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Sharp pointwise estimate for the kernels
of the semigroup generated by sums of even powers
of vector fields on homogeneous groups

by
WALDEMAR HEBISCH (Wroclaw)

Absteact, Lot Xy, ..., X, be a generating set of the Lic algebra of a homogeneous group, Let

m
L= — ¥ (=X,
1=1

Suppos¢ that 1. is homogeneous of degree 21, n= maX,gjanny. It is known that L is the
infinitesimal generator of a semigroup T,/ = [ p, where p, is a C*<lunction. In this paper we
prove that

|YI[J;(JC}| < CI‘"(Q’l |I|ll(21llexp(__Cl(,xllu/i)lﬂzn— 1)),

where @ s the homogeneous dimension of the group, || is a heomogencous gauge and
Y= Y B, where ¥ is a homogeneous clement of the Lie algebra of degree a(j) with
Ul = ¥ io(). We do net use the Helller Nourrigat theary, instead we prove directly a local
subelliptic estimate for L.

1. Introdaction. Let g be a graded nilpotent Lie algebra. This means that
g admits a vector space decomposition g =V, &... @V, with [V, V] & V.
when i+j < p and [V}, V] = {0} if i+j > p. Let G be a nilpotent, connected
and simply connected Lie group that corresponds to g via the exponential map.
We equip g as well as G with a one-parameter family of dilations by extending
§,(X)= A X,XeV, A >0,bylinearity to g and putting §,(exp X) = exp(§, X).
Then we define the homogeneous dimension Q = Y%.,jdim¥, and choose
a homogeneous norm on G, ie a function x-—|x| satisfying:

(i) x-={x| is continuous on G and C* on G\{e};

(i) |x| 2 0 and |x| = 0 iff x = e;

(i} 18,x] = Alx[, A =0, xeC. _

Suppose that elements X,,.... X, in g generate g. We consider
X, ..., X, as left-invariant vector fields on G, and we define a differential
operator

m

(1.1) L= — ¥ (—1X3
=1
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acting on C¥(G). Assume also that L is homogenecus of degree 2n,
n= maxlgjg,,,nj.

It was observed by Folland and Stein [2] that L, being negative and
symmetric on C¥(G} < L*(G), is the infinitesimal generator of a one-parameter
semigroup {T}»o of operators on L*(G) such that T,f =f%p, where the
kernels p,, t > 0, are C*-functions. Morem?er, the function

plt, x) = {g‘,(x)’

is C* on RxG\{(0, ¢)} and satisfies the “heat equation”

(@,—Lyplt, x) = 8.0y

>0,
<0,

Recently, in the case whenn; = 1,j =1, ..., m,and Xy, ..., X, €V (then
L, called a sublaplacian, is homogeneous of degree 2), D, S, Jerison and A,
Sanchez-Calle [4] have established the following pointwise estimate of the heat

kernel p(t, x):
(1.2) plr, x) < Crm 02 gmals,
Here the positive constants C and ¢, depend only on L and the choice

of homogeneous norm. Moreover, they proved that for any multiindex
I'=(i, ..., i) of length {I| =/ and any nonnegative integer s one has

(12) X Pt X)) < Cppt oM=L,
Here ¢, is independent of I and s, and X, =X, ... X,.
On the other hand, J. Dziubanski and A. Hulanicki [1] have recently

obtained the following estimate for the decay of p, at infinity (with arbitrary
n; = 0): for every 4 in the enveloping algebra of G and for every N = 0 one has

(13) 0p,(¥)| < Ca,l,N"-_leI-

Let Y}, ..., ¥, be a basis of the Lic algebra g consisting of homogeneous
elements, i.e. Y;e V) for some a()e {1, ..., p}.j= 1,..., v. For any multiindex
I={(ij,..., 1) we write Y7 = Y} ., ¥ and we denote by || its homogeneous
length iI| = }j-, i;a(;). Since by the homogeneity of L, one has

(Y p)(Bs-:x) = 7172 YT pan (x),
it is easy to observe that (1.3) immediately gives
(1.4) [Y ) & Cpem QHITNEM (o]~ 1102,
The aim of this paper is the proof of the following

THEOREM 1. Let p(t,x) be the “heat kernel” associated to L=
=201 (—1)"X3 which we assume to be homogeneous of degree 2n, n
= MAaX; < j<mM;. For every multiindex I and every nonnegative integer s there is
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a positive constant Cy, such that
107 Y p(t, X)| < Cp,t 75720~ MU exp( e (xf27/r)H2~ 1)
with a positive constant ¢, independent of I and 5.

