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Incomplete mormed algebra norms on Banach algebras
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BOHDAN J. TOMIUK (Ottawa, Ont.) and BERTRAM YOOD (University Park, Pa)

Abstract. Let 4 be a sernisimple Banach algebra. In various analytic situations one considers
(incomplete) normed algebra norms on A and the completions of A in these norms, A study is made
of all possible normed algebra norms and complotions for classes of semisimple Banach algebras.

1. Introduction. An original impulse for this investigation came from the
theory of generalized almost periodic functions. Let A = AP (G) be the set of all
almost periodic functions on a topological group G considered as a Banach
algebra under the sup norm, pointwise addition and convolution multi-
plication. For the classical case G = R, the reals, and 1 < p < oo the Stepanov
S7-almost periodic functions can be considered as the completion of AP (R} in
an incomplete normed algebra norm {|f||s» on AP (R). Likewise the Besicovitch
BP-almost periodic functions arise in this way. Similarly we may consider
completions in the, noncommutative situation of AP (G). The question naturally
arises whether there are any interesting properties shared by all possible
completions'of AP{G) in all possible normed algebra norms. Of course the
same question occurs for the completions of other Banach algebras.

It is easy (see §4) to exhibit a commutative semisimple Banach algebra
B with no nonzero idempotent and a normed algebra norm on B where the
completion of B contains such an idempotent. For AP(G), or more generally
any semisimple annihilator Banach algebra A4, any idempotent in the comp-
letion of 4 in a normed algebra topology must already be .ilil A.

Let |x|, and |x|, be two normed algebra norms on a semisimple Banach
algebra 4. We say that these normsé are consistent _if |xn—x|% —+0 and
|x,— yl, 0 imply that x = y (where all the elements are in A). In view of the
closed graph theorem the uniqueness of the norm theorem [4, Theorem 9, p.
1307 can be expressed as saying that any two complete norms |x[, and x|, are
consistent, )

On the other hand (see §3), it is easy to find two incomplete normed
algebra norms on the disc algebra which are not consistent. Nevertheless, for
many of the usual examples of semisimple Banach algebras, any two r}o._rmed
algebra norms are consistent. This is the case for C*-algebras, annihilator
algebras, regular commutative Banach algebras and other instances as shown .
in §3. '
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The set N{A4) of all normed algebra norms on a semisimple Banach
algebra A is a partially ordered set where we say that |x|, follows |x| if
x|, = [x|, for all x in 4. Say a norm |x| is continuous if the embedding of 4 into
its completion A° in the norm |x| is continuous and that |x| is semisimple if A° is
semisimple. In the “usual” examples mentioned above the set of continuous
semisimple norms is cofinal in N (4), but an example shows that such is not the
case for all semisimple A.

2. Preliminaries, Consider a normed algebra norm [x||, defined on
a semisimple Banach algebra A with given norm {x[. If ||x]; is &4 complete
norm then it is equivalent to the norm l|x|| by the uniqueness of norm theorem
[4, Theorem 9, p. 130]. Suppose that {|x||, is an incomplete norm and that 7 is
the embedding of 4 into the completion A° of A in the norm ||xi|,. Examples
abound in which t is discontinuous or in which A° is not semisimple. An
unsolved problem is whether 4° semisimple forces  to be continuous (see [13,
p. 437). We say that the norm ||x||, is a continuous norm for A if t is continuous
and that ||x||, is a semisimple norm if A° is semisimple. For brevity we say that
lix|l; 35 a smooth norm if it i both continuous and semisimple.

Prorostrion 2.1, If |x| is a semisimple norm on A and A is a left ideal in 4°,
then x| is a smooth norm on A.

Proof. This was pointed out in [10, p. 298], In this case A is called an
abstract Segal algebra in A°

Let AP(G) be the Banach algebra of all almost periodic functions on
a locally compact group & where convolution fxy is the multiplication and the
norm is the sup norm. As in the classical case G = R, for each p, 1 < p < o0, we

can define the Stepanov SP-norm ||f]|y» (see [7] and [T17} As shown in [11,
Theorem 7, p. 129] '

I feglls? < 11f11s7 Hgllge

for all f, g€ AP(G). Thus the $”-norm is a normed algebra norm. Moreover, by
[11, Theorems 7 and 8, pp. 129 and 1317, [iflls» < |If1}, for all fe AP ((), and the
completion of AP(G) in the $P-norm is semisimple. Hence ||f]|¢r is a smooth
norm on AP (G). The same situation holds for the Besicovitch B*-norm [11].

For the $- or Bfnorm |[x]|; on AP(G) we have the inequality
gl < |1l llgll for f,ge AP(G) [11, Theorem 7, p. 129]. Therefore, by [10,
Proposition 1.6, p. 299], AP{G) is an abstract Segal algebra in the completion.

