defining function for Df. Tt was
proved in [16] that if ¥ > 0, then fi> B(@'f) maps [}(D%,) continnously into
Wy (D), Let f(z)e (D, |gI™™*). Hence f(z)e (D% and the results of Sections -
2 and 5 of the present work imply that

BigN= [ KUz, w), (& 17 (O(—e@—|sI*™”

D%

= ¢, [ Kolz, 11/ @~ @) lel™"
D

— Bs(lg‘r’“m;‘ZkN (IQ\WZka}) e Holrz’ —-m/sz(D)_

Put r=r—m/2Nk Since fi+]g/"*"f is an isomorphism between
I3(D, |of**¥) and I?(D), we have proved our theorem.

Proof of Theorem 6.4. Bell's construction [2] implies that for every
r2 —s and heHol3*'(D) there is uelI*(D) such that h= Bllo|" " u)
= B(lo|* B,(lo{" )} {see Boas {4], Bell and Boas [3], Komatsu [13] and also [2],
[17]). We have B,(jol"«)eHol3(D) by Theorem 6.3. The mapping tht(lg]*‘h)
thus maps Hol; (D) onto Hol3"*(D) and is continuous (see [17]-[19]). It is also
one-to-one and thus must be an isomorphism.

In order to prove our theorem for r < —s it suffices to observe that
hi— B(jg|* k) is a selfadjoint operator on Hol}(D) and apply the duality between
Hol3 (D) and Hol;*(D) (see Bell and Boas [3], Komatsu [13], [16])

Proof of Theorem 6.5. The negative Sobolev space Wy *(D), s > 0, ‘is
defined here, following [25], as the space of restrictions to D of distributions in
the negative Sobolev space Wy "(C"). Let Wi(D) be the space dua{ to Wy *(D).
The results of [25] yield that W; is equal to the closure of CF' (D) in Wi (D} for
all 5  I+4, { an integer. We are going to prove that @+ B(g* @) maps Wy™%(D)
continuously into IZ(D). This is equivalent, via duality, to the statement that
hi—o® h maps Hol}(D) continuously into W3 (D). The latter was proved by Boas
in [4], and follows easily from considering the analytic family of operators
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h—g*h and the fact that if / > 0 is an integer, then the mappings h—g'**h
form a uniformly bounded family of continuous operators from Hold(D) into

3(D). 1t was proved in [17] and [18] that @>B(g°¢) maps Wi(D)
continuously into W3 **(D), r > 0, provided B is regular in the W3 **(D} norm.
Thus in our case

B,(¢) = [B(¢*)1*(B(e" @)

is continuous in all W (D) norms, » > 0, and in the W, 5(D) norm. Hence, by
interpolation, it must be regular in all W}{D) norms for r = —s. '

6.6. ProBLEM. The assumption that s is rational seems to be quite artificial.
The main obstacle to extend our results to all real s is that we do not any
longer know how to extend the family of operators B,, seR,, to an analytic
family B, defined for z from the halfplane Rez > —1.

6.7. Remark. One can ask if it is possible to obtain the estimates in
WD), p+#2, ar in Holder norms for Bergman and weighted Bergman
projections on weakly regular domains. The recent example of a weakly regular
domain with only one point of weak pseudoconvexity for which there are no
Hélder or uniform estimates for solutions of the & problem suggests that the
answer could be negative. This example was constructed by N. Sibony in [24].

7. The kernels of weighted Bergman projections for strictly psesdoconvex
domains with boundary of class C*. Let D be a bounded strictly pseudoconvex
domain with C*-smooth boundary and let ¢ be a defining function of class C*,
strictly plurisubharmonic in a neighborhood of D. In this case we are able to
write down an explicit formula for the most singular term of K,(z, £), the kernel
of the weighted Bergman projection B, with weight [g|", for every real s > —1.
We shall do it by combining the methods from [15] and the Forelli-Rudin
method for the unit ball [22].

