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Some combinatorial and probabilistic inequalities and their application to
Banach space theory I

by
STANISEAW KWAPIEN (Warszawa) and CARSTEN SCHUTT* (Stillwater)

Abstract. Some combinatorial estimates are proved. As applications they are used to study
subspaces of L.

.Introduction. This is a continuation of our previous paper [11. In [1] we
estimated '

Ar‘;le 16, ¥rp)i=1 ﬂp

where the average is over all permutations = of the set {1, ..., n}. Here we are
able fo give estimates for

A:e [50¢; V=1 llne

where M is an Orlicz function. We do this by considering

Ave Ave 08X [X; Vaw Zoy] -
E a 1<ign

At first glance this expression looks more complicated but it turns out that it is
much easier to handle. In fact, we consider a more general average which may
be of some importance. Namely, we consider
Ave g, lo(t. 9 0)

where (a(i, j))nxm is @ matrix and the average is over some subset of maps from
{1, ...,n}into {1, ..., m}. This more general approach makes the proofs more
transparent. _

Our method has been used in [5] to determine p-absolutely summing
norms. In [3] Y. Raynaud and the second-named author extended the results
to infinite-dimensional Banach spaces. Some of our results have been presented
in {4]. _

We would like to thank Richard Haydon for drawing the problem of
matrix subspaces of I} to our attention.

* Research partially supported by NSF Grant DMS 86-02395.
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1. Combinatorial inequalities. Let I, J be finite sets with |{| = », |J| = m. Let
G be a fixed subset of the set of maps from I into J. We denote by u the
normalized counting measure on G, ie. u(d)=|Al/|G| for A = G. The basic
assumption on G is that for each iel the random variable g(i) on G is
equidistributed in J, ie.

pllg: g@) =P =1m
If fis a function on G then we define

for all iel and jeJ.

1GI™* 2 1(g)

geG

A;vef(g) = == ff(g).u (dg).

In this section we give some estimates from above and below for the
average

A;'enilgxa(i, g (i})

where (a(i, j));«s is a matrix with nonnegative entries.
Let A={(s,k): 1<s<¢c,keK) be a fixed set of indices and let
U = Uy upea be a fixed family of subsets of IxJ such that

@D UinUi=0Q for (s, k),(s, Ded and k#1,

(i) p{{g: (i,g(D)eU; for some iel}) < r/m for all (s,
integer depending on s only.

k)e A where r, is an

The family % may be empty and we put ¢ = 0 in this case. With % we
associate another family . as follows:

={AdcIxJ: Al <m, |[AnUj <r, for each (s, k)e4}.

LemMa 1.1. Under the above notation we have for each nonnegative matrix

(“ (i, ))r xJ

+2 .
Wmax 3 al, .

Acst (i, f)ed

Proof. Let A' be such that A'esf and

2oali. )< Y oal,))
Gi.Jled {Ljed
Let A7 = {{i.)eI xJ\A": |4~ Uj| < r, for each (s, k)eA such that (i, jYe Ui},
and let A" = I x J\(4'"U A"). Also put @' = y4a, a" = taraand o =y,
If (i,hed” then

Ave max a(i, g()) €

for all Ae.o.

afu, v).

Otherwise we could add (i, ) to the set A4’ if {A'|<m, or replace by

ati,j<mt ¥
’ {u,p)ed’
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{i,j) an element (&, v) in A’ for which a(u,s) < a(i,j) if |4'] = m, and for the new
set A we would have Aeof and

Y a@,v)> 3 alu,b)

(. v)=d (u,v)ed’

contrary to the definition of A'. Hence we have for all (i,jlelxJ

Y afu,v).

{u,jed”

a’(, jism™?
we have the following estimate:

1
X u(i’j)_
(:.kZ)EA K L (u,v)e;n!];
This is true because otherwise, if for each (s,k)e 4 such that (i,j)e U and
|A"nUj| = r, we delete from the set A'~ Uj an element (u,v) for which
alu,v)<a (1 j)and if we replace all the deleted elements by the single (i,j) then
the new set A would be in ./ and contrary to the definition of A’

Y awv)> Y a(u,v).

w.w)ed (u,0)ed’

For the matrix a

a” (i,j) < a(u, v).

