100		
50 0	STUDIA	M

STUDIA MATHEMATICA, T. XCV (1989)

Sharp pointwise estimate for the kernels of the semigroup generated by sums of even powers of vector fields on homogeneous groups

bу

WALDEMAR HEBISCH (Wrocław)

Abstract. Let X_1, \ldots, X_m be a generating set of the Lie algebra of a homogeneous group. Let

$$L = -\sum_{j=1}^{m} (-1)^{n_j} X_j^{2n_j}.$$

Suppose that L is homogeneous of degree 2n, $n=\max_{1\leqslant j\leqslant m}n_j$. It is known that L is the infinitesimal generator of a semigroup $T_tf=f*p_t$, where p_t is a C^∞ -function. In this paper we prove that

$$|Y^{I}p_{I}(x)| \leq C_{I}t^{-(Q+|I|)/(2n)}\exp(-C_{1}(|x|^{2n}/t)^{1/(2n-1)}),$$

where Q is the homogeneous dimension of the group, $|\cdot|$ is a homogeneous gauge and $Y^I = Y_1^{l_1} \dots Y_k^{l_k}$, where Y_j is a homogeneous element of the Lie algebra of degree $\alpha(j)$ with $|I| = \sum_i i_j \alpha(j)$. We do not use the Helffer-Nourrigat theory, instead we prove directly a local subclinitic estimate for L.

- 1. Introduction. Let g be a graded nilpotent Lie algebra. This means that g admits a vector space decomposition $g = V_1 \oplus \ldots \oplus V_p$ with $[V_i, V_j] \subseteq V_{i+j}$ when $i+j \leq p$ and $[V_i, V_j] = \{0\}$ if i+j > p. Let G be a nilpotent, connected and simply connected Lie group that corresponds to g via the exponential map. We equip g as well as G with a one-parameter family of dilations by extending $\delta_{\lambda}(X) = \lambda^j X$, $X \in V_j$, $\lambda > 0$, by linearity to g and putting $\delta_{\lambda}(\exp X) = \exp(\delta_{\lambda} X)$. Then we define the homogeneous dimension $Q = \sum_{j=1}^p j \dim V_j$ and choose a homogeneous norm on G, i.e. a function $x \to |x|$ satisfying:
 - (i) $x \rightarrow |x|$ is continuous on G and C^{∞} on $G \setminus \{e\}$;
 - (ii) $|x| \ge 0$ and |x| = 0 iff x = e;
 - (iii) $|\delta_{\lambda}x| = \lambda |x|, \ \lambda > 0, \ x \in G.$

Suppose that elements X_1, \ldots, X_m in g generate g. We consider X_1, \ldots, X_m as left-invariant vector fields on G, and we define a differential operator

(1.1)
$$L = -\sum_{j=1}^{m} (-1)^{n_j} X_j^{2n_j}$$

acting on $C_c^{\infty}(G)$. Assume also that L is homogeneous of degree 2n, $n = \max_{1 \le j \le m} n_j$.

It was observed by Folland and Stein [2] that L, being negative and symmetric on $C_c^{\infty}(G) \subseteq L^2(G)$, is the infinitesimal generator of a one-parameter semigroup $\{T_t\}_{t>0}$ of operators on $L^2(G)$ such that $T_t f = f * p_t$, where the kernels p_t , t>0, are C^{∞} -functions. Moreover, the function

$$p(t, x) = \begin{cases} p_t(x), & t > 0, \\ 0, & t \leq 0, \end{cases}$$

is C^{∞} on $\mathbb{R} \times G \setminus \{(0, e)\}$ and satisfies the "heat equation"

$$(\partial_t - L)p(t, x) = \delta_{(0,e)}.$$

Recently, in the case when $n_j = 1, j = 1, ..., m$, and $X_1, ..., X_m \in V_1$ (then L, called a *sublaplacian*, is homogeneous of degree 2), D. S. Jerison and A. Sánchez-Calle [4] have established the following pointwise estimate of the heat kernel p(t, x):

$$(1.2) p(t, x) \le Ct^{-Q/2}e^{-c_1|x|^2/t}.$$

Here the positive constants C and c_1 depend only on L and the choice of homogeneous norm. Moreover, they proved that for any multiindex $I = (i_1, \ldots, i_l)$ of length |I| = l and any nonnegative integer s one has

$$(1.2') |\partial_t^s X_r p(t, x)| \leq C_{I,s} t^{-s-|I|/2-Q/2} e^{-c_1|x|^2/t}.$$

Here c_1 is independent of I and s, and $X_1 = X_{i_1} \dots X_{i_l}$.

On the other hand, J. Dziubański and A. Hulanicki [1] have recently obtained the following estimate for the decay of p_i at infinity (with arbitrary $n_j > 0$): for every ∂ in the enveloping algebra of G and for every N > 0 one has

$$(1.3) |\partial p_t(x)| \leqslant C_{\partial,t,N} e^{-N|x|}.$$

Let Y_1, \ldots, Y_{ν} be a basis of the Lie algebra g consisting of homogeneous elements, i.e. $Y_j \in V_{\alpha(j)}$ for some $\alpha(j) \in \{1, \ldots, p\}, j = 1, \ldots, \nu$. For any multiindex $I = (i_1, \ldots, i_{\nu})$ we write $Y^I = Y_1^{i_1} \ldots Y_{\nu}^{i_{\nu}}$ and we denote by |I| its homogeneous length $|I| = \sum_{j=1}^{\nu} i_j \alpha(j)$. Since by the homogeneity of L, one has

$$(Y^{I}p_{t})(\delta_{s^{-1}}x) = s^{|I|+Q} Y^{I}p_{s^{2n_{t}}}(x),$$

it is easy to observe that (1.3) immediately gives

$$|Y^{I}p_{t}(x)| \leq C_{I}t^{-(Q+|I|)/(2n)}\exp(-|x|t^{-1/(2n)}).$$

The aim of this paper is the proof of the following

THEOREM 1. Let p(t, x) be the "heat kernel" associated to $L = -\sum_{j=1}^{m} (-1)^{n_j} X_j^{2n_j}$ which we assume to be homogeneous of degree 2n, $n = \max_{1 \le j \le m} n_j$. For every multiindex I and every nonnegative integer s there is

a positive constant $C_{I,s}$ such that

$$|\partial_t^s Y^I p(t, x)| \le C_{I,s} t^{-s-Q/(2n)-|I|/(2n)} \exp(-c_1(|x|^{2n}/t)^{1/(2n-1)})$$

with a positive constant c_1 independent of I and s.

