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Abstract. We prove a Wolll theorem ior a-tuples of Banach spaces. First we establish
a gencral Wollf theorem for Aronszajn-Gagliardo orbit and coorbit functors and Jater we
specialize this general result to the case of Sparr’s spaces. Furthermore, we show an alternative
proof for this last situation which works also in the quasi-Banach case. Some remarks on
multiparameter scales are given as well.

0. Introduction. The question of extending Wolff's theorem [10] to
a multidimensional context appears in [7]. Accordingly, we prove in this paper
such 4 result. In fact, once the “geometry” of the new situation is understood it
is easy to adapt directly the proof of the general Wolff theorem in [7] for
Aronszajn—Gagliardo orbit and coorbit functors. This is done in Sec. 1, where
we also review the basic terminology connected with interpolation of several
Banach spaces. Similarly, in Sec. 2 we review the essentials of Sparr’s theory of
real interpolation of several Banach spaces [8]. In Sec. 3 we then specialize the
general result in Sec. ! to this case. This first calls for realizing the K- and
J-functors as suitable coorbits respectively orbits, similarly to the case of
Banach couples [6]. However, this is possible, strictly speaking, only in the
Banach case. Accordingly, we sketch in Sec. 4 an alternative approach, closer to
Wolff's original proof [10] (the argument there really goes back to Stafney [97),
which works also in the quasi-Banach case. At an early stage of our
investigation we had thought that our Wollf theoremn could be applied in the
context of multiparameter scales of interpolation spaces, in a similar way to
that in the one parameter case (see [7], Sec. 4), but we soon met unexpected
difficulties of geometric nature, which we have not been able to overcome. So
perhaps & more refined result might be needed. In Sec. 5 we have included
a brief sketch of what kind of applications we had in mind.

1. A general Wolff theorem, We begin by lixing the terminology (¢f. [8]).

By a Banach n-tuple we mean a family 4 = {4,, ..., 4,} consisting of
n Banach spaces 4, (i =1, ..., n) all continuously embedded in some Haus-
dorfl topological vector space ., in symbols: 4; < ..

* Supported in part by Ministerio de Educacion y Ciencia (SAB-87-0172),
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We say that a Banach space A is an intermediate space with respect to

a given Banach n-tuple 4 = {4,, ..., 4,} if we have the continuous embed-
dings
AD =A,n...nd,c Ac A+ ... +4, = Z(A4).
Let A={4,,...,A4,} and B={B,,..., B,} be two. Banach n-tuples,

o and # being the corresponding ambient spaces. If T'is a linear map from
& into 4 we use the notation T: A — B to mean that the restriction of T to
each A; defines a bounded linear operator from A4, into B;, in symbols: T:
A, —B,, We also write

”T“;ij= ma ”T”Aiﬂi
1 =i

X
n
where || T|| 4.5, is the norm of T Ai—rB,, £.

1T 4. = sup | Tall/lallo.-

a#0
Let A be an intermediate space with respect to 4, and B one with respect
to B. We say that 4 and B are {relative) interpolation spaces with respect to

A and B if the relation T: 4— B always implies T: 4 — B. In this case there
exists a constant C such that

(1) ITlas<CliTlap=C max {T|,z.
: 1€i<€n

Let R = R(x, ...., x,) be a function of n nonnegative real arguments such
that : : :

(@) 0 <R{x,,..., x,) <o, RO,...,0)=0;

(b) R(xy, ..., x,) is a nondecreasing function in each argument x; separa-
tely; :

(¢) R(xy, ..., x,) is homogeneous of degree 1, i, R(lx,,..., ix,) =
'Z'R(xl’ e xn) ('2L = 0):

(d) R(xy, ..., X,) € CMAX{gren Xy

If (1} can be replaced by the (hopefully) sharper inequality
(2) _ 1Tl ap < R(IITHA, B oo [ TlLansals

we say that we are dealing with R-interpolation spaces.
ExampLe 1.1. The most important case is if R is a product of powers

R, .. o

"xn)=x1' Xp

where 06, <1,...,0<0,<1,6;+...4+0,=1, or perhaps a constant
multiple of such a function. In this case it is illuminating to associate the spaces
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Ay ooy Ay (or By, ..., B} with the vertices of an n-sirﬂpléx in an affine space
and the space 4 (or B) with a point in the same space with-the barycentric
coordinates (0, ..., 0,} with respect to this n-simplex. Thus' we get the

following figure (n = 3).