Taking into account these estimates of ¢” and 4 we obtain

Ave maxa’(i, g@)<sm™ Y a(.j,
¢ el (hhed’ ~
1
Ave maxa”(i,g@) < Y —( Y a(u,v))Ave max X, (1 g ()
[ fel (s.k)ed s (n,u)sA'nU"‘ g iel
< 1, v, . C '
< Z 2 _( Z a(usU))_s_ Z a(u,v).
s=1keK,Ts (nujed'nUl mo M e
The average with the matrix 4’ is estimated by
Avemaxd (i) € 3 alhul@®)=H=m"1 % a(i,))

a ief (i, J)eAd’ : (i,f)sA’

The above inequalities and the obvious one
Avemaxa(i,g (i) € Avemaxd'(i,g(i))+ Avemaxa”(i,g (i) + Avemaxa™ (i, g (i})

'] ief a iel g iel I's iel
conclude the proof. m

Remark 12. If ¢=0, ie the family # is
={A<IxJ: |4 <m}. Lemma 1.1 gives then

2
< —n;k;l s(k)

empty, then

Ave max ali,g (i)
g iel
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where (s (k)fiz, is the nomncreasmg rearrangement of the numbers a(i,j), icl,
jed. A proof sm'nlar to the one in Theorem 1.1 of [1] allows us to reduce the
constant 2 to | in the above inequality.

Now we will give some estimates from below. For each 0 <r < 1 and
(i, HelxJ let

Vig={kDelxJ: u(g) =j,gtk) =1) =r/m}.
Letz: (0,1]1— R* be a fixed function such that t(r) # 0 only for finitely many r,
and let d =} rt(r). With ¢ we associate a class of subsets of I xJ as follows:
={BclIxJ:|Bl<m, |BAV|<t(r)
for each (i, jelxJ and re(0,1]}.

LemMa 1.3. Under the above notation we have for each nonnegative matrix
(a (i-j))ru

d'maxm™! Y a(i,j) < Ave max a(i,g ().
Be® (i, j)eB ief

Proof, Observe that the expression Ave maxge |a(i, (l))‘ defines a norm
on the space of all matrices {a(i,)); x ;..If a matrix (a (i, ])),x ;18 an extreme point
of the unit ball of this norm then there exist a subset € < I xJ and a number
b such that |a(i, )| = b xc(i,j} for (i,j)e I x J. Therefore it is enough to prove the
inequality of Lemma 1.3 for matrices a = y, where C < I xJ, If B < I x J then
by the Schwarz inequality we obtain

m~! Z xc(h)) = jZXBnC(l g(l))u(dg)

(i, )eB G il

) (g (Z Aonc (i’g(f))) :u(dg))“2

icl

(j K 2l g(z)),u(dg)) °

If Be#® then
2
I(_szﬁc(i,g(i))) plg)= % plg@) =gk =1
-G \iel (L0 (k,DeBAC

= T YIBacavis T trm<i ¥ g

G.nsBac v M (. }eBnC M. hen
Combining these inequalities with the obvious inequality

&[; ax ygnc{i, 9 () 4 (dg) < Ave maxyc (i, g ()

a el
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we -get

RN () dAvemaxxc( g ().