The main idea of the proof comes from [4]. The rate of decay of p_t is investigated by means of the local Gevrey regularity in the t variable. Then a standard homogeneity argument is applied. However, instead of a subelliptic estimate used in [4] (which is a quantitative form of Hörmander's hypoellipticity theorem for $\partial_t - L$, L being the sublaplacian) we apply a subelliptic estimate which we prove directly for the generator L without appeal to the Helffer-Nourrigat theory.

Acknowledgements. I am indebted to Andrzej Hulanicki for bringing the problem to my attention and to Krzysztof Stempak for his generous help in preparation of this paper.

2. Gevrey regularity. We identify the group G with a Euclidean space R^v (thus $v = \sum_{j=1}^n \dim V_j$). Then we fix the Euclidean distance in R^{v+1} : $\|(t, x)\| = (t^2 + x_1^2 + \dots + x_v^2)^{1/2}$ and set

$$B(r) = \{(t, x): ||(t, x)|| < r\}.$$

For any functions f, g on an open subset $\Omega \subseteq \mathbb{R}^{v+1}$ we write

$$||f||_{L^2(\Omega)} = \left(\iint_{\Omega} |f(t, x)|^2 dt dx\right)^{1/2}$$

and, when $\Omega = R^{\nu+1}$,

$$\langle f, g \rangle = \iint_{\Omega} f(t, x) g(x, t) dt dx.$$

We will also abbreviate $||f||_{L^2(\mathbb{R}^{\nu+1})}$ by ||f||.

Throughout the paper functions are supposed to be real-valued and c, c', c_1 , ..., will denote constants that may vary from line to line.

We will also use the following notation. By $\mathcal{O}(M, J)$, M > 0, J = 1, 2, ..., we denote the set of all C^{∞} -functions φ on \mathbb{R}^{v+1} satisfying: supp $\varphi \subseteq B(1)$, $0 \le \varphi \le 1$, and for every multiindex $\alpha = (\alpha_1, ..., \alpha_{v+1})$ with $|\alpha| \le J$

$$\|\partial^{\alpha}\varphi\|_{\infty}\leqslant M^{|\alpha|},$$

 $|\alpha| = \sum_{i=1}^{\gamma+1} \alpha_i$ being the Euclidean length of α .

It is clear that for any $X \in \mathfrak{g}$, considered now as a left-invariant vector field on \mathbb{R}^{ν} , one has

$$\langle Xf, g \rangle = -\langle f, Xg \rangle, \quad f, g \in C_0^{\infty}(\mathbb{R}^{\nu}).$$

96

Let L be the differential operator on R^{ν} defined by (1.1). Recall that $n = \max_{1 \le j \le m} n_j$. The main result of this section is the following

Proposition 1. There is a constant R > 0 such that for any function u satisfying $(\partial_t - L)u(t, x) = 0$ on B(1) we have

$$\|\partial_t^k u\|_{L^2(B(1/2))} \le R^k(k!)^{2n} \|u\|_{L^2(B(1))}$$

The proof of Proposition 1 requires several lemmas.

LEMMA 1. Let $X \in g$ be a left-invariant vector field on \mathbb{R}^v and let k, r be positive integers. Then for every a > 0 there is a positive constant C = C(X, k, r, a) such that for every M > 0, $\varphi \in \mathcal{O}(M, 1)$ and $u \in C^{\infty}(B(1))$

$$(2.1) \qquad \|\varphi^{r+k}X^ku\|^2 \leqslant \frac{a}{M^2} \|\varphi^{r+k+1}X^{k+1}u\|^2 + CM^2 \|\varphi^{r+k+1}X^{k+1}u\|^2.$$

Proof. We have

$$\begin{split} \|\varphi^{r+k}X^{k}u\|^{2} &= \langle \varphi^{2(r+k)}X^{k}u, X^{k}u \rangle = -\langle X(\varphi^{2(r+k)}X^{k}u), X^{k-1}u \rangle \\ &= -2(r+k)\langle \varphi^{2(r+k)-1}X\varphi \cdot X^{k}u, X^{k-1}u \rangle - \langle \varphi^{2(r+k)}X^{k+1}u, X^{k-1}u \rangle \\ &= -2(r+k)\langle \varphi^{r+k}X\varphi \cdot X^{k}u, \varphi^{r+k-1}X^{k-1}u \rangle \\ &- \langle \varphi^{r+k+1}X^{k+1}u, \varphi^{r+k-1}X^{k-1}u \rangle. \end{split}$$

Now, the Schwarz inequality implies

$$\begin{split} \|\varphi^{r+k}X^ku\|^2 & \leq C'M\|\varphi^{r+k}X^ku\|\cdot\|\varphi^{r+k-1}X^{k-1}u\| \\ & + \|\varphi^{r+k+1}X^{k+1}u\|\cdot\|\varphi^{r+k-1}X^{k-1}u\| \\ & \leq \frac{1}{4}\|\varphi^{r+k}X^ku\|^2 + (2C'M)^2\|\varphi^{r+k-1}X^{k-1}u\|^2 \\ & + \frac{a}{M^2}\|\varphi^{r+k+1}X^{k+1}u\|^2 + \frac{M^2}{a}\|\varphi^{r+k-1}X^{k-1}u\|^2. \end{split}$$

This immediately gives (2.1).

LEMMA 2. Let $X \in \mathfrak{g}$, let r, l, k, m be positive integers and l < k < m. For every a > 0 there is a constant C depending only on X, r, l, k, m and a such that for every M > 0, $\varphi \in \mathcal{O}(M, 1)$ and $u \in C^{\infty}(B(1))$

Proof. We prove (2.2) by induction on m-l. If m-l=2 it is just Lemma 1. Thus, suppose first that $m-k \ge 2$. Using the induction hypothesis

for k < m-1 < m we get

 $(2.3) \quad \|\varphi^{r+m-1}X^{m-1}u\|^2 \leq \frac{a}{M^2}\|\varphi^{r+m}X^mu\|^2 + C'M^{2(m-1-k)}\|\varphi^{r+k}X^ku\|^2.$

Now, take $a' = \min(1/(2C'), 1/2)$ and by induction hypothesis for l < k < m-1find a constant C" such that

(2.4)
$$\|\varphi^{r+k}X^{k}u\|^{2} \leq \frac{\alpha'}{M^{2(m-1-k)}} \|\varphi^{r+m-1}X^{m-1}u\|^{2} + C''M^{2(k-l)} \|\varphi^{r+l}X^{l}u\|^{2}.$$

Clearly, combining (2.3) and (2.4) gives (2.2). In the case when $k-l \ge 2$ we use a similar argument.