In the Banach algebra A = AP({R), A* # A inasmuch as every product fig
has an absolutely and uniformly convergent Fourier expansion. Also A2 is
dense in A as A® contains every trigonometric polynomial. Thus there is
a discontinuous linear functional ¢(x) on A not identically zero where
¢ (A%) = (Q). Arguments used in [2, Example 1, p. 597] show that the normed

algebra norm ||f|l; = ||f||+|¢ (/)] is not a continuous norm on AP (R), Also
[Lf{, is not a. semisimple norm.

icm
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Let A be a semisimple Banach algebra. A linear mapping T 4 — A is called
a left multiplier if T(xy) = T(x)y forall x, ye 4. Let M,(A) be the algebra of all
left multipliers on A. Since every left multiplier on A4 is continuous [9, p. 1072],
M,(A) is a Banach algebra under the usual operator bound norm. For each
ae A, let L, be the operator given by L, {x) = ax, for all xe 4. Then L, e M,(A),
for all ¢ € A, and the mapping « — L, is a norm decreasing algebra isomorphism
of 4 into M, (A) and embeds A as a left ideal of M, (4). In fact, let Te M, (4) and
aeA Then T(we A and TL, (x) = T(a}x = Ly, (x), for all xe 4. Hence, by the
semisimplicity of A, TL, = Lypy,. Let L, be the closure in M, {A) of the image of
A by the mapping ¢ L, We call L, the lefr regular representation of A, In
what follows we will identify 4 as a left ideal of M,(4) and as a dense left ideal
of L,

PropoSITION 2.2, Let A be a semisimple Banach algebra. Then |jx||, = |IL|
is a smooth norm for A. More generally, any subalgebra B of M, {A) containing
A is semisimple.

Proof. Inasmuch as ||L,|j < ||x]| for x in A4, only the last statement requires
proof. As noted above we can consider A as a left ideal in M, (A). Let J be the
radical of B. As A is a left ideal of B so is JnA. Every xeJn A4 is left
quasi-regular in B so has a left quasi-inverse in 4. Therefore Jn 4 = (0)as 4 is
semisimple, so that also J4 = (0). Let TeJ, Then O = TL, = Ly, for each x in
A. From the semisimplicity of 4 we see that T(x) =0 for all x in A and so
T (),

Examples in which the norm ||L,| is not equivalent to the given norm jjx||
can be readily supplied.

Let 4 be a semisimple Banach algebra. By an ideal we shall always mean
a two-sided ideal unless otherwise specified. For any subset S in 4, !, {5) and
r,(S) will denote, respectively, the left and right annihilators of § in 4, and
cl,(S) will denote the closure of S in 4. The socle of A will be denoted by 5.
We call A modular annihilator if every modular maximal left (right) ideal of
A has a nonzero right (left) annihilator. A semisimple Banach algebra with
dense socle is modular annihilator. We call A a left annihilator algebra if for
each closed right ideal I, I # 4, we have [, (1) # (0). An annihilator algebra is
one which is both a left and right annihilator algebra.

If K is an ideal of A, then 1 (K)=r,K) [16, p. 37]. We denote the
common value of £, (K) == r,(K) by K* A minimal left (right} ideal of 4 has the
form Ae (e4), where ¢ is an idempotent. Such an idempotent is called a minimal
idempotent of A. If §% = (0) then every nonzero left (right) ideal of A contains
a minimal idempotent [16, p. 37]. .

A normed algebra A is called a Q-algebra if the set of quasi-regular
elements of A is open in 4, As in [15] we say that a normed algebra A4 is
a permanent Q-alyebra if it is a Q-algebra in all possible normed algebra norms.
As noted in [15], every B*-algebra is a permanent Q-algebra as is any
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semisimple modular annihilator algebra. A semisimple commutative regular
Banach algebra is a permanent Q-algebra by [12, Coroildry (3.7.6), p. 176] and
[15, Lemma 2.5, p. 375].

3. Consistency and domination of norms. Let {x|, and |x|, be two normed
algebra norms on an algebra A over the complex field (4 is not. necessarily
complete in either norm). These norms are said to be consistent if |x, —x|, -0
and |x,—y|,—0 imply that x =y (where all the elements are in A) The
consistency ideal for these norms is the set I' of all x in 4 for which there is
a sequence {x,} in 4 where [x,|, —0 and |x,—x|, = 0. The same set is obtained
if the roles of the two norms are reversed and I" is an ideal in A closed with
respect to the two norms. The two norms are consistent if and only if I' = (0).

