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Functional calculi for psewdodifferential operators, IIT
by
). ALVAREZ (Boca Raton, Fla.)

Abstract, We construct a selfadjoint algebra of If-bounded pscudodifferential operators of
nonpositive order, acting on functions defined on a compact manifold without boundary. Then,
using the Weyl formula, we give a meaning to f{4, ..., 4,) for functions f with a prescribed finite
number of derivatives, when (A, ..., 4,) is an r-tuple of sclfadjoint, commuting or noncommauting
operators in the algebra.

§0. Introduction. This is the last paper in a series (c¢f. [1]-[47) that studies
functions of several commuting and noncommuting selfadjoint pseudodifferen-
tial operators of nonpositive order, by means of the Hermann Weyl formula (cf.

[14], (117, [12], [3D)
(01) f(A1’ cees Ar) . j‘e"lni{t;A1+...+lpAr)f(t)dr‘
RV‘

The pseudodifferential operators we consider depend on symbols with
a finite number of derivatives. No assumption of homogeneity is made. These
operators act on functions defined on a space that is either the euclidean space
R" (cf, [1], [3]), or a compact manifold without boundary of class CM, for some
M < oo (cf. [2]). We give in each case sufficient differentiability conditions on
a function f so that (0.1) defines an operator in the same class. In fact, we prove
that this class is a selfadjoint Banach algebra.

The aim of this paper, as stated in [1] and [2], is to extend to [?-bounded
operators, 1 < p < oo, the results proved in [2] for p=2.

The key point in dealing with the formula (0.1) is to obtain a “good”
gstimate of the norm

0.2) [l 2=e4]

in terms of ||, Typically, a good estimate is expected to be a polynomial one. In
[1] and [2], a roundabout argument is used, by introdvcing a suitable version
of the characteristic operators defined by A. P. Calderén in [6]. Essentially, we
make use of the same machinery here, plus a “self-improving” argument, where
the Sobolev immersion theorem and the fact that If(X) is continuously
included in I¢(X) if p = g play a crucial role {cf. Theorem (3.1) below).

An announcement of these results appeared in Proceedings of the Seminar on Fourier
Analysis held at El Escorial, North-Holland, 1985, 3-11.

4~ Sudin Malhematica 95.2
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When the underlying spaces is R", it is unknown whether or not (0.2)
admits a nontrivial, that is to say, a better than exponential estimate, This
problem prevents us from having extended to If-bounded operators the
functional calculus defined in [1] in the I? case.

We divide this paper in 3 sections. Even though the presentation may be
slightly different and the hypotheses have been adjusted to fit the I case,
Sections 1 and 2 do not differ much from what has been done in [2]. Thus,
proofs are omitted in most cases, but proper references are supplied. In Section
1 we construct the operator classes .4, and %, on euclidean spaces. It is known
(cf. [4]) that “amplitudes” a(x,y,{) in a subclass of the “wrong” class 59, give
rise to pseudodifferential operators which are singular integrals in the sense of
the Calderén—Zygmund theory. Particularly, they are bounded operators in I7,
1 < p < co. This is the main idea in building up our algebra of If-bounded
pseudodifferential operators. In doing so, the symbols involved are required to
have one derivative in the { variables more than in the I# case. In Section 1 we
also study the pointwise convergence of a truncated oscillatory integral (cf.
Lemma (1.3) below), completing [4]. This integral is the main tool in proving
that our class of psendodifferential operators is a selfadjoint Banach algebra.

In Section 2, the definition of our algebras of operators is extended to
compact manifelds without boundary. Finally, Section 3 carries the results that
deal with the definition of the functional calculus itself.

It should be noted that a remarkable property of the Weyl formula is that
once f(A) is properly defined for a single operator, (0.1) can be easily handled
without assuming that the operators commute {cf. Remark (3.16) below, [1], p.
57, [2]. p. 62). This is not true for the calculi defined in terms of the spectral
theorem or the Cauchy integral theorem. However, if the operators 4, , ..., 4,
commute, (0.1) is the same as the operator defined by the spectral theorem (cf.

(12

§1. The operator classes .4, and %, on euclidean spaces. Given 0 < ¢ < 1,
k=1,2,..., let

k
1—-o

k
[ :I-i-l if not.
1—¢

(1.1) Dermrmion. For 0 < j+m < N, §J, consists of continuous functions
p (,{) with continuous derivatives in the { variable up to order n--N+2—j,
such that each function D} p has continuous derivatives in x, { up to order
2[n/2]+ N +k+2—j—m, satisfying

D3 DEDYp (x,0)
(1 |E)~ T~ Fom+lao =18+ < 0.

if this is an integer,
N =

sup
x,eRP
apy
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With the above supremum as a norm, §), is a Banach space.
We will consider operators K acting on & as

N-1
(1.2) Kf= 3 fe ip,(x, OO+ RS,
=0

where

(i) The function p; belongs to the class §/ = $§.