LEMMA 3. Let $X \in \mathfrak{g}$ and let k, r, q be positive integers. Then for every a > 0there is a constant C depending only on k, r, q and X such that for every M > 0, $\varphi \in \mathcal{O}(M, k)$ and $u, v \in C^{\infty}(B(1))$

$$(2.5) \qquad |\langle v, [X^k, \varphi^{k+r+q}]u \rangle| \leq \|\varphi^q v\| (a\|\varphi^{k+r} X^k u\|^2 + CM^{2k} \|\varphi^r u\|^2)^{1/2}.$$

Proof. By an easy induction

$$(2.6) X^{i}\varphi^{n} = \sum_{j=1}^{l} \sum_{\nu} \alpha_{\nu} (X^{i_{1}}\varphi \dots X^{i_{j}}\varphi) \varphi^{n-j},$$

where the inner sum is taken over all multiindices $v = (i_1, \ldots, i_j)$ such that $i_1, \ldots, i_i \ge 1$, $i_1 + \ldots + i_i = l$. Moreover,

$$[X^k, \varphi^{k+r+q}]u = \sum_{l=1}^k \binom{k}{l} (X^l \varphi^{k+r+q}) (X^{k-l} u).$$

Using (2.6), since $|X^{i_1}\varphi \dots X^{i_j}\varphi| \leqslant C_1 M^l$ and $0 \leqslant \varphi \leqslant 1$, for any $l=1,\ldots,k$ we have $|X^l \varphi^{k+r+q}| \le C_2 M^l \varphi^{k+r+q-l}$. Therefore,

$$\begin{split} |\langle v, X^l \varphi^{k+r+q} X^{k-l} u \rangle| &\leq \langle |v|, |X^l \varphi^{k+r+q} X^{k-l} u| \rangle \\ &\leq C_2 M^l \langle \varphi^q | v|, |\varphi^{k+r-l} |X^{k-l} u| \rangle \\ &\leq C_2 M^l \|\varphi^q v\| \cdot \|\varphi^{k+r-l} X^{k-l} u\| \end{split}$$

Consequently,

$$\begin{aligned} |\langle v, [X^k, \varphi^{k+r+q}]u \rangle| &\leq C_3 \|\varphi^q v\| \sum_{l=1}^k M^l \|\varphi^{k+r-l} X^{k-l} u\| \\ &\leq \|\varphi^q v\| \left(C_4 \sum_{l=1}^k M^{2l} \|\varphi^{k+r-l} X^{k-l} u\|^2\right)^{1/2}. \end{aligned}$$

Now, using Lemma 2 with a replaced by $a/(kC_4)$ we get

$$C_{4} \sum_{l=1}^{k} M^{2l} \| \varphi^{k+r-l} X^{k-l} u \|^{2}$$

$$\leq C_{4} \sum_{l=1}^{k} M^{2l} \left(\frac{a}{k C_{4} M^{2l}} \| \varphi^{r+k} X^{k} u \|^{2} + C M^{2(k-l)} \| \varphi^{r} u \|^{2} \right)$$

$$\leq a \| \varphi^{r+k} X^{k} u \|^{2} + C' M^{2k} \| \varphi^{r} u \|^{2}.$$

This concludes the proof of Lemma 3.

LEMMA 4. (Garding type inequality). Let

$$L = -\sum_{j=1}^{m} (-1)^{n_j} X_j^{2n_j},$$

 $n = \max n_j, X_1, \ldots, X_m \in \mathfrak{g}$, and let r be a positive integer. For every a > 0 there is a constant C > 0 such that for any $M \ge 1$, $\varphi \in \mathcal{O}(M, n)$ and $u \in C^{\infty}(B(1))$ we have

(2.7)
$$-\langle \varphi^{2(r+n)}Lu, u \rangle \geqslant (1-a) \sum_{j=1}^{m} \|\varphi^{r+n}X_{j}^{n_{j}}u\|^{2} - CM^{2n}\|\varphi^{r}u\|^{2}.$$

Proof. The inequality (2.7) is an easy consequence of

$$(2.8) \qquad (-1)^k \langle \varphi^{2(r+k)} X^{2k} u, u \rangle \geqslant (1-a) \| \varphi^{r+k} X^k u \|^2 - C M^{2k} \| \varphi^r u \|^2,$$

where the constant C depends on X, k, r and a only. Indeed, using (2.8) we get

$$-\langle \varphi^{2(r+n)}Lu, u \rangle = \sum_{j=1}^{m} (-1)^{n_j} \langle \varphi^{2(r+n)} X_j^{2n_j} u, u \rangle$$

$$\geq (1-a) \sum_{j=1}^{m} \| \varphi^{r+n} X_j^{n_j} u \|^2 - \sum_{j=1}^{m} C_j M^{2n_j} \| \varphi^{r+n-n_j} u \|^2$$

$$\geq (1-a) \sum_{j=1}^{m} \| \varphi^{r+n} X_j^{n_j} u \|^2 - C M^{2n} \| \varphi^r u \|^2.$$

Thus it suffices to prove (2.8). We have

$$(-1)^{k} \langle \varphi^{2(r+k)} X^{2k} u, u \rangle = \langle X^{k} u, X^{k} (\varphi^{2(r+k)} u) \rangle$$

$$= \langle X^{k} u, \varphi^{2(r+k)} X^{k} u \rangle + \langle X^{k} u, [X^{k}, \varphi^{2(r+k)}] u \rangle$$

$$\geqslant \|\varphi^{r+k} X^{k} u\|^{2} - |\langle X^{k} u, [X^{k}, \varphi^{2(r+k)}] u \rangle|.$$

Now using Lemma 3 we estimate

$$\begin{split} \langle X^k u, \left[[X^k, \, \varphi^{2(r+k)}] \, u \rangle | & \leq \| \varphi^{k+r} X^k u \| (a^2 \| \varphi^{k+r} X^k u \|^2 + C M^{2k} \| \varphi^r u \|^2)^{1/2} \\ & \leq (a^{1/2} \| \varphi^{k+r} X^k u \|) \bigg(a \| \varphi^{k+r} X^k u \|^2 + \frac{C M^{2k}}{a} \| \varphi^r u \|^2 \bigg)^{1/2} \\ & \leq \frac{1}{2} \bigg(a \| \varphi^{k+r} X^k u \|^2 + a \| \varphi^{k+r} X^k u \|^2 + \frac{C M^{2k}}{a} \| \varphi^r u \|^2 \bigg) \\ & \leq a \| \varphi^{k+r} X^k u \|^2 + C' M^{2k} \| \varphi^r u \|^2. \end{split}$$

Combining the estimates above gives (2.8).