Let {p,(x)} be a sequence of polynomials with real coefficients converging
uniformly to one on [2, 1] and to zero on [ —1, — 4]. Consider the disc atgebra
A and let

Ifly =sup {lf@): zel3, 11}, Il =sup{lfC): ze[—1, —4]}.

Then {1—p,J, =0 and |p,/,—0 so that the two norms are not consistent.

If x|, and |x|, are two complete norms for a Bapach algebra B with
identity 1, then 141 by [12, Theorem (2.5.6), p. 72]. But in the example just
cited, 1 eI. However, if one of the two norms is a Q-norm, this phenomenon
cannot occur.

LEMMA 3.1. Let x|, and |x|, be two normed algebra norms on A one of which
is a Q-norm, Then I' containg no nonzere idempotent.

Proof Suppose ix, is 2 Q-norm, ¢ a nonzero idempotent in 4, |x,/, —0
and |x, —e|, 0. Let r(x) = lim,.. ,, [x"|3"". Then, as e~ ex,e and ex e permute,

1 =r(e) <r{e—ex,e)+r(ex,e) < le—ex,el, +r(ex,e)

for each n=1,2,... Now r{ex,) is the spectral radius of ex,e in the
completion 4° of 4 in the norm |x|,. Therefore r(ex,e) is majorized by the
spectral radius of ex,e in 4 which is, in turn, majorized by |ex,e|, as |x|, is
a @-norm ([15]). Thcrefore

< le—ex,el, +|ex,el, ~»0.
This contradiction shows that e¢ I
LemMA 3.2. Let A be a Banach algebra in the norm ||x|| and a normed
algebra in the norm |x|. The following statements are equivalent.

(i) The norms ||x|| and |x| are conmsistent.

(i) There is a continuous normed algebra norm |x|1 on A where |x| = |x|,
Jor all xeA.
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(iliy There is a continuous normed algebra norm |x|; on A and ¢ > 0 where
|x| 2 ¢|x], for all xeA. : :

Proof. Let X be the separating ideal for the embedding mapping of 4 (in
the norm [|x][} into the completion A° of 4 in the norm |x|. Specifically, X is the
set of all we A° for which there is a sequence {x,} in 4 where |x,||—~0 and

ix,—w|—0. By [6, Theorem 4.6, p. 1101] the mapping x+I »x+Z is

a continuous isomorphism of A/ into A% Z. Now assume (i). Then I = (0) so
that a(x) = x--X is a continuous mapping of 4 into 4%/Z and |x|; = |x+Z| is
a continuous norm satisfying (ii).

Assume (iil). Let {lx,~u||—0 and |x,—v|—0 in A. Then, as ix|;, is
a continuous norm, |x,~u|, - 0. But also |x,—v|, —0 so that 4 = v. Hence the
norms ||xi| and [x| are consistent.

Given two norms |x|, and |x|, on A we say that |x|, majorizes |z, if
{xly = x|, for all x in A,

THEOREM 3.3. Let A be a strongly semisimple Banach algebra with a discrete
structure space. Then

(i) any two normed algebra norms on A one of whzch is a Q-norm are
consistent,
(ii) any normed algebra norm on A majorizes a smooth norm.

Proof First of all any primitive ideal of A must be a modular maximal
ideal by [17, Theorem 4.4, p. 187]. For each modular maximal ideal M of A4,
M® # (0) by [17, Theorem 3.14, p. 185]. As 4 is semisimple M cannot be dense

. in A in any normed algebra topology so that M is closed in all these topologies.

Let |x}, and |x|, be two normed algebra norms on A where (x|, is
a Q-norm. Then A/M is a Q-algebra in the quotient norm |x+ M}, and
a normed algebra in |x+ M|,.

Let y be in the consistency ideal I' for the norms jx{; and |x|,. This puts
y+ M in the consistency ideal I'* for the norms |x+ M), and |x+ M|, on 4/M.
As A/M is simple, either I'"" = {(0) or I = A/M. In the latter case I'" would
contain an identity element contrary to Lemma 3.1. Theorefore y+M = 0+ M
and ' = M. Inasmuch as A is strongly semisimple we see that I' = {0).

Next let ix| be a normed algebra norm on 4. We now know that it is
consistent with the given norm ||x|. Consider the continuous isomorphism
%(x) = x+2% of 4 into B = A%/Z described in the proof of Lemma 3.2. Let J be
the radical of B, and suppose &~ !(J) % (0). Then a~*(J)-is a nonzero ideal in
the strongly semisimple algebra 4 so it is itself strongly semisimple. As 4 has
a discrete structure space so does o~ ' (J) by [12, Theorem (2.6.6), p. 79]. Let
M, be a modular maximal ideal of o”* (J). The annihilator of M, in « “1Nis
nonzero. Now let us examine the isomorphic picture in B. Specifically, o (M} is
a modular maximal ideal in the algebra a(4) n J and, by the above analysis,

1 ~ Studia Mathemation Y5.2
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is closed in o (A) ~ J. Thus there is a continuous homomorphism ¢ of a(4)nJ
onto a simple normed algebra Wwith identity e where, say, o{xy) = e. We can
extend o to be a continuous homomorphism 7 of the closure Z of «(A4)nJ in
B into the completion of W, Since Z = J we see that Z is a radical Banach
algebra. Therefore X, has a quasi-inverse y, m Z and

0 = T(Xg+ Yo Xo¥o) = e+t {(¥o)—T(¥o) = €.