() For 1 < p, € 2 fixed, R is & continuous linear operator from I into
itsell for p, < p < phy = po/(py—1). Furthermore, R and the adjoint R* are
continuous from [¥ into Lf, where L] denotes the Sobolev space of order k.

We will denote by .4, and #, the classes of operators K and R, respec-
tively. Operators in @, will be referred 1o as regularizing operators of order k.

In #%, we define the norm

(IRl = lIR]|g,m + [IRllc.cpo +IIR* (g m + Rl

where B= L™, B, = L{*, C = L”('),'Ck = L5, and || |lg,,5, denotes the usual
operator norm of a continuous linear operator from B; into B, (Banach
spaces),

Under the above conditions, which do not assume homogeneity of the
functions p;, the representation of K given by (1. 2) is not unique. So, given
Ke.#, we define

Kl = inf{  sup  lpflss+ IRl
D€jEN -1

where the infimum is taken over all possible representations of K as in (1.2).

A, and #, are selfadjoint Banach algebras, with the composition as
product (cf. [4])

The main tool to prove that .#, is a selfadjoint Banach algebra is to
analyze a truncated oscillatory integral (¢f. [4], Lemma 2.1}, The next resolt
proves the pointwise convergence of that integral, completing [4].

{(1.3) Lemma. Let p(x,y,) be a comtinuous function defined in R"x R"x R”,
Suppose that given 0 < j < N-1, the function p(x,y,{) has continuous deriva-
tives in the variahles x,y,¢ up to orders 2[nf23+N+k+2—j, 2An/2]+N
Ak A2—f, g NA-2—J, respectively. Moreover,

;D“ 1)1' DY p e,y )

U e 1A |?| = B < a0

qup
X
af, ;

Let n be a cut-off function. Then the integrol
(1.4) Lflx) = [e7 2 Mp (e, p, O n (0 f ) dy s [e,

converges pointwise we. as £—0, for each fe o7,
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Proof Let
P 0= T 050 ex 02
la|<N~=j
aN_"jl a N~j—1
+HZN = —= D5 p) e x e (=), () (1 =¥ Hat.
@2l=N-—j 0

Integrating by parts in (1.4) any of the terms in the first sum, we obtain

feel
QJ eI DS D3 ) (5,3, )1 G0 F) dy

=l 1 X
=QJ —fe 2 (DE DR p) (v, %, D DS D A

al
n Z (Ot)( )Ial lj. —2mine (D ﬁD“p)(x %0
0<p<a B/\2n
x P (D) (e0) f(L) L
The Lebesgue convergence theorem shows that the first term tends pointwise

. to
el 1
QJ = 1= DE D5 ) (o6, 07 dl

as g—{). For the same reason, any of the terms in the sum converges to zero.
Consider one of the terms in the remainder. Let

N—ji .
2.06,3.0 = — L[ D3 A(x x+e(r—x), (0 =0V 1de,  Jol = N,
-0

Integrating by parts, we have

I

N-j :
(15) Gﬂ [e 29 DE[g (x, y, O )] dy d

L AN=j _
_ (”2"!"7;) j‘e-—lm(x—y)-z; Dig, (x, %O’T(C Of(wdydl

a\f i\ N ,
— - 20X~ ¥) a— ;
+D<Zﬂ:‘-€a(ﬂ) (21'[) ‘re (D§ qcx(xayn (=)

x s (DPn) w0)f (V) dy dE.
The amplitude Df g,(x,y,{) in the first term has continuous derivatives at least

up j:o grders (m/2]+1, [#/2]+1, n+2 in x,v,{, respectively. Moreover, each
derivative D4D?D}q, can be estimated by

C(1 4|~ NA-mtedfl+1D=14
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Thus, [4], p. 269, applies and one cenclildes that the operator LY defined by
Dg,(x,y,{) converges in If as -0 for each 1 <p < o0, fe 5.

On the other hand, the operator (9/x;) L; can be written in terms of the
amplitude

i\ Y - ‘
(—2}) (Mzn‘,:j)nga(x1y1£)+5;‘_;DCqm(xsyag):l-
“This function also has continuous derivatives in x,y,{ up to orders [n/2]-+1,
[n/2]+1, n+2, respectively, Moreover, each derivative DfD}D}{ can be
estimated by
C(1 g~V =m=*1 o (AT v =12]

The choice of the parameter N goarantees that —N(1—¢)+1< 0. So, [4], p
269, applies once more and we conclude that L{f converges in the Sobolev
space L{ as ¢—0. Then the Sobolev immersion theorem shows that the
sequence will also converge pointwise provided p > n.