A

Ay

Az

We require further the obvious analogues of the two Aronszajn—Gagliardo
functors [1].

1°. Let A={4,,...,4,} be a “fixed” Banach n-tuple and B =

= {B,, ..., B,} a “variable” one. Let further A be a “fixed” intermediate space

with respect io A. Then G(A; A)(B) consists of all sums Y %- T,a,€Z(B)

where a,e4, T, A—B and Y 2o | Tlla.ala,l, < 0. Thls space becomes
a Banach space when normed by

Hb“{, mf{ Z H m“A,B“a‘m”A: b= Z Tmam}'
and it is the minimal space B such that A and B are mterpolation spaces with
respect to A and B. :

2°. Dually, let us “fix” instead the n-tuple B and an mtermedlate space
B with respect to B, Then we define H(B; B)(A) as the collection of all elements
ae X{d) such that Tae B for all linear maps T: A — B. The norm in this space is
given by laly = sup {[|Taly: [Tllap < 1}. It is the maximal Banach space
A such that 4 and B are interpolation spaces with respect to A and B.

To proceed to Woll's theorem let us look at the following situation: Let
= {d,,..., 4,} and B={B,,..., B,} be two given Banach n-tuples and let
X,y ..., X, be n intermediate spaces with respect to 4 and Y;,.... ¥, be
n intermediate spaces with respect to B. We assume that for some integer
k (1 €k < n) the following holds:
If jel' = [1,k] then X, and Y; are R interpolation spaces with respect to
the Banach n-tuples

{"Jl’XZ} = {Ali""Ah’ Xk+l,...,X"}
{BL: Yz}m {Bls'--:Bksn-Flr"'a]rn};

and
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If jel” =[k+1,n] then X; and Y; are Ryinterpolation spaces with
respect to the Banach n-tuples
{Xla A_z} = {X17 PR XR’ Ak+11 .
{?1, 32} = {Yli [ E‘, Bk"}"l: Paea Bn}

Here R; = Ry(xy, ..., x,) aren functions subject to the previous conditions
(a)-(d) about which we further assume the following:

{e} If jeI then

.., A,} and

HmR;(x, ..., X1, . 1) =1
x=Q k times n—k times

and if jelI” then

Hon R (L oy LoXs ey ) = 0.

x—+0 ktimes n-—k limes

ExampLE 1.2, If the R; are power functions then, wsing Example 1.1, we
arrive at the following picture (n =3, k= 1)

Ay

Az

N

&
Now we state our key lemma generalizing the corresponding result in [7].

LEMMA 1.§. There exists a constant C < oo such that for any linear operatror
T: Z(A)- A(B) we have

max [|T|x,y; € Cmax | T4,z = ClT s
LS jsn 15i%n

Proof. For simplicity introduce the mnotation
M;={|T| 4.5 (i.j=1,....n). Then by hypothesis we have

Nngj(Mls---ann Nk-t—l;-"#Nu)’. jeI’a
NJSRJ(N1,.,.,N,“ Mk+1,...,M"), jEI”.

without loss of generality we may assume that max¢;<,M; = 1. Set further
N* = max; ¢;<.N, Then N* = N, for some . Suppese, for instance, thatje I Then

Nj = “TH%’J.Y”
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N* = N, < R(L,...,1 N*,...,.N¥) or
1< RAYN*, .. IN%,L,.. 1),

Our hypothesis on R; shows that 1/N* must be bounded away from 0, ie.,
N* < C for some C independent of 7. The case jelI” is treated similarly. =

Now, as in [7], we must try to get rid of the assumption that T maps into
the intersection. We begin with the case of the functor G.

TuporEm 1.4, Let the spaces . Ay, ..., A, X, ..., X,, By,..., B,
Y,,..., Y, have the same meaning as before. Assume that for jel' the functor
GU{A,, X,}; X )(—) yields R -interpolation spaces and that for jeI" the functor
G({X,, A}; X )(—) yields Rinterpolation spaces, where the functions R, are
subject to the same hypotheses (a)-(e) as before. Assume further that for each
aeX; with 1 <j < n there exists a linear operator P: Z(A)— A(A) such that

“Pa_a”x, < Jz““““x,:

max HP“AJ,AJ "'<~ C
LEj€n

(independent of a).