(i,/)eB a iel

Since B is an arbitrary set in # this proves the lemma. =

Of course the most interesting case is when the estimates from above and
from below coincide up to a constant, in other words when we can find a family
% and a function t such that the associated classes o/, # fulfill o = 4. In
general this requires much more assumptions on the structore of G. We will
show that it is so in several cases which are shown in the following examples:

Exampre 14. Let I =J={1,...,n} and let G be the set of all per-
mutations of I. The family % is defined to be empty and the function ¢t is
defined by (1) =1, t(1/(n—1)) =n and () =0 for all other r. In this case
A =B ={Adelx]: |A|<n}, d=2+1/(n—1). Lemmas 1.1 and 1.3 give

2 1\t <A 2 n i
( +n—1> ”kz ve max afj, g (i) < Z s (k)

g i By

where s(k), k=1,...,n% is the nonincreasing rearrangement of a(i,f),
Li=1,...,n

ExaMmpLE 1.5. Let I = J = {1, ..., n} and let G be the set of maps of I into
itself which are of the form g =( +k) mod n where k is an integer, fixed for g.
The function ¢ is given by t(1)=1 and t(r} =0 for r# 1. The family

= (U=, is defined by U} = {(i,j)éIxI: i—j=k mod n}. It is easy to
check that & = £ in this case. However, the estimates for the average are
trivial in this case.

ExampLe 1.6. Let I =J ={1,....n}x{1,..., n} and let G be the set of
all maps of the form g(i,j) = (n (i), o)) where 7= and ¢ are permutations of
{l,...,n}. The family #% is defined as follows: A={1,2}xI, Ul
={(,j,k,D: j,I=1,...,n} for each (i,kjel, and Uj,={(jk I} i,k
=1,...,n} for (,hel. Moreover, let t be defined by i(l}=1,
t{lfn—1)%) = n?, t(1/(n—1)) = n and t(r) = 0 for other . It is easy to verify
that .« < & in this case and

2
n n
a=1 e ()

Thus Lemmas 1.1 and 1.3 give

—7—13max > a(i,j,k,.l]sAvemaxa(i,j,n(i),a(i))
H

A (LikDed o i

< %max Y a(l.j.k b

4 (LikDad
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where A < I xJ with [A] < n® and |[AnU},| <n and A UZj < n for each
(t,k),(,Del.

The following corollary is of fundamental importance for the remaining
part of this paper and is the main purpose of this section.

CoroLLARY 1.7, Let a(i,j, k), i,j,k =1,..., n, be nonnegative numbers.

Then we have

" VYT S RN -
(H«( ) ) - Z s(k) < Ave max a(:,n(;),g(;))g? T sk)

n—1 e i k=1

where the average is over all permutations w, o of {1, ..., n} and (s(K)}i=, is the
nonincreasing rearrangement of the numbers a(i,j,k), i,.jk=1,...,n

Proof Let I={1,...,n}, J=1Ix1T and let G be the set of all maps of
I into J of the form g(i} = (n(i), o (i)} where = and ¢ are permutations of
{1,...,n}. Let 4?! be the empty family. The function ¢ is defined by t(1) = 1,
(lf(n 1)?) =n* and t(r) =0 for the remaining r. The associated families
</ and 7 are both equal to {4 < I'xJ: |4 <#?}, and d = 1+(n/(n—1))>. B
Lemmas 1.1 and 1.3 we conclude the proof. The constant 1 instead of 2 on the
right. side of the inequality is obtained by Remark 12. =

2. Orlicz spaces and averages over permutations. The following are the
main results of this sectiom.

THEOREM 2.1. Let a,beR" with |la|, = ||bll; =n and a, > ... 2a,>0,
by=...2b,>0, and let M be an Orlicz Sfunction such that .the conjugate
Junction M* satigfies

!
M"‘(n‘2 b s(k)) =1n?, I=1,..,n,
k=1

wher_e s(k), =1, % is the nonincreasing rearrangement of labj,
Li=1,..,n Then for all xeR" we have

1/1 1
5(5_;1___1) lIxll,r < Ave max i @iy Dogiy] < 201X

o

THEOREM 2.2. Let aeR" with |al|, = n and a4y =...za,>0, and let M be
an Orl:cz function. Let N be an Orlicz function sat:.sfqu

N*(n-z i s(k)) =im?, I=1,.., 2,

k=1

where s(k), k=1, ..., n% is the nonincreasing rearrangement of

an(M* 1() M*~ 1(’ 1))’ Lji=1,...,n
. n " .
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Then we have