LEMMA 5. Let L, n be as in Lemma 4 and let r be a positive integer. There exists a constant C > 0 such that for any u satisfying $(\partial_t - L)u = 0$ on B(1), $M \ge 1$ and $\varphi \in \mathcal{O}(M, n)$ we have

$$\|\varphi^{r+n}X_i^{nj}u\| \leqslant CM^n\|\varphi^r u\|.$$

Proof. Clearly $\langle \partial_t v, v \rangle = 0$ for any $v \in C_0^{\infty}(\mathbb{R}^{\nu+1})$. Therefore, since $\omega^{r+n} \leq \omega^{r+n-1}$, by the Schwarz inequality we obtain

$$\begin{aligned} |\langle \varphi^{r+n} L u, u \rangle| &= |\langle \varphi^{r+n} \partial_t u, \varphi^{r+n} u \rangle| \\ &= |\langle (\partial_t \varphi^{r+n}) u, \varphi^{r+n} u \rangle| \leq M(r+n) \|\varphi^{r+n-1} u\|^2. \end{aligned}$$

Finally, using Lemma 4 we get

$$(1-a) \sum_{j=1}^{m} \|\varphi^{r+n} X_{j}^{nj} u\|^{2} \leq |\langle \varphi^{r+n} L u, \varphi^{r+n} u \rangle| + C M^{2n} \|\varphi^{r} u\|^{2}$$

$$\leq M(r+n) \|\varphi^{r+n-1} u\|^{2} + C M^{2n} \|\varphi^{r} u\|^{2}$$

$$\leq C' M^{2n} \|\varphi^{r} u\|^{2},$$

which completes the proof of Lemma 5.

Now we are ready to prove Proposition 1. First, we show that the lemmas above imply

$$\|\varphi^{3n}\partial_t u\| \leqslant CM^{2n}\|\varphi^n u\|$$

with a constant C > 0 that depends only on L (therefore also on n) but not on $M \ge 1$, $\varphi \in \mathcal{O}(M, n)$ and $u \in C^{\infty}(B(1))$ satisfying $(L - \partial_i)u = 0$. We have

$$(2.10) \quad \|\varphi^{3n}\partial_{t}u\|^{2} = \langle \partial_{t}u, \varphi^{6n}\partial_{t}u \rangle = \langle Lu, \varphi^{6n}\partial_{t}u \rangle$$

$$= -\sum_{j=1}^{m} \langle X_{j}^{n_{j}}u, X_{j}^{n_{j}}(\varphi^{6n}\partial_{t}u) \rangle$$

$$\leq \sum_{j=1}^{m} |\langle X_{j}^{n_{j}}u, [X_{j}^{n_{j}}\varphi^{6n}]\partial_{t}u \rangle| + \sum_{j=1}^{m} |\langle X_{j}^{n_{j}}u, \varphi^{6n}X_{j}^{n_{j}}\partial_{t}u \rangle|$$

$$\leq \sum_{j=1}^{m} |\langle X_{j}^{n_{j}}u, [X_{j}^{n_{j}}\varphi^{6n}]\partial_{t}u \rangle| + \sum_{j=1}^{m} |\langle \varphi^{3n}X_{j}^{n_{j}}u, (\partial_{t}\varphi^{3n})X_{j}^{n_{j}}u \rangle|.$$

The last step is justified by the identity $\langle v, \partial_t v \rangle = 0$ with $v = \varphi^{3n} X_j^{n_j} u$. Next, applying Lemma 3 with $k = n_j$, $r = 4n - n_j$, q = 2n we obtain

$$\langle X_{i}^{n_{j}}u, [X_{i}^{n_{j}}\varphi^{6n}]\partial_{t}u\rangle| \leq \|\varphi^{2n}X_{j}^{n_{j}}u\|(\|\varphi^{4n}X_{j}^{n_{j}}\partial_{t}u\|^{2} + C_{0}M^{2n}\|\varphi^{3n}\partial_{t}u\|^{2})^{1/2}.$$

By Lemma 5, $\|\varphi^{2n}X_j^{nj}u\| \leq CM^n\|\varphi^nu\|$ and $\|\varphi^{4n}X_j^{nj}\partial_t u\| \leq CM^n\|\varphi^{3n}\partial_t u\|$. In all,

$$\begin{aligned} (2.11) \qquad |\langle X_{j}^{n_{j}}u, \left[X_{j}^{n_{j}}, \varphi^{6n}\right] \partial_{t}u \rangle| &\leq CM^{n} \|\varphi^{n}u\| (C^{2}M^{2n} + C_{0}M^{2n})^{1/2} \|\varphi^{3n}\partial_{t}u\| \\ &\leq C_{1}M^{2n} \|\varphi^{n}u\| \cdot \|\varphi^{3n}\partial_{t}u\| \\ &\leq \frac{1}{2} (mC_{1}^{2}M^{4n} \|\varphi^{n}u\|^{2} + m^{-1} \|\varphi^{3n}\partial_{t}u\|^{2}). \end{aligned}$$

On the other hand, the Schwarz inequality and Lemma 5 imply

$$(2.12) \quad |\langle \varphi^{3n} X_j^{nj} u, (\partial_t \varphi^{3n}) X_j^{nj} u \rangle| \leq 3nM \|\varphi^{3n} X_j^{nj} u\| \cdot \|\varphi^{3n-1} X_j^{nj} u\|$$

$$\leq 3nM \|\varphi^{2n} X_j^{nj} u\|^2 \leq C_2 M^{2n+1} \|\varphi^n u\|^2 \leq C_2 M^{4n} \|\varphi^n u\|^2.$$

Combining (2.10), (2.11) and (2.12) gives

$$\|\varphi^{3n}\partial_{t}u\|^{2} \leq \frac{1}{2}m^{2}C_{1}^{2}M^{4n}\|\varphi^{n}u\|^{2} + \frac{1}{2}\|\varphi^{3n}\partial_{t}u\|^{2} + mC_{2}M^{4n}\|\varphi^{n}u\|^{2}.$$

This clearly implies (2.9).