Then if
G{d,, X,}; X){B,, L) <Y, for jel,
G({X,, 4.} Xj)({yli BYc Y, for jel”,
we have for each 1 <j<n
G(A; X)B) c Y,

The proof is patterned on the one in [7]. Let T: A—Band aeX; with
jelI’ be given. We have to prove that Tue Y;. With no loss of generality we may
assume that |T|lz5< 1. Let P be the operator in the hypothesis of the
theorem. By Lemma 1.3

H TP”X_;,YJ e C:

Let @) = Pa and o = a—Pa so that
le'ly, < $llalx,  [Taglly, < Claly,
Continue the same procedure with o' instead of a: We find a,, 4" such that
||a”|lx,<%llallx,, [ Ta,liy, Q%C”a“x".-
By induction we produce thus a sequence {a,}n, such that

1
ET—-'I

| TPaly, < Cllal,.
a=a,+d,

a =—'*-a2+a",

o0
a = Z a‘nb H Taﬂ“Y_f <
nw=

This clearly shows that Tue Y. m

Ciiallx,-

Next we give the dual result with H.

THEOREM 1.5. We make the same assumption on H as in the previous theorem
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for G (the existence of R)). We also assume that for each 1 <j <
a family of linear maps P, Z(B)— A (B} such that

max ”Pa,"Bj,Bj\- 15

1$j<n

sup |P,bly, < 0 = beY, for be Z(B).

n there exists

Then if
H({B,, L} ({4, X=X, for jel,
H({Y, B,}; Y, {Xla z})DXj Jor jel”,
we have for 1 <j<n

H(B; ) > X,
Proof Let T: A—B. Then P, T: X(A)— A(B) for any «, so, by Lemma
13, [P, Tlx,y; < C. If acX; we get sup,[P,Taly, < o0 implying Tae Y. =
2. Brief review of Sparr’s theory. In what follows, we shall also work with

n-tuples of positive real numbers. Given two n-tuples, = (¢, ..., 1) and
§=(S4,..., 5. and feR, we write
—{= (_tp---: '—tn): ﬂfﬁ {ﬁtla"'a ﬁtn)a
= (880 t,8),  M=ty...t, 2F=(2",...,2").
Moreover, we denote by  the (n+ 1)-tuple defined by f=(0,t,, ..., t,). The
symbol §” [resp. 8] stands for the set of all n-tuples 0 = (6,,...,0,) of

numbers in (0, 1) [resp. [0, 1]] such that }}-,8; = 1. Also (n—1)-tuples of
integer numbers ¥ = (v, ..., v,—1)€Z"" ! will be of special interest for us.
We now recall the definitions and some properties of K- and J-spaces
described by Sparr in [8].
The K- and J-functionals are defined by

Kz, a;fT):inf{z lafla:a= 3, a5, 6,64},
= =1

J(t, a; A) = max {tj”a”,ij}-
1€j€n
Note that for each n-tuple 7, the functional K(f, ) [resp. J(t, )] is a norm in
Z(A) [resp. A(A)], any two of them being eqmva.lent

Let 1 <9< candfe S" The space Ay, consists of all elements ae X(A4)
having a finite norm

lalhox =( % (277K, a))Q)”‘*

The space 43, is formed by all elements ae X (4) which can be represented as
§)] a= Y u; (convergence in X(A))

veZn-1

where u; e A(4) and
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@) (eus)lfp,gsr = (X, (1277 (2, )} H/e < 0.

The norm in A ,.; is given by |alg,gy = inf|l|(s)|ll5,4;; Where the infimum is
taken over all sequences (u;) satisfying {1} and (2).

These spaces are generalizations of the classical real interpolation space
for a Banach couple (see [3]). It is possible to give a continucus definition for
them, using integrals instead of sums, which is equivalent to the former one. We
should mention that, besides Sparr, some other authors have also been
interested in similar spaces (see [8] for references).

Unlike the case of Banach couples, where A, ,x and A4y coincide to
within equivalence of norms, we only have now the continuous embedding
A3 4.0 S Ap gk The converse inclusion fails in general. Counterexamples can be
fourd in [8] and [4] (see also [2]).

A sufficient condition on A for equality between K- and J-spaces is the
following.

CONDITION & (A). There is a constant "y( A), depending only on A, such that
for every aeZ(A) for which
Y min(l, 27, ...
YeZn-t

there exzsts a representation a =Y ;u; (convergence in I (A) of a such that
I, w5) < y(DKE, a).

When K- and J-spaces are equal, we denote any of them by the simpler
notation Ag,q.
We shall also need the following stability result established in [8].