The main idea of the proof comes from [4]. The rate of decay of p, is
investigated by means of the local Gevrey regularity in the ¢ variable. Then
a standard homogeneity argument is applied. However, instead of a subelliptic
estimate vsed in [4] (which is a quantitative form of Hérmander’s hypoellip-
ticity theorem for 8,—1L, L being the sublaplacian) we apply a subelliptic
estimate which we prove directly for the generator L without appeal to the
Hellfer-Nourrigat theory,

Acknowledgements. [ am indebted to Andrzej Hulanicki for bringing the
problem to my attention and to Krzysztof Stempak for his generous help in
preparation of this paper,

2. Gevrey regularity. We identify the group G with a Buclidean space R"
(thus v = 3 7., dim V). Then we fix the Buclidean distance in R**': |(t, x}|
=2 +xi4 ... +xHY? and set

B(r) = {{t, x): |z, x)|} <r}.
For any functions /, ¢ on an open subset @ = R'*! we write

1 Ny = ([ f (20 %)) de dx)'7?
2

and, when Q = R*",

gy = {1, Dg(x, Ndtdx.
12

We will also abbreviate | f|ype+yy by | 1.

Throughout the paper funclions are supposed to be real-valued and ¢,
¢, ¢y ven, will denote constants that may vary from line to line.

We will also use the folowing notation. By #(M, ), M >0,J=1,2, ...,
we denote the set of all C-functions ¢ on R**! satisfying: supp ¢ < B(1),
0 o<1, and for every multiindex o = (e, ..., %,4+q) with |of < J

101, < M,

lof = 3! @, being the Euclidean length of «.
It is clear that for any X eq, considered now as a left-invariant vector field
o R, one has

Xfogo=—{f. Xg2, [, geCPR),
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Let L be the differential operator on R’ defined by (1.1). Recall that
n = maxX,<jsn ;. The main result of this section is the following

PROPOSITION 1. There is a constant R >0 such that for any function
u satisfying (8,~ Lju(t, x} =0 on B(1) we have

18868 Laacr 2 < REGD™ Nl aeneny-
The proof of Proposition 1 requires several lemmas.

LemMa 1. Let X g be a lefi-invariant vector field on R and let k. r be
positive integers. Then for every a>0 there iy a positive constunt
C=C(X, k,r,a) such that for every M >0, eeG(M, 1) and ueCV(B(1))

@1 e Xult < _Ma_z g 2 XEH Ly 2k CMP o * T XE g,
Proof We have
o  XFul?
= (A Xry, Xhuy = — (X (M09 Xhu), X
= —2(r+ k)X X o X, XE )y (@R xR Ly Xy

|

—2(?‘~|~ k)(fp”""ch'X"u, q)ri-k—lxk~1u>
_<§Dr'+k+1Xk+1u, wr-»k—iXku:w_
Now, the Schwarz inequality implies
H(Pr'l‘kau”:l S C:MH (PH-kauH . ”(PH-k— 1Xfc—-1.‘“H
+ ‘|¢r+k+1xk+ luH . H(pwl-k-- 1 ka:l“H

< Z1:”(Pr+k‘XhM“24_(2611‘,1)2 “(Pri-k-—iXk~ 1 u”l
Ok kbt 2 M ket e
+M2”(P Xk+Lu”2+“amH(Pr\k lxk 1uHZ.
This immediately gives (2.1).
. Lemma 2. Le.t Xeg, letr, 1, k,.m be positive integers and [ < k < m. For
every o > O there is a constant C depending only on X, r, [, k, m and o such that
for every M >0, e O®(M, 1) and usC™(B(1))

"t 1
(2.2) H‘P + kauuz < WIW”"'X"‘MHZ+CMZ”‘””!\tpr""'X"ull2.