This contradiction shows that x{4d)~J = (0).

Now that we have a (A} N J = (0) we may use the quotient norm for B/J to
see that |x|; = | (x)+J] is a normed algebra norm for A which is a continuous
norm majorized by jx|. As a(4)+J is dense in B/J we see also that |x|, is
a semisimple norm.

THEOREM 3.4. In each of the following cases, any two normed algebra norms
on A are consistent and any such norm majorizes a smooth norm.

(a) A is a semisimple modular annihilator Banach algebra.

(b) A is the Banach algebra of all bounded linear operators on a Banach
space. '

(c} A is a strongly semisimple Banach algebra which is a permanent
Q-nlgebra.

(d) A is a semisimple commutative regular Banach algebra.

(&) A is a C*-aigebra.

() A is a semisimple Banach algebra with discrete structure space where AfP
is finite-dimensional for each primitive ideal P of A.

Proof (a) As noted above in §2, every normed algebra norm on A is
a ¢-norm, Since A is a semisimple modular annihilator algebra, every nonzero
ideal contains a nonzero idempotent. Hence, by Lemma 3.1, the consistency
ideal for the two norms must be (0) and so the norms are consistent.

Let |x| be a normed algebra norm for A and consider the continuous
isomorphism «(x) = x+ X of 4 into A°/Z described in the proof of Lemma 3.2.
Let J be the radical of B = A%/%. Now =z~ *(J) cannot contain a nonzero
idempotent so that o (A) ~J = (0). Arguing as in the proof of Theorem 3.3 we
see that x|, =jx(x)+J| is a smooth norm majorized by |x|.

{(b) These arguments show that the same conclusions are valid for B(X),
the Banach algebra of all bounded linear operators on a Banach space X,
inasmuch as B(X} is a permanent (-algebra by [15, Theorem 2.6, p. 375] and
every nenzero ideal contains a nonzero idempotent.

(¢} That two normed algebra norms on A are consistent follows from [15,
Theorem 3.5, p. 379]. We use the notation and reasoning of Theorem 3.3. To
see that a normed algebra norm |x| must dominate a smooth norm it is
sufficient to see that a™!(J) = (0).

Let xea "(J), Then we have lim,_|(x+Z)|*" =0. But lx+2| is a

normed algebra noerm on 4. As A is a permanent Q-algebra it follows that -
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lim,_. . ||X"|}™" = 0 (for the given norm of A). Hence o' {J) is an ideal of
A consisting entirely of quasi-regular eclements. Since A is semisirnple,
a7 () =

(d) As noted in §2, a semisimple commutative regular Banach algcbra is
a permanent Q-algebra. Thus (d) is a special case of (c).

(e} Let |x|, and |x|, be two normed algebra norms for A4 and let ||x|| be the
given C*-algebra norm. By [6, Theorem 5.4, p. 1104], there is a constant M > 0
where Mllx|| < [x],, k=1, 2, for all xe 4. If [x,—x], =0 and |x,—y{,—0 in
A we see that ||x,~x||—=0, |ix,~y|—0 so that x =y. The norms are then
consistent. )

Let |x] be any normed algebra norm. In the notation of Theorem 3.3 it
follows from the arguments of [6, Theorem 5.4, p. 1104] that the mapping
x—x+2% is a bicontinuous mapping of A (in the norm [[x|}) onto A°/Z.
Therefore |x|, = [x+Z| is a smooth norm majorized by x|

(f Let [x|, and |x|, be two normed algebra norms for 4 and let P be
a primitive ideal of 4. By [17, Theorem 3.14, p. 185], P* # (0) and then, by [17,
Lemma 3.1, p. 182], P = P2, Therefore P is closed in both norm topologies.
Suppose |x,, - x|, =0 and |x,—y|,—0in A. In terms of the quotient norms now
available |x, + P—(x+P)|, >0 and |x,+ P —(y+ P)|, — 0. But A/P has a unique
normed linear space topology. Therefore x+P= y+P. As A4 is semisimple
x = y. Hence the two norms are consistent. From our hypothesis that A/P
is finite-dimensional it follows that P is a modular maximal ideal of 4. That
any normed algebra norm majorizes a smooth norm now follows from
Theorem 3.3.