111 1 i 2
4(2 n— )llxllN A:eil(xiaum).-ﬂllus8(1+m)llxlin-

CoroLLARY 23. () Iet 1<p<ow, aeR" with |(all; =n and
ay 2 ...22a,>0. Then there is an Orlicz function N with

! n ¥
IN' 1() {Za_i_lllp'( 2 af') "}<2Nt 1(“‘1)’ I=1,...,n,
5 =1 i=1+1 n

such that for all. xeR"

1/1 1 2
E(E—r) lIxlly < AVC H0x; @a)i=1lip < (l'f'm)"xli}v-

(n) For each 1 < p< oo and all x,acR" we have

" n? 1 .
gn“ h) s(n!c)+(n‘1 )X s(k)") psAyeII(xiaum)%'mllp

k=1 k=n+1

k=n+1

[ a2 1/p
oty s(k)+(ﬂ'1 Yy s(k}")
k=1
where s(k), k=1,...,n% is the nonincreasing rearrangement of |x;a},
Lji=1,...,n
We start the proofs of these theorems by the following lemma.

LeMMA 24. Let a, >...2a,> 0 with Yi.,a,=1, n <s and

" ki
lIxllg = max 3, (E a;) I
Jj

Thy=si=1 \J=1

If M is an Orlicz function such that M*(Zf,:l a)=1Uls, 1=1,...,5, then
il < Ixlly < 20l for all xeR".
Proof. Let ||} ||| denote the norm dual to || ||~ We have

lixllye < Hixlll < 2lxllye  (£.[2],p-147).

We show the right-hand mcquahty of the lemma. Suppose that xe R" is such
that x, =... 2 x,>0 and Z, M*(x)=1. Then there are nonnegative

integers k, such that

ki ’ .
Ya<x< Y a fori=1,...,n
=1
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We get

=

‘(;Z‘ aj) - Z ks

=1

1= 3 M*x)> Y, M*

i=1 i=1
so that Yio k;<s Thus x,<a+3ie,q for i=1,....,n We have
(al,al, ..., 0)€ Bpx because n < s, and-also ( ):j_la), y is in Bgx because
Y k;<s. Hence xe2Bg# or Byx < 2Bgx. Thus |[x||; = illxll[ ||x|!M. .

Proof of Theorem 2.1. We apply Corollary 1.7 and Lemma 2.4. We
have

n 2 Y s)=n"23 Ix| T laby
k=1

(=1 (LkleM,y

where Y ;—; [M;| = n® and the sets M, i=1, ..
that the sum is maximal, ie.

., 1, are chosen in such a way

[Mi]

Y o lapd=Y s(k). m

(ik)eM; k=1

Lemma 2.5, Let M be an Orlicz function. Then we have for all xeR"

1(-1-— ! )ung Ave max xn(M* 1(“}5") M- 1(?_@:_1))
n

2\2 n-1 n 1<ign
Proof. This is a consequence of Theorem 2.1. We put

b=(1,...1), amn(M* 1() M*- 1(‘ 1)) i=1,...n m
n n

Proof of Theorem 2.2. We apply Theorem 2.1 and Lemma 2.5. By
Lemma 2.5 we have for all xeR"

< 2[xllgr-

1/1 1 "
G A:e”(xian(i))i:l“M

XUy n (M *-1 (E'—:-Q) ~M*1 (f_@:i))’
n

< 2 Ave |0 dnp)i=tllpe
.4

< Ave max
o IXIiKn

Now it is enough to. apply Theorem 2.1 to conclude the proof. m

Proof of Corollary 2.3. We apply Theorem 2.2 to M (1) = t*, We have

P

M*(f) = or equivalently M*7 () = p42 (p)L# ¢ 11¥',

t
P ()"
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We have to estimate

.n"zés(k)=maxn“2i i (M* 1() —M* 1(".*1))
k=t . i=1  j=1 n n )