Consider the domain D} in C"xC™ defined as DT = {(z, w); zeD,
g(z)+|w? < 0}; it is strictly psaudoconvex with C* boundary. Let

Fate, 9 = 220

—z)t;—z).
”at ar Ny—2)
We have

ReF (z, )2 g-gt—)—'g‘(,z—:’r)+—;—lz—tl2 if ¢(t) < J, and |z—¢| < g,.

Let y(|z—t]) be a cut-off function such that § = 1 if z—1| < 0/4 and ¥ = 0 if
|z —t| > &5/2. Let

Fz, t) = yllz—t)F (2, )+ (1~ (lz— 1)) Miz— 12,
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where M >0 is a constant such that (M —1)e3/16~lg(2)l > 1 on Dy = {z
o(z) < &y}, Let

&% _
) == - 1 —(jz— :—Z)).
oz 1) |zn(&pw~2&ﬁg ﬂ + (1 =Y (2=t ME—2)
We shalt now consider the function @ on DT x DY defined by

P[(z, w),(t, )] = Flz, H+ i & (s;—w)
=1

o gi(z: t))
g4, = {S‘},

and §{z, w) = o(z)+|w|]®>. We have
Redﬁ[(z, W), (ta S)].'Qu(t: S)
= Ylz—t)(Re(F

Also, set
i<n,

nt+l<ig<nim,

Wz, t)"'zEt(si_wi))—g(t)_|312)
+ (1= (|z—e))(Re(Mlz—1]* + Y. 5(s,— w))— o () —1st?)
e e

2
+U"¢G?‘m(W—ﬂ2+éw—q2_§E¥?ﬂﬂ)

This implies that the form
N[z, w), (¢, 8)]
=l M~ g

is a Cauchy-Fantappié¢ form for (¢, s)e DT and thus for every holomorphic
Sz, w) in CY{DY),

tgl B-Q‘,...a-ﬁn_,.mdtds

Sz, w) = ff(tn S)g(‘_,)N((Z, w), (£, S))
by
We have now
| —e()-Is® 4
o e agen aggen
(t,x)N = (@“ﬁ(t, S))'n+m+1
L(z, t)

— \
= C(n: ml(qj__g(t, S))n+m+1’
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where
—o(t) g:z. 1)
Lz, t) = det _ _ .
0 =4t aset, (eagoric, o

We also have &—§(t, 8) = Flz, t)~e(f}—<w, s> and hence
Lz, t)

(Flz. )—e(®)—Cw, syjr*m+t’

If f(z) is a holomorphic function in C*(D), then

[z, 0)=c(n, m) DIM(F(Z’I;)(;E;)Q:)MH

_ L(z, 01 @)= e (9"
=l G ey T

a-(t.s)N == C(n: ?‘H)

Hence the kernel
L(z, 1) —o(t) )’"
(Fz, )=o) *\F(z, H—e(t)

is the reproducing kernel for functions in Hol(D) n C*(D). We can now simply
apply the original Forelli-Rudin idea; consider the analytic family of operators
F, with kernels '

F(m)(z, t) =c,(n, m)

Lz [ —eld) )
(Flz, D—o ()" '\F(z, H—e(t))’

Re(1+17) > 0. ¢(n, 1) is a holomorphic function equal to ¢, (n,m) for t =m,
m=0,1,...(c(n, ) must be in fact equal to the function ¢(n, s) considered in
[22] for the unit ball, since these coefficients do not depend on the domain in
question).

It now suffices to repeat word by word the proof of Proposition 7.1.2 from
[22] to check that the kernels F(r)(z, t) have the reproducing property for
functions from Hol(D)~ C'(D). Thus for s> 0, the operator F, can ap-
proximate the projection B, well. We are now going to check this.

We shall follow the idea of Kerzman and Stein [12]. F, is an operator
acting on functions from I2(D, |g]), which is a Hilbert space with scalar
product <f, g>, = [ fglol’. The kernel of F, with respect to this product is

Lz, D)
(F(=z, )—e@) ™+~
Let us introduce a correction term Q(z, t). The form &,/ (z, #) is of class

C™xC' on DxD. We define Q,(z, t) = —T,d,i,(z, t), where T, is Henkin's
operator solving the ¢ problem on D. Let G,(z, £) = y,(z, t)+ Q,(z, t). The

F)(z, —c(n, 1)

lnbs(zs ) =c(n, s)
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kernel G(z, t) is holomorphic in z. Moreover, if feHol(D)n C(D) we have -
§,. ) f (Dl @F = — [ L&Yz, ) f D))l
= ~La [y ) fDle®f = -T.5.f=0.