Let $0 < \varepsilon < r < 1$. It is easy to choose a function $\varphi = \varphi_{r,\varepsilon} \in C_0^{\infty}(\mathbb{R}^{v+1})$ with the following properties: $0 \le \varphi \le 1$, $\varphi = 1$ on $B(r-\varepsilon)$, $\varphi = 0$ outside B(r) and $|\partial^{\alpha}\varphi| \le D\varepsilon^{-|\alpha|} \le (D/\varepsilon)^{|\alpha|}$ for any multiindex $\alpha = (\alpha_1, \ldots, \alpha_{v+1})$ of length $\le n$. Here the constant $D \ge 1$ does not depend on r and ε . Indeed, fix a function $\varphi_0 \in C_0^{\infty}(\mathbb{R})$, $0 \le \varphi_0 \le 1$, $\varphi_0(y) = 1$ for $y \le 0$ and $\varphi(y) = 0$ for $y \ge 1$ and put

$$\varphi_{r,\varepsilon}(t, x) = \varphi_0\left(\frac{\|(t, x)\| - r + \varepsilon}{\varepsilon}\right).$$

Thus applying (2.9) to the function $\varphi = \varphi_{r,c}$ we obtain

$$\|\partial_t u\|_{B(r-\varepsilon)} \leqslant \|\varphi^{3n}\partial_t u\| \leqslant C(D/\varepsilon)^{2n} \|\varphi^n u\| \leqslant C_1 \varepsilon^{-2n} \|u\|_{B(r)}.$$

By induction on k

$$\|\partial_t^k u\|_{B(r-k\varepsilon)} \leq C_1^k \varepsilon^{-2nk} \|u\|_{B(r)}$$

Setting $\varepsilon = 1/(2k)$, r = 1 and using the Stirling formula one has

$$\|\partial_t^k u\|_{B(1/2)} \le (2^{2n}C_1)^k k^{2nk} \|u\|_{B(1)} \le R^k (k!)^{2n} \|u\|_{B(1)},$$

with a positive constant R. This finishes the proof of Proposition 1.

3. Proof of Theorem 2. Recall that Y_1, \ldots, Y_{ν} is a basis in g and we write $Y^{\alpha} = Y_1^{\alpha_1} \ldots Y_{\alpha}^{\alpha_{\nu}}$. As in [4] we use Proposition 1 to express the Gevrey regularity of the solution to $(\partial_t - L)u = 0$ in the t variable in terms of the L^{∞} -norm.

More precisely, we prove

PROPOSITION 2. There is a constant R_1 such that for every u satisfying $(\partial_t - L)u = 0$ in B(1)

(3.1)
$$\sup_{B(1/10)} |\partial_t^k \partial_t^s Y^\alpha u| \leq C_{s,\alpha} R_1^k (k!)^{2n} ||u||_{L^2(B(1))},$$

where the constant $C_{s,\alpha}$ depends only on L, s and α .

Proof. Observe that (3.1) is a consequence of the following subelliptic estimate for the operator L:

(3.2)
$$||Y^{\alpha}v||_{L^{2}(K)}^{2} \leq C_{K,F,\alpha} (\sum_{r=0}^{N} ||L^{r}v||_{L^{2}(F)}^{2}),$$

where $N = N(\alpha)$ is a positive integer, $K \subseteq \text{Int } F \subseteq \mathbb{R}^{\nu}$, K is compact, F closed and the constant $C_{K,F,\alpha}$ does not depend on a smooth function ν . Indeed, taking $K = \{x \in \mathbb{R}^{\nu} : ||x|| \le 1/8\}$, $F = \{x \in \mathbb{R}^{\nu} : ||x|| \le 1/4\}$ we have

$$\begin{split} \|\partial_t^{k+s} Y^{\alpha} u\|_{L^2(B(1/8))}^2 & \leq \int_{-1/8}^{1/8} \|Y^{\alpha} \partial_t^{k+s} u(t, \cdot)\|_{L^2(K)}^2 dt \\ & \leq C \sum_{r=0}^N \int_{-1/8}^{1/8} \|L^r \partial_t^{k+s} u(t, \cdot)\|_{L^2(F)}^2 dt \\ & \leq C \sum_{r=0}^N \|L^r \partial_t^{k+s} u\|_{L^2(B(1/2))}^2 \leq C \sum_{r=0}^N \|\partial_t^{k+s+r} u\|_{L^2(B(1/2))}^2 \\ & \leq C \sum_{r=0}^N (R^{k+s+r} [(k+s+r)!]^{2n} \|u\|_{B(1)})^2 \leq C_1^2 (R_1^k(k!)^{2n} \|u\|_{B(1)})^2. \end{split}$$

Clearly, the Sobolev lemma now gives (3.1).

So, it remains to prove (3.2). First, note that the operator $Y^{\alpha}(I-L)^{-N}$ for $N \ge 1 + (Q + |\alpha|)/(2n)$ is the operator of convolution with a bounded function smooth outside zero that decreases rapidly at infinity together with all its derivatives. Indeed, denoting by the same symbol an operator and the corresponding kernel, we have

(3.3)
$$Y^{\alpha}(I-L)^{-N}(x) = \frac{1}{\Gamma(N)} \int_{0}^{\infty} t^{N-1} e^{-t} Y^{\alpha} p_{t}(x) dt.$$

Now, by a recent result of Dziubański and Hulanicki [1] (cf. (1.4))

$$|Y^{\alpha}p_{i}(x)| \leq C_{\alpha}t^{-(Q+|\alpha|)/(2n)}e^{-|x|t^{-1/(2n)}}$$

Therefore

$$|Y^{\alpha}(I-L)^{-N}(x)| \leq C_{\alpha} \cdot \Gamma(N)^{-1} \int_{0}^{\infty} t^{N-1-(Q+|\alpha|)/(2n)} e^{-t} e^{-|x|t^{-1/(2n)}} dt.$$

Since for $N \ge 1 + (Q + |\alpha|)/(2n)$ the last integral is bounded uniformly in x, so is the kernel $Y^{\alpha}(I-L)^{-N}(x)$.