= max n;1 5 aM*~1 (k/n) = maxn™! ptP (PP Y a4, (k/m)L7.
3

ki i=1 ki i=1

Here and below, max,, denotes the maximum over all sequences (k) with k; < n
and Xk, = I Therefore we get

n"? Z sk)<2n7H{ Y a,+max Y, a(k/m7}.

i€l/n ki i>lm

Hence by the Holder inequality we deduce that the last expression is less than
or equal to

7Y g+ (Y af)rl.

i<ln i>in

On the other hand, choosing k; = n for i <l/in we get

n? Z sky=n"t Y a.
k=1

i<l
Now we consider instead of o the vector 4 with 4, =...= Gy +1
= aym+y and d = a, for i > [I/n]+1. We have
! ]
n~2 Y sk zn"tmax Y &k/n)'?.
k=1 ki i=1
Since @; =... = dym+1 and (@) is decreasing, we know that the maximum
n~imax;, _ ¥-1d;(k/m)"" is attained for a sequence (k;) which is decreasing

and k,—1 < kym+qs. This implies that k;<n for all i=1,...,n
Therefore we may write

n2 Y sk)=n"'max Y, dfk/n'".

k=1 Eki=1 i=1

Now if we apply Lemma 2.4 to the nght -hand expressmn we obtain for
nglgn?

“2 S g 3 bn (U 1, 3 L (3 apye.
k=1

i>in

Altogether we obtain

. ) 1
g2 zl: s <n Y a+0mMr (Y af)ir} < 5n? Z s(k)

k=1 15Hn i>ifn



150 S. Kwapieir and C. Schiitt

for n<{< »? Now it is enough to substitute In instead of / in the above
inequalities to conclude that the Orlicz function N from Theorem 2.2 satisfies

the required condition.
(ii) can be derived from the previcus estimates as well. Since we already

obtained these inequalities in [1] we refrain from doing it. w ‘

3. Matrix subspaces of L. The following theorem is useful for showing that
some spaces are not isomorphic to subspaces of L.

Trrorem 3.1. Let {e;;}!; be a 1-unconditional basis of E. Then for each
n*-dimensional subspace G of L' we have

n
Y 4;e;

=k
"
2. ajex,
=1
Here it is crucial that the average over permutations is applied to the first
index of basis vectors.

: Ave
d(E,G) 2 ——=sup —*
3 ‘/2 axe Ave

LEMMA 3.2, Let (@ j)xn be a matrix and s(k), k=1,..., n% the noninc-

reasing rearrangemeni of |a; f, i,j=1,...,n Then we have
n 12 n nz 1/2
Ave(z aﬁj) <n 'y s(k)-i—(n"1 Y s(k)’) .
i J=1 k=1 k=n+1

Proof. By the Schwarz inequality we get

142 12 n% 172
e(59)" <o ) (o 5,09
i \j=1 i = k=n+1

where a;; = a; ; if |a; | in the nomncreasmg rearrangement s(k), k = 1, o 1
has index greater than n, and a; = 0 otherwise. Also we have

n 12 "
Ave(z :’f) < Ave Z laf )| = n~1 Z s(k)
i Jj=1 i

where aj; = q; ; if in the nonmcreasmg rearrangement s(k), k=1, Iaul

has index less than or equal to », and ajj = 0 otherwise. Now the proof follows
from the triangle inequality

2 12 " 1/2 172
Ave ( Y af J) < Ave ( Y a;?j) +Avc Z a}’f) .m
J

i f=1

Proof of Theorem 3.1. Let SEL(E G), Gr:i1 Then we have for
Sle)=x, i,j=1,...,n,

18] Ave.