The kernel Qy(z, 1)e C'(Dx D) and therefore is nonsingular. Let G, be an
integral operator with kernel Gy(z,t) and let 4, = G*—G be an integral
operator with kernel Gy(z, £)—G,{z, 1) = A(z, t). (The formal adjoint above is
considered with respect to {-, ‘),

By using the properties of F(z, i),

o(t)—F(t, 2)--9(2)| € Clz—1|*, we can prove that
|z —f* - 1
(Flz, n—a@) ™~ (—e@2—e /2 + Clz =ty 4271

where o = s—[5] and [s] is the integer part of s. This implies that 4.{z, t)|e ()}
is a smoothing kernel of order /2. In particular, the operator
A f=[AJz, ) f®le@F is compact from I?(D, |o) into itself. Now it suffices
to repeat word by word the considerations from [15] (or [12]) to find that G, is
a continuous projection from I*(D, lof) onto I?Hol(D, |oJ) and that
B, =G(I—~A) ' =(I+A) *GF Hence

B,=G,~G,A(l—A4)* = G,+K,

where K is an «/2-smoothing cperator, a = s—[s].

The description given above of weighted Bergman projections could be
used to obtain estimates for B, in Sobolev and Hélder norms. It can alsc be
used to study weighted Bergman—Toeplitz eperators on strictly pseudoconvex
domains. We shall deal with these matters in a subsequent paper.

namely that |F{z, t)—

|4z, D] <
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A multidimensional Wolif theorem
by

FERNANDO COBOS (Madrid) and JAAK PEETRE* (Stockhiolm)

Abstract. We prove a Wolll theorem ior a-tuples of Banach spaces. First we establish
a gencral Wollf theorem for Aronszajn-Gagliardo orbit and coorbit functors and Jater we
specialize this general result to the case of Sparr’s spaces. Furthermore, we show an alternative
proof for this last situation which works also in the quasi-Banach case. Some remarks on
multiparameter scales are given as well.

0. Introduction. The question of extending Wolff's theorem [10] to
a multidimensional context appears in [7]. Accordingly, we prove in this paper
such 4 result. In fact, once the “geometry” of the new situation is understood it
is easy to adapt directly the proof of the general Wolff theorem in [7] for
Aronszajn—Gagliardo orbit and coorbit functors. This is done in Sec. 1, where
we also review the basic terminology connected with interpolation of several
Banach spaces. Similarly, in Sec. 2 we review the essentials of Sparr’s theory of
real interpolation of several Banach spaces [8]. In Sec. 3 we then specialize the
general result in Sec. ! to this case. This first calls for realizing the K- and
J-functors as suitable coorbits respectively orbits, similarly to the case of
Banach couples [6]. However, this is possible, strictly speaking, only in the
Banach case. Accordingly, we sketch in Sec. 4 an alternative approach, closer to
Wolff's original proof [10] (the argument there really goes back to Stafney [97),
which works also in the quasi-Banach case. At an early stage of our
investigation we had thought that our Wollf theoremn could be applied in the
context of multiparameter scales of interpolation spaces, in a similar way to
that in the one parameter case (see [7], Sec. 4), but we soon met unexpected
difficulties of geometric nature, which we have not been able to overcome. So
perhaps & more refined result might be needed. In Sec. 5 we have included
a brief sketch of what kind of applications we had in mind.

1. A general Wolff theorem, We begin by lixing the terminology (¢f. [8]).

By a Banach n-tuple we mean a family 4 = {4,, ..., 4,} consisting of
n Banach spaces 4, (i =1, ..., n) all continuously embedded in some Haus-
dorfl topological vector space ., in symbols: 4; < ..
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