REITERATION THEOREM. Let A = (4, ..., 4,) and X==(X,, ...,
Banach n-tuples, and suppose that

, 27K (2Y, a) < o0

X,) be two

Z@_,.l;d’ =3 XJ G Zﬁj,w;K
where 9,e5" (1 <j<n) and R" is spanned by [0})=1. Let 1eS" and write
=3"- 1/1]0 If #(A) is satisfied, then for 1 < g < 00 we have
X3.0=4s, (equivalent norms).

In particular, the theorem applies when X ; = Ay, .,

l1<g <00, I €jsn.
The following figure illustrates this situation {n = 3)-
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As in the former examples, &, 1, & have the meaning of barycentric coor-
dinates. _

Let us finish this section by pointing out that both functors A4 .y and
45,4 produce R-interpolation spaces with R(xy, ..., x,) = Cxi*...x".

3. A Wolff theorem for Sparr spaces. In order to derive from results in
Section 1 a Wolff theorem for Ag, spaces, we shall require a description of K-
and J-spaces as spaces obtained by using the two Aronszajn-Gagliardo
functors introduced in Section 1. ‘

Subsequently, we shall work with scalar sequence spaces over Z" ™!, For
1 €£g<co, we put

Io={(&): &, =( Z; NG < o},

Given 77eR""?, we define

L2 = {(&) 1EDge-n = 1027"E), < o}
It is clear that for every ¥=(v,,..., v,—}6Z" %, the sequence
1if To=v
;= (A2 hi = ’
=) where J; {0 otherwise,
belongs to all [ -spaces. In the particular case when 7= (0,...,0, 1,0, ..., 0)
has all coordinates equal to zero except for the jth which is equal to 1, we write
e5 = &,. Moreover, given an n-tuple of positive real numbers t=(ty,..., t), the
symbol f stands for the (n— 1)-tuple (g, -0n b))
Next we give the announced descmptlon& The proofs are similar to those
in the case of a Banach couple {n = 2), see [6]
Let 1<
» be a Banach n-tuple. Then

Taeorem 3.1 (Orbit theorem), oo, GeS" and let A=

(4., A

G({Iy, L2™), ., LR LR ONA) = As ey (equal norms).
Proof. Let T be any operator from
={I;,L,27®), ..., L2 1)

into 4. Write w; = TeVEA (4), ¥€Z""'. Then we have T(&;) = Y;&w; for
(&)eZ(T). In addition

T2, wi) = max(| Tes )y, 2 | Tes s oo 2774 | Te5) ) < | Tl

Therefore, if (5)el, (279, the element a = T(&;) can be represented by the sum
35wy where each &ws belongs to A(4) and

MG wlllg.gr = (L (277102718 J (28, Ewg))t) /e
Viseans¥p—-1
SUTlna( ¥ @7 27 v dnjggeue
Vissery¥pp=~ |

= [Tl 1G5 a3
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Thus

(1) Hallggr < 1T 7,30 (€

Let us now take any aeG(l; [(27%)(4). Then a can be written as
a=Y) T,/ where

Miraez-9)-

fra)
¥ 1T al -5 < 0.
n=1

Consequently, using (1), we obtain

o0
lalggr < ZIITA‘"’IIM, ZlHﬂllr‘.zlll"”l\zq(z—ﬁ)-
e

This gives the continuous embedding G(T; L27NA) & gy
Reciprocally, given any ae 4z, and ¢ > 0, we can find a representation
a =Y juy such that

s)llp.gr ={ 3

Vipa¥n-1

Put 4; = J(2', w;) and define T by T(¢ = Y545 ' &us. Then | Tz <1 and
T takes the value # on the sequence (/’L;)elq(2 . So ae G(I,; 12" E’))(121) and

lal e € T4l (A5) ligee-5) < llalip g +5. ®

Dually, for the K-spaces we have:

(2“"161.”2—\‘“—16"‘](2;, ug))q)i/q < lalzgs+e

THEOREM 3.2 (Coorbit theorem) Let 1<g< o0, Je8" and let

={A,,..., A,} be a Banach n-tuple. Then
H({l, 1,275, o, 1,750 L@ ) = Aok (equal norms).
Proof Let I, = {l,,,, (27, ..., I,(27*- 9} and let T be any operator

from 4 into T, havmg nerm less than or equal to 1. Then T can be written as
Ta=(f, @), ez,
where f; belongs to the dual space of Z(EI) and
1Al €1, 1fillg < ol fleA.,