2 a;enp || = lIS||Ave Ave
j=1 [

n
x 8 8x(p,)
=1

icm
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= Ave Ave E

4 e k=1

2. 4% x,,(j),j(k)‘

=1

where the average over & is extended over all sequences ¢ = (¢, ..., &,} of +1.
By the Khinchin inequality we estimate the last expression by

— i Ve(i lay X -(k)lz)”2
\/Ek=l T Jj=1 Find ]

Now we apply Corollary 2.3(ii) and Lemma 3.2 to the matnces {a,x,; (K ;.
k=1,2,..., and we obtain

Z AiCrif),i

j=1

151 Ave

b4

. Z Ave(z la;x; 5 ( k)|2) "

5.\/2k 14 \j=1
1. &

Z——= 3 Ave Ave
V

2k=1 i E

2 ajﬁjxi‘j(k)
=1

= L_Ave Ave

-5\/ 2 0 e
! — Avc Avc
Z 5 SJ
1 1
RN
and this proves the theorem. m

Let {e;}=, and {f;}}-, be l-unconditional bases of E and F respectively.
Then we define the space E(F) to be the space of all matrices (a; ;), ., with the
norm

n
PIEITEY
=

Z ajejew
j=1

13

el Y a;e.;
=1

?t

n L
Y G 2 afjlie
ij=1 f=]

As an easy consequence of Theorem 3.1 we obtain the following

i
j=1

CorOLLARY 3.3. Let {e}l~; be a 1-symmetric basis of E and {f}j=.
a l-unconditional basis of F. Let 1de L(E,F) be the natural identity map, i.e.
(3}, =1 a,&) = Yj=1a,f; Then for each n*-dimensional subspace G of L' we
have

gjnmu < d(E(F),G).

COROLLARY 3.4, Let 1 <p<r<2, neN.
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@) If G is an n’-dimensional subspace of L then we have
1
A(L (), G) > —ntrr=1t.
EB.0> o

(il) E{k) is isometric to a subspace of I}.

4. Symmetric subspaces of I'. We give here a necessary condition for a space
 with a symmetric basis to be a subspace of I'. First, we introduce some
notation. Suppose {e;}i%, is a I-symmetric basis of a space E. Then there is an
Orlicz function My such that

K K
2 e e
=1 =1

We say that M is associated to E. M is certainly not unique but norms given
by different associated functions are equivalent. In order to see that such
a function exists we use a result of Zippin (cf. {2], Proposition 3.2.7).

k

P

i=1

<
E

<2
Mg

k=1,2,...

i
E

LemMa 4.1. Let B be a Banach space with a 1-symmetric basis {e;}{ ;. Then
there exists a new norm || ||, on E such that:
@ lixll < llxllo < 2|ix|l for all xeE.
(i) The symmetric constant of {e}{%, with respect to || ||, is equal to 1.
(ili) If we put Ay(k) = ||Zf=1 ellas k=1, 2... then the sequence (i,(k+1)
— Ao (k)= 1 is nonincreasing, i.e. Ao() is a concave function on the positive
integers.

Now let us define an Orlicz function M as follows: M {1/4 (k) = 1/k,
k=1,2,..., and for the other values the function is extended linearly. Then by
(iii), M is convex and I[T5—;efly = 3 F= 1€l

‘THEOREM 4.2, Let E be a subspace of I' with 1-symmetric basis {e;}7=y and
let My be an Orlicz function associated to E. Then for all xeR" we have

n n
T 2 Xe
im1 i=1

where C is a universal constant.

£C
Mg

E

Since Mr.(f) ~ t*, by Theorem 4.2 we immediately obtain

CoroLLARY 4.3, Let 1 < p <2 and p < g. Then the Lorentz space 1" does
not embed into Il
LemMaA 4.4. Let E be a subspace of I with 1-symmetric basis {e})=1. Then

there are numbers a; > 0 and Orlicz functions M ,j =1, ..., N, with Z_I,L 18y =1
such that for all xeR"

Z X; e

i=1

C—l

N
E j=1

1]
¥ x;¢
=1 E

icm
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where C is a universal constant.

This result was proved in [1] but it is also an easy consequence of
Theorem 2.2. '

The following lemma follows from the definition of norms in Orlicz spaces
and from the definition of the conjugate Orlicz function.