Further, replacing α by $\alpha + \beta$ in (3.3) and using the fact that for $|x| > \varepsilon$ and $t \le |x|$

$$t^{N-1-(Q+|\alpha+\beta|)/(2n)}e^{-|x|t^{-1/(2n)}} \leqslant C_* \exp(-\frac{1}{2}|x|t^{-1/(2n)}),$$

we obtain

$$|Y^{\beta}Y^{\alpha}(I-L)^{-N}(x)| \leq C \int_{0}^{|x|} e^{-t} \exp(-\frac{1}{2}|x|t^{-\frac{1}{2}(2n)}) dt + |x|^{N_{1}} \int_{|x|}^{\infty} e^{-t} dt$$

$$\leq C(e^{-|x|^{\frac{1}{2}}} + |x|^{N_{1}} e^{-|x|}),$$

where $N_1 = N - 1 - (Q + |\alpha + \beta|)/(2n)$. This proves that all derivatives of $Y^{\alpha}(I-L)^{-N}(x)$ rapidly decrease at infinity.

Now, take $K \subseteq \operatorname{Int} F \subseteq \mathbf{R}^{\vee}$, K compact, F closed. Choose a symmetric relatively compact neighborhood U of zero such that $K \cdot \overline{U} \subseteq \operatorname{Int} F$. Also choose C_c^{∞} -functions φ_1 , φ_2 on \mathbf{R}^{\vee} with the properties: $0 \le \varphi_i \le 1$, $\sup \varphi_1 \subseteq U$, $\varphi_1 = 1$ in a neighborhood of zero, $\varphi_2 = 1$ on $K \cdot \overline{U}$, $\sup \varphi_2 \subseteq \operatorname{Int} F$. We define

$$\widetilde{R}(x) = \varphi_1(x) Y^{\alpha}(I-L)^{-N}(x), \qquad W(x) = (1-\varphi_1(x)) Y^{\alpha}(I-L)^{-N}(x).$$

Denoting, as before, by \tilde{R} and W the convolution operators with the corresponding kernels, we can say that \tilde{R} is the operator of convolution with a function supported in U and that the kernel of the operator W is smooth. Also the operator $W_1 = W(I-L)^N$ has a smooth kernel.

Considering v as a distribution on R^v (v = 0 outside F) we have on K

$$Y^{\alpha}v = Y^{\alpha}(I-L)^{-N}(I-L)^{N}v = \tilde{R}(I-L)^{N}v + W_{1}v = \tilde{R}(\varphi_{2}(I-L)^{N}v) + W_{1}v.$$

The last identity follows from the symmetry of U and the fact that $\varphi_2 = 1$ on $K \cdot U$. Consequently,

$$\begin{split} \| \, Y^{\alpha} v \|_{L^{2}(K)} & \leqslant \big\| \tilde{R} \big(\varphi_{2} (I - L)^{N} v \big) \big\|_{L^{2}(K)} + \| W_{1} v \|_{L^{2}(K)} \\ & \leqslant C_{1} \big(\| (I - L)^{N} v \|_{L^{2}(F)} + \| v \|_{L^{2}(F)} \big) \leqslant C_{2} \sum_{r=0}^{N} \| L^{r} v \|_{L^{2}(F)}. \end{split}$$

This proves (3.2) and thus concludes the proof of Proposition 2.

Remark. At the end of the paper we propose a different proof of the estimate (3.2) that does not depend on the result of Dziubański and Hulanicki.

LEMMA 6. Let $f \in C^{\infty}(-1, 1)$ and f(t) = 0 for $-1 < t \le 0$. If, for a $\gamma > 1$, $|f^{(k)}(t)| \le R^k(k!)^{\gamma}$, $0 \le t < 1$, k = 0, 1, 2, ..., then

$$|f(t)| \le e^{\gamma - 1} \exp\left\{-(\gamma - 1)e^{-1}(Rt)^{-1/(\gamma - 1)}\right\}$$

Proof.

$$|f(t)| \le \int_0^t \frac{(t-s)^k}{k!} |f^{(k+1)}(s)| \, ds \le R^{k+1} \left((k+1)! \right)^{\gamma} \frac{t^{k+1}}{(k+1)!}$$

$$= R^{k+1} \left((k+1)! \right)^{\gamma-1} t^{k+1} \le \left[(Rt)^{1/(\gamma-1)} (k+1) \right]^{(\gamma-1)(k+1)}.$$

Choose k so that $k+1 \le e^{-1}(Rt)^{-1/(\gamma-1)} < k+2$. Then $(Rt)^{1/(\gamma-1)} \le 1/(e(k+1))$ and so

$$|f(t)| \le [(Rt)^{1/(\gamma-1)}(k+1)]^{(\gamma-1)(k+1)} \le e^{-(\gamma-1)(k+1)}$$

$$\le \exp\{-(\gamma-1)(e^{-1}(Rt)^{-1/(\gamma-1)}-1)\},$$

which proves the lemma.

We are now ready to prove Theorem 1. Since $\partial_t^s p = L^s p$ it suffices to estimate only the space derivatives $Y^{\alpha}p(t, x)$ of p(t, x), for any multiindex α .

By applying Proposition 2 to the function p(t, x), for any $(t_0, x_0) \neq (0, 0)$ in some neighborhood $U_{(t_0,x_0)}$ of (t_0, x_0) we have

(3.4)
$$\sup_{U_{(t_0,\mathbf{x}_0)}} |\partial_t^k Y^{\alpha} p(t,x)| \leq C_0 R_0^k (k!)^{2n},$$

where the constant C_0 depends on (t_0, x_0) and α , whereas R_0 depends on (t_0, x_0) only.

The set $K = \{(t, x) \in \mathbb{R} \times G: -1 \le t \le 1, |x| = 1\}$ is compact and does not contain (0, 0) so we cover it by a finite family of neighborhoods $U_{(t_t, x_t)}$ as above, and using (3.4) we get

$$\sup_{u} |\partial_t^k Y^{\alpha} p(t, x)| \leq C R^k (k!)^{2n},$$

with an absolute constant R and a $C = C(\alpha)$.