Proef We prove (22) by induction on m~I, i m—{=2 it is just
Lemma 1. Thus, suppose first that m—k > 2. Using the induction hypothesis
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for k< m—1<m we gel
(2_3) ”q)wl-m--lxm--luu?. g_M('_'_z‘“(prhnxnnu”z_l_Cer(m“lﬂc) "(Pr-‘rkauuz_

Now, take ¢ = min(1/2C), 1/2) and by induction hypothesis for I < k < m—1
find a constant C” such that

+ d o
(2_4) H(prlkxku||zs_Mm:_k__j“(Pr+m L ym 1u"2

+ Cf/MZ(k"[) H (Pr-t-leuH 2.

Clear)y, combining (2.3) and (2.4) gives (2.2). In the case when k—! 2 2 we use
a similar argument,

LEMMA 3. Let X eq and let k, v, g be positive integers. Then for every a >0
there is a consiant C depending only on k, ¥, g and X such that for every M>0,
pe®(M, k) and u, ve C*(B(1)

@5 o, [X5 ot ud] € 1ptol{allgh™r X ul® + CM* @ ul ).
Proof. By an easy induction
I
(2.6) X' =Y To(Xe... X)o7,
j=1 v
where the jnner sum is taken over all multiindices v = (iys -..» 1)) such that
A P O T T iy=1 Moreover,
k
[Xk, cpk+r+q]u = Z (I;)(X!q)k+r+q)(xk—tu)‘
I=1

Using (2.6), since 1X"¢... XY0| < C,M' and 0< @ <1, forany [ = 1, ..., k
we have [X'@**T™9| < C,M'¢**r 97" Therefore, .

<o, Xth+r Xt tud) < ol, 1X @t I X Tl
Cy M <ptlet, @+ XF )
C, M@l o T X ]

NN A

Consgequently,

k
Ko, [XF, g**r+eJupl < Cllotoll 3 Mot X ul
I=1

k
< [oll(Cy T MP g ),

=l

7w~ Studin Malhemation 95,
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Now, using Lemma 2 with a replaced by a/(kC,) we gel

k
C4 Z MZI ”(Pk—i-r—IXk—!HHZ
I=1

k a
S c MZ! r-Hch 2 CMl(k-ml) r 2
) ("““"m g Xl loul )

< allo™ X ulP 4+ O M| ptul .
This concludes the proof of Lemma 3.

LemMa 4. (Gdrding type inequality). Let

m

= = 3 (=1

Jj=1

n=mmaxn; X,..., X, eq, and lét r be a positive integer. For every a > 0 there
is a constant C > 0 such that for any M 2 1, o e O(M, n) and ue C*(B(1)) we
have

2.7) =@ L, uy 2 (1~a) 3 @ X pul 2 CM* | ulf?.
/=1
Proof. The inequality (2.7) is an easy consequence of
@8) (=D EX P uy 2 (1—a) |  Xhu| 2~ CM? [ orul %,
where the constant C depends on X, k, r and a only. Indeed, vsing (2.8) we get
_<cpz(r+n)Lu, u) = z (““1)""(@2('"'_")){%"’”, u>

i=1

n

"
= (lwﬂ) Z “(Prﬁ-nXS”unz_ 2 CjMZlIJH(pr‘F‘iI"'?JJuHZ
J=1

j=1
Z(1=a) 3, o™ " Xju||* — CM* | p"u| 2.
i=1
Thus it suffices to prove (2.8). We have
(—I)"{goz"“"X""u, u> — (X"u, Xk(qJ_Z(r-ivk)u»

= CX*u, 9200 Xy + (X, [XF, 920 T0T0))
2 "X U] — (X, X, 20|,
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Now using Lemma 3 we estimate
(X, [XE, 20 )] < o Xl gt X w4 M g )2

2k 1712
M arut 2)

C
P (Ll”z ”[Pk-l'rxkuﬂ)(a ||(pk+rX4’:u”2+_ -

1 CM*
< 2(“ lIfP"“"'X"MﬂZ+allw"+"X"ullz+"—_(;— ilo"ull 2)

< U H (Pk ~I~J*Xku“2 - CfM?.k ”(Prf«iﬂ 2,
Combining the estimates above gives (2.8).