Hence, given wueX(4) and any representatmn a= Zj,ﬂa, with a;e A, we
obtain

I<A» @)l

2"n i,

laglla +2" ag ] g+ o 4277 0]l 4y,

< 3 K adl <
=1

Thus

<S5, ad| S K(2°, ), ezt
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This implies g = H(T; L2 H)(A) with ||laf, < |alzgx-
Conversely, given any as H{T.; 1,(2"%)(4) and any ¥eZ"~", applying the
Hahn-Banach theorem we can find f;e Z(A) such that
(fi @ = K(2, a),
1Al <L 1AL <2% ey Il < 2000
Therefore, Tx = ({fs, x)) defines an operator T: A—1, with [Tz, <1 and
“a“B,q;K _ ( Z (z-vwﬂz_ . 2_Vn—19nK(2;, a))q)l/fl
Viyanes Yh-1
= [ Talijy2-5 < llaliy-
Remark 3.3. In the definition of the spaces Ay .y and Ap . x the base

2 does not have any special role. This observation and a reasoning similar to
those above allow us to derive the following more general formulae:

2) G{L(2%), ..., L™} LA = A3,
(3) H({1,2%), ..., 1, (2% LEOWA) = Az 4
(with equivalence of norms).
Here &, = (z,)eS" (1 <j < n), with R" being spanned by {¢;}-,, and 8= (§)
and 1= (1) both belong to §* and 6, = Y 1=, L,
Now we are ready to establish a Wolff theorem for Sparr spaces. In what
follows, we assume that X, ..., X, are n intermediate spaces with respect to

the n-tuple 4. Moreover, we continue writing {4, X,} = {4;,..., 4,
Xigs o X} and (X, D} = (X000 Xp, AiroeoAgh

THEOREM 34. Assume that X, =(L;) and 0,%=(0;) belong to S" for
1<j<n, and that there exists some integer k (1 <k < n) such that

@ eﬂ = ljl+ Z ;i‘jmgml (1<j<sk 1<i<gk),
m=k+1
(5) 0= 3 Apmbu A<j<k, k+1<!<n),
m=k+1
. k
(6) 0= 3 Am Ot k+1<j<n, 1gl<€k),
m=1
' k
(N Bi=Ay+ Y Al  GHl<j<n k+1<Ign),
m=1
and A

(8) R" is spanned by {&,..., &, Oy y. ..., O,} and also by
{B-!.a e D_k’ ék+1: ttr é”}_
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Then the following holds:
@ If {4, XhaweX;1<j<h) and (X, L0 = X; k1<
j<n), then g1y X, for L <j<n.

@ I {Zl’ XZ}I-"”;K oX; (1 <j<k) and {X,, zz}ipm;x o> Xk+lg
j<n), then g, x> X, for 1<j<n

Proof. Put Y, =I, Y, =,,.., Y,=,@") and W =
L2, ..., W, =1,(2%). By Remark 3.3(2) and the hypothesis of (i) we have

G({Y,, W} Wj){;{n X)X,
GEW,, Lo} HIJ){‘Y].’ 4} = X;

Furthermore, {Y, W} satisfies the approximation hypothesis required in
Theorem 1.4 (take for P a finite rank operator (&5)—> (&), <n). Therefore,
Theorem 1.4 and (2) give that A,y < X, for 1 <j<n.

The proof of (i) can be carried out in a similar way by using now Theorem
1.5 and (3). m

(1<j<gh),
(k+1<j<n).

Combining this result with the'Reiteration Theorem we obtain:

CoroLLARY 35. Let {I;}}-1 and {0}j=, satisfy conditions (4)-(8), let
1 € g, < o, and suppose that condition F (A} is also satisfied. If {4y, Xo}t1,q, =
=X, (1<j<k) and {X,, A}3,q, = X, (k+1 <j < n), then Ay,q, = X for
L<j<n

Remark 3.6. The meaning of conditions {4}-(7) will be discussed in the
next section.

It is conceivable, but not quite clear, that the above result can be extended
to the spaces of Fernandez (see e.g. [5]), which have a theory to a large extent
parallel to Spart’s theory.

4. The quasi-Banach case. In this section we develop an alternative
approach to the main results of the previous section (Thm. 3.4 plus its
corollary), which is applicable also in the quasi-Banach case. For notational
simplicity though we write out the details only in the Banach case. As was
mentioned in the introduction, the method of proof has been adapted from [9]
and [10].