Since p(t, x) = 0 for $t \le 0$, using Lemma 6 we estimate

$$|Y^{\alpha}p(t, x)| \leq C_{\alpha,K}e^{-a/t^{1/(2n-1)}}$$

uniformly in $(t, x) \in K$, with a constant a > 0. As we mentioned before, one has

$$(Y^{\alpha}p_{t})(\delta_{s^{-1}}x) = s^{|\alpha|+Q} Y^{\alpha}p_{s^{2n_{t}}}(x).$$

Consequently, for $|x| \ge 1$

$$|Y^{\alpha}p_{1}(x)| = |Y^{\alpha}p_{1}(\delta_{|x|}\delta_{|x|-1}x)| = |x|^{|\alpha|+Q}|Y^{\alpha}p_{|x|-2n}(\delta_{|x|-1}x)|$$

$$\leq C_{\alpha,K}|x|^{|\alpha|+Q}e^{-a|x|^{2n/(2n-1)}}.$$

Take an arbitrary $0 < c_1 < a$. Since $|Y^{\alpha}p_1(x)|$ is bounded on $|x| \le 1$, therefore, for a sufficiently large constant C_{α}

$$|Y^{\alpha}p_1(x)| \leqslant C_{\alpha}e^{-c_1|x|^{2n/(2n-1)}}$$

Finally, by dilation

$$|Y^{\alpha}p_{t}(x)| = |Y^{\alpha}p_{t}(\delta_{t^{1/(2n)}}\delta_{t^{-1/(2n)}}x)| \leq t^{-(|\alpha|+Q)/(2n)}|Y^{\alpha}p_{1}(\delta_{t^{-1/(2n)}}x)|$$

$$\leq C_{\alpha}t^{-(|\alpha|+Q)/(2n)}\exp\left\{-c_{1}(|x|^{2n}/t)^{1/(2n-1)}\right\}.$$

This concludes the proof of Theorem 1.

4. Another proof of (3.2). The following proof of (3.2), independent of the estimate (1.4), is a modification of a proof of a theorem in Hörmander's book [3], p. 353.

As usual, by H(s) we will denote the ordinary Sobolev space of order s on \mathbb{R}^{ν} and $\|u\|_{H(s)} = (\int_{\mathbb{R}^{\nu}} |\hat{u}(\xi)|^2 (1+|\xi|^2)^s d\xi)^{1/2}$ denotes the norm of $u \in H(s)$. We also write $\|f\|$ to denote the L^2 -norm of a function f on \mathbb{R}^{ν} .

We write (3.2) in an equivalent form

(4.1)
$$\|\varphi_1 u\|_{H(s)} \leq C \sum_{r=0}^{N} \|\varphi_2 L^r u\|,$$

where φ_1 , φ_2 are compactly supported C^{∞} -functions, $\varphi_2 = 1$ on a neighborhood of the support of φ_1 , N = N(s), $C = C(s, \varphi_1, \varphi_2)$. When n = 1, (4.1) is a subelliptic estimate used in the proof of Hörmander's hypoellipticity theorem (cf. [4]). It is easy to observe that Lemmas 3 and 4 give

$$\sum_{j=1}^{m} \|X_{j}(\varphi_{1}u)\| \leqslant C(\|\varphi_{2}Lu\| + \|\varphi_{2}u\|).$$

Set $Q_1 = \lim \{X_i : i = 1, ..., m\} \subseteq g$, $Q_{k+1} = [Q_k, Q_1]$, k = 1, 2, ..., and $l = \min \{i: g = \lim \{\bigcup_{k=1}^{i} Q_k\}\}$.

The following lemma is due to J. J. Kohn (cf. e.g. [5]).

LEMMA 7. If $q_k \in Q_k$ and $\varepsilon \leq 2^{1-k}$ then

$$||q_k(\varphi_1 u)||_{H(s-1)} \leq C(||\varphi_1 u|| + \sum_{i=1}^m ||X_i(\varphi_1 u)||),$$

with a constant C independent of u.

COROLLARY 1.

$$\|\varphi_1 u\|_{H(1/2^{1-1})} \leq C(\|\varphi_2 L u\| + \|\varphi_2 u\|).$$

In fact, if q_1, \ldots, q_{ν} generate g then for $\varepsilon \leqslant 1/2^{l-1}$

$$\|\varphi_1 u\|_{H(e)} \leqslant C \sum_{i=1}^{\nu} \|q_i \varphi_1 u\|_{H(e-1)} \leqslant C'(\|\varphi_1 u\| + \sum_{i=1}^{m} \|X_i (\varphi_1 u)\|).$$

In order to get (4.1) we wil need operators identifying different H(s) and commuting with L. To do this we use powers of a right-invariant Laplacian on G. Denote it by Δ .

LEMMA 8. For any number of the type $s = k/2^l$, k, l being integers, l > 0, the operator $(I - A)^{s/2}$ is continuous from $H_{m.comp}$ to $H_{m-s,loc}$, $m \in \mathbb{R}$.

Proof. For s=2 or s=-2 the claim is well known (Friedrichs' inequality if s=-2). So, by induction, it suffices to prove that continuity for s implies continuity for s/2. Using the induction hypothesis, we obtain

$$||(I - \Delta)^{s/2} u|| = \langle (I - \Delta)^s u, u \rangle$$

$$\leq ||(I - \Delta)^s u||_{H(s,s)} ||u||_{H(s)} \leq C ||u||_{H(s)}^2,$$

Next, we estimate the norm $||(I-\Delta)^{s/2}u||_{H(2m)}$, m being an integer:

$$||(I - \Delta)^m (I - \Delta)^{s/2} u|| = ||(I - \Delta)^{s/2} (I - \Delta)^m u||$$

$$\leq C ||(I - \Delta)^m u||_{H(s)} \leq C_1 ||u||_{H(2m+s)}.$$

The result for any m is now obtained by interpolation.

LEMMA 9. The operator $(I-\Delta)^s$, $s \in \mathbb{R}$, is the operator of convolution with a distribution smooth outside zero. In addition, all derivatives of the kernel are integrable outside any neighborhood of zero.

Proof. Since Δ is the image of a homogeneous right-invariant sub-laplacian on a free nilpotent group it suffices to prove the lemma for such an operator.