LemMma 5. Let L, nobe s in Lemma 4 and let r be a positive integer. There
exists a constant C = O such that for any u satisfying (8,—L)u =0 on B(1),
Mz and pal(M, n) we have

""" Xjeull < CM™{o"ul.

Proof. Clearly <8,u, v) =0 for any veC¥(R'*'). Therefore, since
o't < """, by the Schwarz inequality we obtain

"L, uy| = ch"*”('i,u, @ |
D
P |<(6,{p""")u, rp""“'u)i £ M(r+n) \I(p"“"luﬂz.

Finally, using Lemma 4 we gel

H
(1 M“) 2 “(pr‘-mxguuul < |<(p"'""L‘M, (p’+"tt>|~}~CM2" “(prullz
J‘A;a ]
< M{r+n) " Hull? + CMP " ul)?
< CM*|gul?,
which completes the proof of Lemma 3.

Now we are ready to prove Propositim} I
First, we show that the lemmas above imply

(29) o™ dull < CM*"|@"u]

with & constant € > 0 that depends only on L (therefore also on ») but not on
Mz, pe®M,n) and ueC*(B(1) satisfying (L~8)u =0. We have
(210) [ aul® = {Bu, " 8u) = (Lu, ¢*0u)

L]

w3 (X0, XY 8,4))
/=1

< 3 KX, XpoerI0adl+ X KX, 9 X8
=1 =

< }E Xy, TXY O8]+ X, Ko™ Xiu, (8,0*) XU
J=1 J=1
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The last step is justified by the identity {v, 6,v> = 0 with v = " X%iu. Next,
applying Lemma 3 with k =n;, r =4n—n;, g =2n we obtain

X, [XPe™ )] < |0 Xul (lo™ X oul? + CoM™ o™ 0,u|2) 7

By Lemma 5, [|@*" X%ul| < CM"|¢"ul and |o*" X} 0,u < CM" o Opull. In
all,

(2.11)  KX%u, [X7, *"]dudl < CM" " |[{C* M + Coy M) 2 || ™" 8,
< Cy M|l ull 9> 8 ul
< HmCIM™ @ ull* +m™~ o™ du]?).
On the other hand, the Schwarz inequality and Lemma 5 imply
(212) K> X, (2,0™) X ud|-< 3InM o> Xl - o> ™" Xl
< 3InM [P XJull? < C,MPH g'ul* < C,M*™ @mul)?.
Combining (2.10), (2.11) and (2.12) gives
lep*" 8% < 4m2CEM*||"u|” +4 10> Bull> +mC, M* [ @"ul,

This clearly implies (2.9).

Let 0 < ¢ < r < 1. It is easy to choose a function ¢ = ¢, CF(R"™ 1) with
the following properties: 0 < @ < 1, ¢ = 1 on B(r—¢), ¢ = 0 outside B(r) and
10| < De~# < (D/e)* for any multiindex o = (o, ..., %,+,) Of length < n.
Here the constant D = 1 does not depend on r and &. Indeed, fix a function
0,€CE(R), 0K 0, <1, po(¥) =1 for y<0 and @(y) =0 for y = 1 and put

It x)|—r+a)_

(Pr,a(ta x} = (P()( p
Thus applying (2.9} to the function ¢ = @,, we obtain

12,4 ) g~y < 1@ Ol < C(D/)* " uli < Cp 872" ] gy

By induction on &
@k ull g ey S Che™ ™ el pen-
Setting & = 1/(2k}, r = 1 and using the Stirling formula one has
10% ] g2y < 2 CFE™ el gy < RUED™ 0] )

with a positive constant R. This finishes the proof of Proposition 1.