By algebraic theory, 4/P is finite-dimensional for each primitive ideal P if
A satisfies a polynomial identity.

For semisimple commutative Banach algebras it is not necessarily the case
that a normed algebra norm must majorize a smooth norm as the followmg
example shows.

Let N be the set of positive integers considered as an additive semigroup
and let I, (N) be the discrete semigroup algebra of N in the terminology of [4,
p- 9] Here the norm of f= f(n) in I, (N) is

li= 3 176
n= i

and the multiplication is convolution. That I, (N} is semisimple can be seen
directly and also follows from more general results [8, Theorem 5.8, p. 82].

For each reN set «(r)=27". Note that a(r+s) <a(r) a(s) for every
r, se N. We introduce the normed algebra norm

Al = Z F(n) o(n)
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on I, {N). Take the specific element gel,(N) where g(1)=1 and g(n) =
" n> 1. Then (see [4, p. 96]) lim, .., ||¢"|[i"" = 0. Inasmuch as the completion A°
- of [, (N) in the norm ||f]}; is commutative, we see that g lies in the radical of 4°.
Let ||fll, be any normed algebra norm on [ (N), with [[f]l, < |||, for all
fel, (N). Then lim,., ||g"||5™ = 0 so that g is in the radical of the completion of
L (N) inthe norm [f]|,. Thus |{f}|, is not a smooth normed algebra norm on
I, (N). .

4, On idempotents and socles. Let A, be the closed ideal of the disc algebra
A consisting of all fin A with f(0) = 0. Consider the normed algebra norm
(1= sup{l[f(z)}: ze[4,1]} on 4, There exists a sequence p,(z) of polynomials
in 4, converging to one uniformly on [4, 1]. The semisimple Banach algebra
Ay has no nonzero idempotent but the completion A of 4, in the norm |f] has
a nonzero idempotent, the limit in A§ of the sequence {p,}.
In spite of this example we show that, for A in a class of semisimple
Banach * algebras properly containing all semisimple annihilator Banach
~ algebras, any idempotent in the completion of 4 in a normed algebra norm
must already be in A. A feature here is that for these algebras (as well as for
C*-algebras) the socle S, of 4 is an ideal in every completion A
Throughout Section 4, A is a semisimple Banach algebra. Let e be
a minimal idempotent of A4 so that ede = {de: 1 complex}. For each exeed
define the linear functional f,, on the Banach space Ae by the rule

Jex(ye)e = exye  (yeA).

Then f,. is a bounded linear functional on A4e and, by {5, Theorem 13, p. 161],
the mapping W defined by W(ex) = f,, is a continuous one-to-one linear
mapping of ed into (Ae)*. '

Likewise, for xee Ae, consider the linear functional g,, defined on ed by

gxe(ey)e = eyxe (yeA).

The mapping ¥ given by ¥(xe) =g,, 15 a continuous one-to-one linear
mapping of de into (ed)*.
Note that the norm of f,, is g1ven by

flfesdl = sup {Ifex ve)l: livell <1, ye 4}
= |lel| = sup {|lexye]|: ||ve|| < 1, yeA}

and that [|f,.| defines a normed linear space norm on ed which, for later
purposes, we also denote by |lexi|’.
Likewise,

llgcell = IIeII.'1 sup{lleyxell: lleyll < 1, ye A}
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and we set ||g.|l = lixe]l”. Inasmuch as {lexye|| < |le|| llex|i |lyell, we see that
(M llex|l” < llex]l,  [lxell” < lixell.

Also W, (¥) is an isometric linear mapping of eA (Ae) in the norm |lex||" {||xe[|")
into {(Ae)* ((e4)*).

DermaTION. We say that the minimal idempotent e is right full if there is
a constant K > 0 so that ||xe||" = K||xel}, for all xe 4, and that e is left full if
there is a constant K > 0 so that |lex| > K |lex|l, for all xe 4. (Right full is the
notion of full as given by Barnes [3, p. 1741)

In view of the completeness of ed (Ae) one readily sees the following.

ProroSITION 4.1. The following statements about the minimal idempotent
e are equivalent:

(a) e is left full

(0) llex||’ is @ complete norm on eA.

(c) The range of W is closed in (Ae)*.

PROPOSITION 4.2. Suppose that e is a minimal idempotent in a left (right)
annihilator Banach algebra A. Then the range of W (¥) is all of (Ae)* ((eA)*) and
e is left (right) full.