- Let thus A =(4;,..., 4,) be a given Banach n-tuple. Let further
Xi,..., X, be intermediate spaces with respect to A about which we assume
that

1) lallx, < c [T 1al% T laly:
for ae(ﬂ’Al)m(ﬂ”Xl) and jel',
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@ lajx, < e[T ||aH)'”H leh gy
for ae((VX)n(()"4,) and jer”,

(3) K(t—n a; Als L] Ak& Xll,+1> ey X ) < Cl_[t‘;"ﬂ ||a||XJ
for aeX; and jel',
4) K@ a; Xy, 000, Xy Ager,..0n A SCHH‘” ”“"xj

for ae X, and jel”,

where 0 < Ay <1, Y%=, Ay =1 (thus A = () is a strictly stochastic matrix).
Here and in the sequel we use the following notation: I' = [1, k], I" =
[k+1, ], H stands for a product extended overI', H for one extended over
I", the symbols (), ()", and below Y, ¥ being used in a similar sense. Also
¢ is a constant whose meaning changes from time to time.
We want to prove that {1) and (2) imply

) lallx, <c[[laif for ae(4,
and that (3) and (4) imply
) K(t, a; A< cl[t)ally, - for aeX,

with 0320, Y7, 05 =1 (thus © = (8;) too is a stochastic matrix).

The relation between A4 and @ is the following: Let us identify our 2n
spaces 44, ..., 4,, X, ..., X, with points of an affine space, Then the numbers
Ay =1, ..., n) are thought of as the barycentric coordinates of X ; with
respect to 4, ..., 4y, Xk+y, ..., X, if jeI’ and with respect to X, ..., X,
Arvsy ., Agif jel”, while the numbers 0, (I =1, ..., n) are thought of as the
barycentric coordinates of X, with respect to 4,,..., 4

Thus, symbolically, we may write, say, for jeI’

Xj = Z"ﬁﬂA,—l-Z”ﬁ.ﬂX,
Thus we find

n:

“where for each | X, =30,,4,.

(N 0 =Au+y Al (jel, lel), .

(8 B =3 2y (jeI', leI").
Similarly, we find ,

©® By =5 4O (jeI", leT)
(10) 0p = 2q4Y Al (jeI, lel’).

Let us write the matrices 4 and @ as block matrices (corresponding to the

partition [1, n} = I'uI’):
@ = I:@ll @12:|’ A= I:Au A12:|_
6 Oy, Ay Ay
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Then we may write the relations (7)-(10) more compactly as

(7) 01, =4y +A41,8,;,
®) Q12 =41,0,,,
@) 03, =458,
(107 Oy =g +41,,0 5.

Elimination between (7) and (9) yields

(7) O, =4,,+4,,4,,04,.
Thus we find
(11) @11 = (I—_’AleZl)’-lAll = Ali+(A12A21)A11+(A12421)2A11+ e

(Neumann series),
and a similar relation for @,,.
We thus view these relations (7)-(10) or (7}-(10'} as providing the rigorous
meaning to what was stated in informal wording in the penultimate paragraph.
Consider now (1) and (2). If we substitute the inequalities (2} into one of
the inequalities (1), we obtain an inequality of the form

CH el HHH ||a||xll”""'!n"n |a”.hm1mz
= Cn llailﬁ‘,‘ﬂ" s m.n j | Ehambe

An analogous formula holds for jelI”. In exponential notation, writing
lallg, = e, |lal4, = e”, putting

) -[

(and forgetting about the constants) we may write this as
Uy € Ay v+ Ay Agpva+ Aya sty
Uy & Agy Ay 0y +Agats+ 4314124,

(this time u, and u, are the components.of u written as a block vector; the same
for v, and v,). Let us iterate the first inequality a couple of times:

) & A1.|‘”1+A12A221’2“+"/112/121A11”1+AizflziszAzz”z+(/112A21)2“1
== (T4 Ay Aga)Ayy 0y 4 A (T Ay Ay} A g0z +(A1a Mgyt
Uy K Ay 03+ Ay Agy by Agp Ay Ay o+ A Ag A Asaty
(A Agy P Ay 0y (A g Ay P Ay Ay 0+ (g2 A5 0y
= (A4, (A Az )M A0
+A12(I+AuAtz"*“(Az].Au)z)Azz”z+(A12/121)3“1

Hallx, <

(jel).
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and so forth. This convinces us that in the limit we find
uy < (T4 A,4,, (A 457+ .. )4 04
Ay (T4 Ag A+ Ay 435+ ) Ag505.