3. Proof of Theorem 2. Recall that Y, ..., ¥, is a basis in ¢ and we write
Y*=Y"... Y™ As in [4] we use Proposition | to express the Gevrey
regularity of the solution to (d,—L}u =10 in the ¢ variable in terms of the
L*-norm.
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More precisely, we prove

ProrosiTION 2. There is a constant R, such thai for every u satisfying
(8,—L)u=0 in B(1)

(30 sup |88 Yu| < C, o RE (K" [ Lagor
B(1/10)

where the constant C, . depends only on L, s and a.

Proof. Observe that (3.1) is a consequence of the following subelliptic
estimate for the operator L:

¥
(3.2) Y0l F2) € Crpad 3, 1 00 E2am),

r=0
where N = N(z) is a positive integer, K = Int F — R*, K is compact, F closed

and the constant Cgy, does pot depend on a smooth function v. Indeed,
taking K = {xeR": [x| <1/8}, F = {xeR" ||x| < 1/4} we have

1/8 :
85 Y ul fanrsay S § 1Y *ult, Wi dt
/8

-1

N 1/8
£C Z _r L8k *Tult, ) famdt
rm(Q ~1/8

N N
< C ¥ Lo ulfapumm < C 3 heETtruf Samyzy
r=0

re()

¥
< C Y, (R [(k+s+r)1* ] 5y € CHRE R |l gy}

r=0

Clearly, the Sobolev lemma now gives (3.1).

So, it remains to prove (3.2). First, note that the operator ¥*(I — L)~ for
N 2 1+(Q +|«)/(2n) is the operator of convolution with a bounded function
smooth outside zero that decreases rapidly at infinity together with all its
derivatives. Indeed, denoting by the same symbol an operator and the
corresponding kernel, we have '

[+2]

3.3) Yo~ L)~V (x) = 'F(ll_\?i [ %=1em Yo (x)dt,

Now, by a recent result of Dziubanski and Hulanicki [1] (cf. (1.4))

— [t L2

[P2p ()] < C o~ @Hiang
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Therefore

o
1Yo (I~ L)~N(x)} < C, T(N)~t [ ¢t @rlabiiamgmegm st/ gy,

Since for N 2 1 +{Q -+ |x])/(2n) the last integral is bounded uniformly in x, so is
the kernel Y*(I—L) ¥(x).
Further, replacing o by o+ f in (3.3) and using the fact that for |x| > ¢ and

< ||
(V1= (@ Jat i) g = [2le™ VAN o O exp{— & |x|¢ ™ HEM),

we obtain

£C _f e~ texp(—%[x|¢™ Ve dt + x|V j'e“"dl

1]

Y2y (I~ Ly ¥(x)

< C(E |a!112/1+lx|Nle I.::I),

where N, = N—1—(Q+|x+p)/(2n). This proves that all derivatives of
Y*(I—L)"¥(x} rapidly decrease at infinity.

Now, take K = IntF & R, K compact, F closed. Choose a symmetric
relatively compact neighborhood U of zero such that K-U < IntF. Also
choose C®-functions ¢,, @, on R’ with the properties: 0< ¢, <1,
suppp, S U, ¢,=1 in a neighborhood of zero,” @, =1 on KU,
supp¢@, < Int F. We define

R(x)= i)Y (I=0)""(x), Wx) =10, ()¥U~L)" ).

Denoting, as before, by R and W the convolution operators with the
corresponding kernels, we can say that R is the operator of convolution with
a function supported in U and that the kernel of the operator W is smooth.
Also the operator W, = W(I—L)" has a smooth kernel.

Considering v as a distribution on R (v = 0 outside F) we have on K

Yiu = Y(I~L) " ¥(I~L)"v = RU~Lv+ W, v = R(p, (I — L)¥v)+ W,e.

The last identity follows from the symmetry of U and the fact that ¢, =1 on
K-U. Consequently,

< |[Rle,(1—L)"v)

| Y0l g2y < reao 1 Wiela

N
C 2 NHU“LW)-

r=0

< CIE— LY vl oy + 0] r2qmy) <

This proves (3.2) and thus concludes the proof of Proposition 2.