Proof We use the argument of [5, Theorem 10, p. 160]. Suppose that 4 is
a semisimple left annihilator algebra. For each exceA consider the operator
L. on Ae defined by

Lex(ye) = exye :fex(ye)e-

As shown in [5, p. 160] every finite-dimensional bounded linear-operator on Ae
is of the form L., for a suitable exeed. Let ge(4e)*. The one-dimensional

- linear operator defined by ye— g(ye) e has the form L., for a suitable x. Then

g(ye) = fu(ve) for all yee Ae so that g is in the range of W, That e is left full is
a consequence of Proposition 4.1. :

Consider the completion A° of 4 in some normed algebra norm ||x|[, for A,
Let ¢ be a minimal idempotent of 4. If we 4 then ewe = Ae for some A complex
so that :

) _ llell~* flewell = ljelly* [lewell, -

For ze A° set, analogously to the notion of [lex|i’ and ||xe]",
llezlfy = llellz * sup {llezyell,: |lvell; < 1, yeA},
llzelfy = llell * sup {llevzell: lleyll; < 1, yeA.

For xe A, |lex||’ and- |[ex||; make sense and we wish to compare them as
well as |jxel|” and ljxe||{. By a result of Bachelis [1, Theorem 2.1, p. 308]
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the embedding of A into A° is automatically continuous when restricted to Ae
or ed. Therefore there is a constant D > 0 so that

(3) llextl, < Dllexll, llxelly < Dlxel
. for ali x in A. Note that, by (2),
~ Nexlly = llell ™ sup {llexye]: |lyell, <1, yeA}.
By (3), llyell <1 implies that ||yell, <D so that
| Dllex][y > flell~ *sup {{lexyell: lvell <1, ye 4}
. or Dllex]; = llex|/’. Then, using (1) and (3), we get

@ llexti’ < Dllex|ly < D llexil; < D*|lex]|.

THEOREM 4.3. Suppose that e is a left full minimal idempotent of A. Then
eA = eA® and all four norms |lex||, |lexlly, |lex||’ and |lex||; are equivalent on eA.

Proof By definition there is a constant K >0 so that
llex] = K {lexll, x€A. Formula (4) then shows all the norms to be equivalent
on eA..Note also that if A° is semisimple then e is also a left full minimal
idempotent of the Banach algebra A°

" COROLLARY 44, I [f every minimal idempotent of A is left (right) full, then S,
~ is a right (left) ideal of A°

- Proof. This is immediate from Theorem 4.3. Therefore, by Proposition
4.2, 5, is a right (left) ideal of A°if A is a left (right) annihilator Banach algebra.

TuEOREM 4.5. Suppose that A has dense socle and every minimal. idempotent
is both left and right full. Let A° be the completion of A in the normed algebra
norm |x|. Then every idempotent in A® is already in A

‘ _Proof. First we verify the conclusion in the case where [x| is a smooth
norm, By Corollary 44, the socle S, of 4 is a dense ideal in 4% and 5, < 84
For a minimal idempotent p of A%, pS,p = {ip: 4 complex} so that pe§,.
Hence S, = S, As A° has dense socle and is semisimple, 4% is a modular
annihilator algebra and A%/S ;s is a radical algebra by [16, Thecrem 3.4, p. 38].
Hence every idempotent of A° lies in §, and thus in 4. . .

Suppose |x] is not a smooth norm. Let X be the separating ideal for the
embedding mapping of 4, in the norm {|x|, into A° and set x' = x + X for xe A°.
As shown in §3, the mapping x—x' is a continuous isomorphism of 4 into
B = A°/Z. Let J be the radical of B. As in the proof of Theorem 34,
ix|; = |x'+J| is a smeoth norm for A.

Let p be an idempotent in A%, Then p'+J is an idempotent in B/J so that,
by the smooth norm case, there is an idempotent g in 4 such that
" q'+J = p'+J. Since A is a modular annihilator algebra, geS,. By Corollary
4.4, pq and gp lic in S, Now (pgf +J =¢q'+J = (gpy +J. As the mapping
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x—»x'+J is an isomorphism on A4, we see that pg = gp = g. Therefore p—q is
an idempotent in A°. Then p'—¢' is an idempotent in the radical J so that
p—qeZX. However, £ contains no nonzero idempotent by (13, Theorem 6.16, p.
42). Therefore p = q.

By Proposition 4.2 and [12, Cor. (2.8.16), p. 100], every semisimple
annihilator algebra satisfies the hypotheses of Theorem 4.5. There are other
Banach algebras which also do so. Let B(X) be the Banach algebra of all
bounded linear operators on a Banach space X. Let F (X) denote the closure in
B(X) of all TeB(X) with finite-dimensional range. It follows from [1Z2,
Theorem (2.4.18), p. 69 that F(X) is a left annihilator Banach algebra.
However, by [12, Theorem (2.8.23), p. 104], F(X) is an annihilator Banach
algebra if and only if X is reflexive.