In fact, if G = F/N then

$$\int_{G\setminus U} |Y^{\alpha} \Delta^{s}(aN)| d(aN) = \int_{F/N\setminus U} \left| \int_{N} Y^{\alpha} \Delta_{F}^{s}(an) dn \right| d(aN)$$

$$\leq \int_{F\setminus \pi^{-1}(U)} |Y^{\alpha} \Delta_{F}^{s}(a)| da.$$

Next, the smoothness follows from the integrability of derivatives.

Now, considering a nilpotent free group, we can apply the estimate of Theorem 1 for $L = A_F$ and then (3.3) gives the integrability of $Y^{\alpha}(I - A_F)^{\alpha}$ outside any neighborhood of zero. This concludes the proof of Lemma 9.

Equipped with the above lemmas we can start the proof of (4.1). First, given neighborhoods $U \subset V$ of e, choose a C^{∞} -function φ supported on V with $\varphi = 1$ on U. For any $s \in R$ define compactly supported distributions $A_s = \varphi(I - \Delta)^{-s/2}$, $B_s = \varphi(I - \Delta)^{s/2}$ (now $(I - \Delta)^{-s/2}$, $(I - \Delta)^{s/2}$ are considered as distributions).

From Lemma 9 it follows that $W_1 = (I - \Delta)^{s/2} - B_s$ and $W_2 = (I - \Delta)^{-s/2} - A_s$ are integrable functions and, moreover, all their deriva-

106

tives are also integrable. Since

$$A_s * B_s = I - A_s * W_1 - W_2 * B_s + W_2 * W_1$$

 $A_s * B_s - I$ has a smooth kernel, and similarly for $B_s * A_s - I$. It is easy to observe that, by induction, (4.1) follows from

$$\|\varphi_1 u\|_{H(s+c)} \leq C(\|\varphi_2' L u\|_{H(s)} + \|\varphi_2' u\|_{H(s)}),$$

where φ_1 , φ_2' are compactly supported C^{∞} -functions, $\varphi_2' = 1$ on a neighborhood of supp φ_1 . Now, define $K_1 = \sup \varphi_1$, $K_4 = \{x: \varphi_2(x) = 1\}$ and choose V, a symmetric neighborhood of zero, and compact sets K_2 , K_3 satisfying $K_i \cdot V^2 \subseteq K_{i+1}$, i = 1, 2, 3. Choose also distributions A_s , B_s as above and C^{∞} -functions ψ_i , $i = 1, \ldots, 4$, $\psi_1 = \varphi_1$, $\sup \psi_i \subseteq K_i$, $\psi_i = 1$ on $K_{i-1} \cdot V$, i = 2, 3, 4.

Now, since $||u||_{H(m)} \le C(||B_s u||_{H(m-s)} + ||u||_{H(m-s)})$ and $||B_s u||_{H(m)} \le C||u||_{H(m+s)}$, we have

$$\|\psi_{1}u\|_{H(s+c)} \leq C(\|\psi_{2}B_{s}u\|_{H(c)} + \|\psi_{2}u\|_{H(s)})$$

$$\leq C_{2}(\|\psi_{3}LB_{s}u\| + \|\psi_{3}B_{s}u\| + \|\psi_{2}u\|_{H(s)})$$

$$\leq C(\|\psi_{4}Lu\|_{H(s)} + \|\psi_{4}u\|_{H(s)}),$$

which clearly gives (4.3) and thus concludes the proof of (4.1).

References

- [1] J. Dziubański and A. Hulanicki, On semigroups generated by left-invariant positive differential operators on nilpotent Lie groups, Studia Math. 94 (1989), 81-95.
- [2] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, 1982.
- [3] L. Hörmander, The Analysis of Linear Partial Differential Operators III, Springer, 1985.
- [4] D. S. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares of vector fields, Indiana Univ. Math. J. 35 (1986), 835-854.
- [5] J. J. Kohn, Pseudo-differential operators and non-elliptic problems, in Pseudo-differential Operators, CIME Conference, Stress 1968, Edizioni Cremonese, Roma 1969, 157-165.

INSTYTUT MATEMATYCZNY UNIWERSYTETU WROCŁAWSKIEGO INSTITUTE OF MATHEMATICS, WROCŁAW UNIVERSITY PI. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

Received October 24, 1988 (2500)

STUDIA MATHEMATICA

Contents of forthcoming issues

Volume XCV, number 2

- M. Bożejko, Positive-definite kernels, length functions on groups and a noncommutative von Neumann inequality.
- B. J. TOMIUK and B. YOOD, Incomplete normed algebra norms on Banach algebras.
- P. Mankiewicz, Factoring the identity operator on a subspace of l_n^{∞} .
- S. KWAPIEN and C. SCHÜTT, Some combinatorial and probabilistic inequalities and their application to Banach space theory II.
- J. ALVAREZ, Functional calculi for pseudodifferential operators, III.
- A. BEDDAA and M. OUDADESS, On a question of A. Wilansky in normed algebras.
- E. HERNANDEZ, Factorization and extrapolation of pairs of weights.

Volume XCV, number 3

- R. J. BAGBY, Weak bounds for the maximal function in weighted Orlicz spaces.
- A. MIYACHI, H^p spaces over open subsets of \mathbb{R}^n .
- M. Dominguez, Weighted inequalities for the Hilbert transform and the adjoint operator in the continuous case.
- A. Defant, Absolutely p-summing operators and Banach spaces containing all l_p^n uniformly complemented.
- V. B. MOSCATELLI, Strongly nonnorming subspaces and prequojections.
- R. C. JAMES, Unconditional bases and the Radon-Nikodým property.
- N. V. KHUE and B. D. TAC, Extending holmorphic maps from compact sets in infinite dimensions.

Volume XCVI, number 1

- S. BLOOM, Sharp weights and BMO-preserving homeomorphisms
- -, An interpolation theorem with A, weighted L' spaces.
- S. ROLEWICZ, On projections on subspaces of codimension one.
- A. PIETSCH. Type and cotype numbers of operators on Banach spaces.
- D. Li, Quantitative unconditionality of Banach spaces E for which $\mathcal{K}(E)$ is an M-ideal in $\mathcal{L}(E)$.
- S. Momm, Partial differential operators of infinite order with constant coefficients on the space of analytic functions on the polydisc.
- A. PARUSINSKI, Gradient homotopies of gradient vector fields.
- B. BEAUZAMY, An operator on a separable Hilbert space with all polynomials hypercyclic.
- P. PYCH-TABERSKA, Approximation properties of the partial sums of Fourier series of some almost periodic functions.