Remark. At the end of the paper we propose a different proof of the
estimate (3.2) that does not depend on the result of Dziubafiski and Hulanicki.
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LEMMA 6. Let feC®(~1, 1) and f(t) =0 for —1 <t <O0. If, for ay > 1,
|F®E) < Rk, 0t <1, k=0, 1, 2,..., then

|f (0 < e Lexp{—{y— e~ *(Re)~ ez~ 11}
Proof
I( ) . . Kt
£ < = e ds < RO (KA DY g
= Rk-l-1((k+f{)])?-‘1tk+1 < [(R!.)Uh"l)(k_Jr_])](ynl)(k.,.l).

Choose k so that k-+1 < e (R~ Y0~ < k42, Then (R ~1 g
and so

1/(e(k+1)}

|f( )| < [(Rt)”” ”(k+l)]“’ L)+ 1) <e — (3= 1)(k+ 1)
Sexp{—@—1e Ry~ D_1)},
which proves the lemma.

We are now ready to prove Theorem 1. Since dfp = L'p it suffices to
estimate only the space derivatives Y*p(t, x) of p(t, x), for any multiindex .

By applying Proposition 2 to the function p({t, x), for any (¢, x,) # (0, 0)
in some neighborhood Uy, ., of (t;, x,) we have

(3.4) sup {67 Y*p(t, x)| < CoRE(K!™,

Ul'orxul

where the constant C, depends on (t,, x,) and ¢, whereas R, depends on
(t5. xo) omly. ‘

The set K = {(t, x)eRx G: —1 <t < 1,|x| = 1} is compact and does not
contain (0, 0) so we cover it by a finite family of neighborhoods Uy, ., as above,
and uvsing (3.4) we get

sup [0F Y*p(t, x)| < CR*(kI)*,
K

with an absolute constant R and a C = C(x).
Since p(t, x) =0 for £ <0, using Lemma 6 we estimate
[Yop(t, x)|  Cpie™ ™"
uniformly in (¢, x)e K, with a constant a¢ > 0. As we mentioned before, one has
(Yp)de-1%) = 1LY *p g ().
Consequently, for |x| = 1 _ .
[Y2p, ()] = | Yy (31 G- 1 2)| = X[ 7)Yy 2n (B -1 )

— dlx[2ni@a =1y
€ Cy i lx[ldl+ Qg a1t
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Take an arbitrary 0 <e¢, < a. Since |Y*p;(x)| is bounded on |x|< 1
therefore, for a sufficiently large constant C,

1Y7ps (x)| <

C e o [x|2r/c2n= L}
x .

Finally, by dilation
[Y“pt(x)i = |Yap‘(6gl,l[2n)5 wlf(zn)x)l 5
< C o+ D@rexp (¢
This concludes the proof of Theorem 1.

4. Another proof of (3.2). The following proof of (3.2), independent of the
estimate (1.4), is a modification of a proof of a theorem in Hérmander's
book [3], p. 353.

As usual, by H(s) we will denote the ordinary Sobolev space of order s on
R* and |ul g = ([ ()31 + €2 dE)/? denotes the norm of we H(s). We
also write ||f} to denote the I*norm of a function f on R".

We write (3.2} in an equivalent form

¢ llal +Qdit2nyy Y*p, (8; - vomx)|

((efinjyn=v).

“4.1) floyulmg < C Z lo, Lul,

r=0

where ¢, @, are compactly supported C®-functions, ¢, = 1 on a neighbor-
hood of the support of ¢,, N =N(s), C = C(s, ¢,, ¢,). When n=1, (4.1) is
a subelliptic estimate used in the proof of Hérmander’s hypoellipticity theorem
(cf. [4]). It is easy to observe that Lemmas 3 and 4 give

L X ol <

Set @ =lin{X:i=1,...,m} =g, Qurs=[C, O
l-mln{: = lin{{ )i~ 1Qk}}
The following-iemma is due to J. J. Kohn (cf. eg. [5]).