Lemma 4.5, Let M be an Orlicz function and M* its dual. Then we have
k
2, €
=1

() hkM*~1(1/k) < 1M (1K) < kM1 (1/k),

O M=y el k=12 ..

M

k=1,2,...

Proof of Theorem 4.2, Bthemma 4.4 it is enough to consider spaces
with the norm given by ilx|lz = } =1 a;||x/ly,. By Lemma 4.5 we get for M,

FRMET (1) < UM AR <2 T /M, (Y

<2 % a kME (1/k) < 4 % a /M7 (L) 4 Mg (1/k) < 4kME1 (1/k).
Ji=1 =1

Thus we have

J

TMETI(1/k) < ; a, MFTH (k) <2METT (1K), k=1,2,...
=1

Now we show that B , < 32B and this is enough to prove the theorem.
‘ Mg

Clearly it is sufficient to consider vectors with positive coordinates. E"very such
vector in BM* may be written as (M*™* (z)ff=; with z; >0 and -,z < 1.
E

There are positive integers k, such that 2<k; <n and l/k <z; <2/k; or
L€ Uky=1/n, i=1, ..., n Because [|(M* '(z)ff=i|y <1 we deduce that
3= 11/ky < 2. By the above inequality this yields

N
M) <4 Y a My k).
ji=1
Now we conclude the proof as follows:

0z el = sup [, (ME™ E-0]
<4 sup <x,(i a, M;.*.—l (Z/ki))’,!_1>1
=11\ A= -
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=4 sup i a;¢x, (M}"‘(2/ki))§'=1>|

[Ixlle=1j=1

N
<8 sup Y a;lixlla, [I(MF 1 /K=

Ixlig=1 j=1

“he last inequality follows from the inequality ZL} 1k, <2 »
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Functional calculi for psewdodifferential operators, IIT
by
). ALVAREZ (Boca Raton, Fla.)

Abstract, We construct a selfadjoint algebra of If-bounded pscudodifferential operators of
nonpositive order, acting on functions defined on a compact manifold without boundary. Then,
using the Weyl formula, we give a meaning to f{4, ..., 4,) for functions f with a prescribed finite
number of derivatives, when (A, ..., 4,) is an r-tuple of sclfadjoint, commuting or noncommauting
operators in the algebra.

§0. Introduction. This is the last paper in a series (c¢f. [1]-[47) that studies
functions of several commuting and noncommuting selfadjoint pseudodifferen-
tial operators of nonpositive order, by means of the Hermann Weyl formula (cf.

[14], (117, [12], [3D)
(01) f(A1’ cees Ar) . j‘e"lni{t;A1+...+lpAr)f(t)dr‘
RV‘

The pseudodifferential operators we consider depend on symbols with
a finite number of derivatives. No assumption of homogeneity is made. These
operators act on functions defined on a space that is either the euclidean space
R" (cf, [1], [3]), or a compact manifold without boundary of class CM, for some
M < oo (cf. [2]). We give in each case sufficient differentiability conditions on
a function f so that (0.1) defines an operator in the same class. In fact, we prove
that this class is a selfadjoint Banach algebra.

The aim of this paper, as stated in [1] and [2], is to extend to [?-bounded
operators, 1 < p < oo, the results proved in [2] for p=2.

The key point in dealing with the formula (0.1) is to obtain a “good”
gstimate of the norm

0.2) [l 2=e4]

in terms of ||, Typically, a good estimate is expected to be a polynomial one. In
[1] and [2], a roundabout argument is used, by introdvcing a suitable version
of the characteristic operators defined by A. P. Calderén in [6]. Essentially, we
make use of the same machinery here, plus a “self-improving” argument, where
the Sobolev immersion theorem and the fact that If(X) is continuously
included in I¢(X) if p = g play a crucial role {cf. Theorem (3.1) below).

An announcement of these results appeared in Proceedings of the Seminar on Fourier
Analysis held at El Escorial, North-Holland, 1985, 3-11.
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