ProposiTioN 4.6. F(X) satisfies the hypotheses of Theorem 4.5.

Proof. As noted above F(X) is a left annihilator Banach algebra. Hence,
by Proposition 4.2, every minimal idempotent p must be left full. That p is right
full was noted by Barnes [3, Example 2.4, p. 176].

There are semisimple Banach algebras with dense socle where no minimal
idempotent is left or right full, as can be seen from [3, Example 29, p. 1771
However, the next result shows that if 4 is semisimple with dense socle, then its
norm dominates a normed algebra norm ||x]j, where the completion A°
is semisimple, has dense socle and all its minimal idempotents are left and
right full. In what follows the norm of a Banach algebra A4 will be denoted

by [Ill4

TaeoREM 4.7. Let A be a semisimple Banach algebra with dense socle. Then
there exists a normed algebra norm ||-||, on A such that (1) |Ix]}, < lix|| for all
x & A and (2) the completion of A inthe norm |||, is a semisimple Banach algebra
in which every minimal idempotent is left and right full.

Proof. Suppose first that 4 is topologically simple. Let I = Ae, e = %, be
a minimal left ideal in A4, and let B(f) be the Banach algebra of all bounded
linear operators on I in the uniform topology. For each ac A, let T, be the
operator on I defined by T, (xe) = axe, xe 4, and let B be the closure in B(I) of
the image of the mapping a — T,. Since the mapping a— T, is a norm reducing
algebra isomorphism of A into B(f), we may consider B as the completion of
A in the norm |[|-|lp. Since (see potation in Section 4) for all ae A,

llealls = sup{lleabel.s: flbell , <1, be 4}
= |lefi sup{|featbel: lbeli, < 1, bed}
< llell sup{| fua (Bel: |lbellz < 1, be A} =liel] jlealls,

it follows that e is left full in 4 in the norm |-,
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Let R be the radical of B. Then either (1) AR = (0} or (2) A n R £ (0), If
AN R=(0) then AnR is a nonzero ideal of A and therefore contains
a minimal idempotent of A since 8% = (0) (see [16, Lemma 3.1, p. 37]). This is
impossible as the radical does not contain any nonzero idempotents. Therefore
An R =(0). For convenience let E = B/R. Then the mapping x—x+R is
a (norm reducing) algebra isomorphism of A4 onto a dense subset of E. Hence
we may identify E with the completion of A in the norm ||x||; = |[x+ R[5 x & 4.
Since clg(EeE) o ¢l (Aed) = A and A is dense in E, we get cly(EeE) = E so
that E is a topologically simple, semisimple Banach algebra.

We show next that ¢ is left full in E. We know that e is left full in A in the
norm ||-|lz. For we 4, we have (see Section 4)

(1) lella " llewells = llellz * llewely.
Also
] llexlls < llexils, ilexile < llexfig

for all xe 4. Clearly

3 li*llg < flxllz

for all xe A. Using (1) and (3) and the fact that Ae is dense in Ee and Be, we
have, for all xeA, .

() llex|lz = [lellz * sup{[lexyelly: lyelly < 1, ye A} _
= [lell * sup{llexyellp: llvelly < 1, yed}
2 |lells * sup{llexyellp: Ilyells < 1, yed}

or |lex||z = [lexiip. Then, using (2) and (3), we get
4) Hexlls < llexilz < llex]|; < [Jex]ly

for all xe A. As e is left full in A4 in the norm ||* ||, there is a constant D > { so
that Dllex||, < llex|l5 for all xeA. Hence, by (3) and (4), we obtain

Dllexfiz < Dlexll < llexly < llex]z < llex]l

for all xe 4. Thus e is left full in A in the norm ||-|| ¢ and therefore left full in E.

. Now let J be the minimal right ideal, J = ¢E. To each b € E, associate the
operator U, on J defined by U, (ey) = eyb, ye E. Then the mapping b -+ U, is
a norm reducing algebra isomorphism of E into B{J). (Here we take the
composition of mappings in reverse order.) Let E' be the closure in B(J) of the

image of the mapping b-»U,. Then we may consider E as the completion of
E in the norm [f-||z. Since

lbell = sup{lleybelly: fleyll < 1, ye B}
= |lelly sup{lgre (¥)l: lleyls < 1, yeE}
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< llellg sup {lgse (ex)l: flevlie < 1, yeE} = llelly llbellz-,

for all be E, it follows that e is right full in E in the norm ||- ||z Let R’ be the
radical of E". As above we can show that E~ R’ = (0) so that the mapping
x—x+ R’ is a norm reducing algebra isomorphism of E onto a dense subset of
F'[R'. Let B = E'/R’. Thus we may identify B with the completion of E {and
hence of A) in the norm [xj|z = |ix+ R'||p, x=E. Clearly B is a topologically
simple, semisimple Banach algebra and, by Theorem 4.3, e is left full in B since
e is left full in E. Now since e is right full in F in the norm ||- |}, by an argument
similar to the one used above to prove that ¢ is left full in E, we can show that
e ts also right full in B. In fact from (s}, with an obvious change in notation, we
obtain |[xel|g > ||xel|%, for all xe A (ed is dense in eB and ¢E’). Since e is right
full in E in the norm ||-||g, there exists a constant D'> 0 such that
Dixe|lp < {|xellz, for all xe A, Hence