< 217% then

Cllo,Lul + llgaul).

1, k=1,2,.,., and

LemMa 7. If q,€Q, and ¢

4.2) lax(@1¥) a1 € C(ll @ ull + Z [ X, (ﬁotu)”)

with a constant C independent of u,
COROLLARY 1.

< Clllpz Ll + oy ul).
1/2! 1

f|fP1u”Hu/z' -y &

In fact, if q,,..., g, generate g then for ¢ <

”(P.lu“ff(e) C Z H'&'Khu”ma s

C'lloyul+ Z 1X e w)l1).
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In order to get (4.1) we wil need operators identifying different H(s) and
commuting with L. To do this we use powers of a right-invariant Laplacian on
G. Denote it by 4.

Lemma 8, For any number of the type s = k/2%, k, | being integers, 1 > 0, the
operator (I—AY* is continuous from Hpeomp 10 Hyp—g 00 MER.

Proof. For s=2 or s= —2 the claim is well known (Friedrichs
inequality if s = —2). S0, by induction, it suffices to prove that continuity for
s implies continuity for s/2. Using the induction hypothesis, we obtain

= AyPull = (I — 4Yu, u
Clulfis-
Next, we estimate the norm |[(f —4)"*ul|gzm. m being an integer:
I{ = Ay (T — Ay ulf = | — )7 (L~ )" ull
< Clld—4)"u| gy <

S U= dPul ge-o |6l <

Cillullazm+s-
The result for any m is now obtained by interpolation.

LemMma 9. The operator (I—AY, seR, is the operator of convolution with
a distribution smooth outside zero. In addition, all derivatives of the kernel are
integrable outside any neighborhood of zero.

Proof Since 4 is the image of a homogeneous right-invariant sub-
laplacian on a free nilpotent group it suffices to prove the lemma for such an
operator.

In fact, if G=F/N then

| |Y*4*(aN)|d(aN) =

[ |§ Y*43(an)dn|d(aN)
G\ FIN\U N

<
F\n".l(U)
Next, the smoothness follows from the integrability of derivatives.
Now, considering a nilpotent free group, we can apply the estimate of
Theorem 1| for L = 4y and then (3.3) gives the integrability of Y*(I—d4y)
outside any neighborhood of zero. This concludes the proof of Lemma 9.

|Y* A5 (a) da.

Equipped with the above lemmas we can start the proof of (4.1). First,
given neighborhoods U <V of e, choose a C™-function ¢ supported on
V with ¢ = 1 on U. For any seR define compactly supported distributions
A, = (I~ 4)""2, B, = o(I— A (now (I—4)"%2, (I— 4" are considered as
dlstnbutmns) _

From Lemma 9 it follows that = ([-d)*—B, and
W, = (I~ 4)"%*— A, are integrable functions and, moreover, all their deriva-
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tives are also integrable. Since
A B w= I — A« W, — W, % B+ W, »« W,

A;* B,—1I has a smooth kernel, and similarly for B = A,—1I.
It is easy to observe that, by induction, (4.1) follows from

(4.3) ”(Pl""”n(s-w} < Cllloh L””H(s)“i“ ey u Hu(.s;),

where ¢, ¢4 are compactly supported C*-functions, ¢4 = 1 on a neighbor-
heod of supp @, . Now, define K, = suppe,, K, = {x: @iiv) = |} and choose
V, a symumetric neighborhood of zero, and compact scis K,, K, satisfying
Ky V*< Ky, i=1,2,3. Choose also distributions A,, B, as above and
C™-functions v, i=1,...,4, ¥, = ¢, suppy, = K;, ¥y;=1 on K,.('V,
i=2,3,4.

NOW! since ”””H(m) & C(”Bsu”mm—s)'i' ”””H(m—s)) and “Bs“”H(m) < C ”M”H(ni%s)a
we have

[yl s ey < CUNra Botal] ey + W 22 gy}
S ol LBou || + |y Bt + I p tl] )
< Clllg Ll ey + ¥ g il )
which clearly gives (4.3) and thus concludes the proof of (4.1).
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