Comparison with (7)}-(10") (see also (11)) shows that this is the same as

U € @,0,+8,v,.
In the same way we find

t; € @y 0+ 60,0,
This, apparently, establishes (5).

Next we turn our attention to (3) and (4). Let xe X ; for some fixed jel'. In
order to establish (6) it suffices to prove that x can be written in the form

(12) x=a+}'y
where aey A, and y,€X, with
(13) K@, a; A) < cTjlxlx,
(14) > Tlvilx, < 3T|xlx,-
Here the vector t = (14, ..., t,) is fixed throughout the discussion and we write
' T, = [1t%m.
m
Indeed, iterating the construction (12)-(14) once we obtain for each lel’
. n= b1+2’ Zim
where b,e) A; and z, €X,, with
K(_i;bb Z) “<~ CT;H.VI”XU
Y Tulzumllxm < 3T 1313,
Putting a' = a+Y by, X = 3,2, We then have
(12) x=a+y xn
with the estimates
(13) K@ a3 ) < (Tl + X Tvila) < e+ DT x],»

’ 4 : ' Al ' 1
(14) ¥ Tl %nlx, € XY Tullzimllx, < 32 Tilivilx, < 72 Tillxllx,-
m m I !

After one more iteration we have

(1211) X = an+Z' x:"

13!/ e . 1 1

(13") Kit,a"; A)<c 1+5+5 Tlxlx,
ir ! " 1

(14) . Z Tm“xmnx,,, 4'2‘51}”3‘"1(1-
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The resulting sequences of x’s clearly tend fo zero and the a sequence tends to
x. Therefore in the limit the estimate (6) evolves.

It remains to prove (12)~{14). From (3) and (4) it follows that we may write
x=Ya+Y % Tslalaty sixlx < eSlxlx,
X, = z’ Xy, +2” iy Z’ Tim Iixzml!xm+2" Fim [ Gyl < Ry 141,
for an arbitrary choice of the positive numbers s, (I=1,...,n) and ry,,
(i=k+1,...,n, m= 1,...,n), with
S=TIst, R =]lrlr
i m
If we can choose these numbers in such a way that
sS <, (ter),

1
{15} rmt Rysi 1S siEET}T,;l (el”, mel,

RIS ety ' T, (Jel”, mel”)

where ¢ is the constant given by (3) and (4) and ¢, is any other constant, then
we clearly obtain (12)-(14) taking '

a == Z’ al"‘zu E” alm’ ym = ';”xlm'
3 Poom

To see that the system of inequalities can be solved, we rewrite them first, as
before, in exponential form, putting t, = ¢", 5, = e and r,, = "™ Then it is
easily seen that everything boils down to solving the following system of linear
equations:

~pp+ V= —u+U;
(16) {mw,n,+mwul+V= Uu,-u,
'-'\"vﬂm“{—W/E"_'vl"'V= Uj'—um
where we have also written -

Um = 2 Omiuli V""-“ ZAJIDI! VVI = gaimwlm'

(Indeed, if (16) can be solved then we can solve (15) but with constants one. To
get the right constant in the middle inequality we just have to replace caf:h Fim
by 2¢*r,,, this for Iel”, meI'; modifying the remaining 7, in an arbitrary
manner but keeping the products R, fixed) Notice that the number of
equations is k-+(r—K)k+(n—-k? =k+{n—kn, whereas the number of
unknowns is n+(n—k)n, a surplus of n—k. However, there are relations among
the equations (16) and we mfust show that the latter are precisely those which
arise from the relations between the A's and the 0's, i.e., the relations (7)~-(10) or

(lel,
(lel”, mel'),
(el", mel"),

- (7)~(10). We remark first that the condition for the solvability of the system

—w,+ W, =d, {some constants) (m= 1,...,8)



288 F. Cobos and J. Peetre

is precisely . 4,,d,, = 0. Thus we obtain from the two last equations in (16)

17 ~ 0+ V=U; =Y 4 U= Dt (11",
m m

Next we treat in exactly the same way the system of the form
I=1,....,m

resulting from (17) and the first equation (16). We find that we must have
(18) ;%m=¥@wxgﬁﬁﬂﬁ§¥umww

Now this relation (18) must hold for any choice of 4, (with U,, = ¥,8,,u,). Thus
we obtain the matrix relations

(19) B4 = Ay +41,4,, 04,

(20) 015 =A1345,0 5+ A4,

Here (19) is identical with (7”), while (20) is (8% combined with (10°).
Clearly all this together establishes {6) for jeI', The case jeI” is of course
entirely parallel. .