D'[|xelly < D'|lxellz < lIxell: < lixells < ||xells

for all xe A. Thus e is right full in A in the norm || ji and therefore right full in
B. Therefore, by [3, Remark 2.10, p. 1787, every minimal idempotent of B is left
and right full in B. This completes the proof for the case where A is
topologically simple, with ||xii; = ||x||;. We observe that |jally < || T}l for all
aeA. We shall use this fact below. ‘

Now suppose that A is any semisimple Banach algebra with dense socle.
We lean on the proof of [14, Theorem 6.5, p. 270]. Let K, ..., K, be a finite
set of different minimal closed ideals in A. For each j=1, ..., n, let e; be
a minimal idempotent in K; and set I; = Ae; = K ¢;. Each K is a topologically
simple, semisimple Banach algebra with dense socle. Let y— T4 be the
isomorphism of K; into B(I) defined by T{(xe) = yxe, for all xe K. By the
proof above each K; has a completion B; which is a topologically simple,
semisimple Banach algebra in which every minimal idempotent is left and right
full; moreover,

&) (I¥lie, < ITYN < Iyl

for all yeK, Let y,eK, j=1,...,n By [14, p. 272]
(6) max{|TP: j=1,....,n} < lly,+ ... + ¥l
Hence, bs' (5) and (6),

(7) max{||ylls; i =1, .., B} S yy+ - +3ll.

Let {K,: ae A} be the family of all minimal closed ideals in 4. By the first
part of the proof, for each a e 4, there is a norm reducing algebra isomorphism
T, of K, onto a dense subalgebra D, of a topologically simple, semisimple
Banach algebra B, in which every minimal idempotent is left and right full. Let
B be the B(co)-sum of the algebras B,.-Then B is a semisimple Banach algebra
with dense socle in which every minimal idempotent is left and right fuil.
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Denote the norm in B by {|-]|;. Using inequality (7), we can show by an
argument similar to that in [14, p. 273] that there is a norm reducing aigebra
isomorphism 7" of 4 onto a dense subalgebra of B. This completes the proof.
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Factoring the identity operator on a subspace of 7
by

PIOTR MANKIEWICZ (Warszawa)

Abstract. It is proved that a “random n-dimensional subspace E of I3, has the property that
for every factorization of the identity on E through a Banach space ¥, 8;: E—~¥and §,: Y= FE,
one has be(Y) 8,1 I1S,) = en®?/dim ¥, where ¢ >0 is a numerical constant.

A. Pelczynski ([4], Prop. 11.1) proved that for every n-dimensional Banach
space X, there is a Banach space Ywith basis constant be(Y) = 1, dim Y< n*72,
and there are operators S;: X,~ Y, §,: Y—=X_, such that §,8, =1dx and
18,11 iS4l < 3. In this context he asked whether the estimate on the dimension
of Yis optimal. Essentially the same proof yields the following more general
result:

For every n-dimensional Banach space X, and every m < nbc{(X,) there is
an m-dimensional Banach space Y, and operators S;: X, — 1,
8, Y,—Y, such that §,§, =Idy, and

1) be(¥,) IS4l [182]] < 3nbe (X,)/m.

One can ask whether the estimate (1) is optimal. S. J. Szarek (6], Prop.
5.1), using the technique introduced in [1] and developed in [5], proved that
there are real n-dimensional Banach spaces X, such that for every factorization
of identity on X, through an m-dimensional Banach space one has {in the
notation above)

cn
) be(L)11S411 1181t = EIOg"’”ﬂ,

where ¢ > 0 is a numerical constant. The complex variant of (2) was done in
a similar way in [2] by the author. The aim of this note is to show that (both_ in
the real and complex case) the estimate (1) is optimal “up to a multiplicative
numerical constant” even if we restrict our interest to the case when X, is an
n-dimensional subspace of 1%, with basis constant of order J n. The same
argument vields that (1) is optimal “up to a multiplicative numerical constant”
for n-dimensional subspaces of B, with basis constant of order ntf2=1r for
pzl : .