—.U;+ V= e[

S. On multiparameter scales of interpolation spaces. Let Q2 be an open
subset in an affine space of dimension n—1 and let ¢ be a function on  with
values in [1, co] such that 1/p is affine  (le. 1/p(x) = (1 —0)/@(x,)+0/p(x,) if
X,x,%,€0 0<€0<1 apd x=(1—0)x, +0x,). Let & be a Hausdorff
topological vector space. By an interpolation scale (over 2 contained in ) we
mean a family of Banach spaces {A,},., all continuously embedded in
& which is closed for interpolation:

Ay =(As,, .

e X, €0, xeintconv{x,,..., x,},

T Axn)gl ----- Onio(x)
whenever .x, X,
0<f,...,8,<1.

We remark that it is often useful, adopting a geometric picture, to view
a scale as a kind of vector bundle over the set £.

We first address ourselves to the question whether “overlapping inter-
polation scales can be pasted together” Let {A.}..no and {Af}.ea be two
interpolation scales contained in = over open sets @ and ' with- 2 ' = @&,
We consider the family {4%},enuq0 Where

. A, if xe®,
Al = .
A, if xegq,
QUESTION 5.1. Is this an interpolation scale?
- We must show that

(1) Ay = (A,

X=0;x+... +0,x,,

f. ’
Lt Axk’ 'Axk-h.l’ AR Ax,.)91,....9,.:¢p(x)
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whenever 1 Sk<n Xy, ..., 560, x.4,..., x,€, xeintconv{x,, ...
x=0,x+ ... +0,x, 0<0,...,0,<1.

Let us make the assumption that xe@ Q. Then we can construct
Visooos WERN Q' with xeintconv{y,,..., ,} and such that

VIt eonv{x,, ..., Xy Yirgs s Y
Y@Mt eony (Y, .oy Yo Xpspn o oes X5}

If we also make the assumption that condition & is satisfied for any Banach
n-tuple formed with spaces from the family {A}} e, then we can apply our
Wolff theorem (Cor. 3.5). A renewed appeal to the Reiteration Theorem
establishes (1) in this case.

In the general case we have not been able to prove (1)

Another problem with which we have busied ourselves is the question
whether one can “fill in holes”. Let {A_},.q be any interpolation scale over the
open set Q and consider the convex hull conv@ of Q. For xeconvQ we set

Ax = (Axp AT Ax")ﬂx.---,ﬂu;m(x)

2 Xphs

if1<j<k,

if k+1<j<n.

where now Xy,...,x,€Q and as before xeintconv{x,,...,x}, x=
8%+ +0,x,, 0<0,,...,0,<1. Two questions arise now:
1) Is this definition independent of the choice of x4, ..., x,?

2) Is the Banach family {A,}convn an interpolation scale?

Question 2 we cannot solve (this is the problem just discussed) but let us
say a few words about question 1.

Let us put §=conv{x,,..., x,}, with “S” for “simplex”. The set of
n-simplexes forms a manifold .# of dimension n* with a natural topology. (In
fact, it is an open subsei of R".) Let E be the subset of 4 consisting of all
simplexes Se.# such that xeintS. Tt is clear that E is open.

Let us make the following assumption:

(+) E is connected. ,

If () is fulfilled then we may argue as follows. As we do not know that the
definition is independent of the choice of x,, ..., x,, let us, to be on the safe
side, temporarily use the notation 4, in place of 4, if xeintS. Then the set of
simplexes S such that Ag == Ay, for a fixed 8, is open. This follows from anothex
application of the Reiteration Theorem (we are willing to admit that hypothesis
F is fulfilled). We recall the following simple fact from topology.

. LEMMA 5.2. Let X be a connected topological space and Y a discrete space.
If the map f X — Y is continuous then f(x) =y for some ye¥

The lemma and the hypothesis (x) imply that Ag depends only on x.

- Therefore we -are henceforth free to use the notation A,.

7~ Studin Mathemailen 94,3
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However, simple counterexamples show that (#) is not always true,
although, on the other hand, it may hold for nonconvex sets. In such case we
do not know how to proceed.
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