Next, consider any term in the sum that appears in (1.5). We will write the |
amplitude as

(1.6) () DE ¥ g, (x,y. 0y eP{D ) (e0)
+{L—n () DE 4, (x. ¥, ) e (D) (&0).

The first term vanishes for |¢| 2. Thus the dominated convergence theorem
shows that the corresponding operator converges pointwise a.e. to zero as
g-+0. The second term vanishes for |{] < 1. Write the corresponding operators
as

(1.7 [ TEEE A (O)E T DETY g, (x, . O 1D (D7) (0) () dy dL.

The function |()¥/(Dfn)(() can be written as the difference of two cut-off
functions. On the other hand, the amplitude (1 —#(£) 11" ¥IDF# g, (x, y,{) also
defines an operator which converges in L{ as £ —0, Since the limit does not
depend on the cut-off function (cf. [1], p. 4), it has to be zero. So, if p > n, (1.7)
converges pointwise to zero as ¢~+0.

Finally, we have proved that L, f(x) converges pointwise a.e. as ¢— 0. This
completes the proof of Lemma (1.3).

Furthermore, we can conclude that the limit of {Lf{x)} as ¢~—0 is

|ee
Lf(x) = Z(M)lhﬂwmm)m&Mm%

fe| <N ~j

I N‘"JI
+lim Y (i) fem2me=n3(DEq, ) (x, y,On (e /() dy L.

50 [af N =) \2T0

The limit in the second term defines an operator in the class 2,
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(1.8) Remark. Given two operators in the class .,
N—-1 .

Kf= Y, fe 2™ p;(x,0f)d{+ RS,
i
N“

Hf = Y [ g, (x, 0f(Qd+R,f,
m=0

1
Ll =]

the adjoint K* and the composition KH cun be written as (cf. [3])
N-1 =\ fal 1 . e ‘
(1.9 K¥=3% X (—5-) EIe'Z""‘"DEDi p;(x, S dl + R, f,

j=0 l<N-7 \2T

110) KHf— 3 (i "
(- ) f_ E [m\<Nz;j—m EE)

Jom=0
jtm<N

1 . _ _
X =] TEEDEp (%, 0) Di g (%, DS Q) A+ Ry,

The operators in the class .#, can be extended to linear continuous
operators from Lf into itself, for py < p < pp, sl <k (cf. [4])

The class ., is defined in the spirit of the classes considered in {6].
However, no assumption of homogeneity is made here, which, as we said
before, implies that the symbol ., p;(x,{) will not necessarily have a unigque
representation. In spite of this complication, it is still essentially true that once
the cdlculus is properly defined on symbols, it will be possible to extend the
defmition to the operator class.

But some extra work is necessary to overcome the lack of uniqueness. The
basic idea is to consider auxiliary classes, where, essentially, the representation

(1.2) is split into a cartesian product. In this new setting, one recovers the
" uniqueness of the representation. Then, a modification of the characteristic
operators introduced in [6] can be used.

We summarize now the definitions and main properties of these auxiliary
spaces. We will omit the proofs, which follow very closely those in [1] and [2].
Precise references will be given, though.

(1.11) DermTION. M, comsists of (N -+ D-tuples " = (p,,. ..

v Py R
where p;e S/, Re,

‘M, has a natural structure of complex vector space.
Given {pg, ..., pv-1.R)eM,, consider the operator

N—1
Kf= 3 [e 2™p (x,)f(0)dl+ RY.
j=0
Then Ké./tlk and the map

A: w’tk*’"ﬂm (Po:---:PN—l:R)"K,
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is a homomorphism of complex vector spaces.

Gchn(Po: vy pN—l’ Rl)’ (‘10: LR ] q,N—11 RZ)Emka let K SA(po’ reen PN—1:
R,). H = A(gy, ..., y~15 R,). According to (1.9) and (1.10),

N—1
K*f = ZO e~ 2t (0, Of (L) di+ R, f,
k=

N-1
KHf = 3, fem s, (x, 07 () d(+Rof,

h=0
where
P\ T
(1.12) rhmﬁgzh(ﬁ) ;;!D;Dxpj(x,f),
i\l . .
(1.13) S"z,;m;ia,an(iE) —DEp; D

It can be shown (cf. [1], p. 46) that the correspondence
(Pos-vos Pu—15 Ry)s Wosvens @n—1s R =50, -, Sy-15 Ra)
is associative. Thus, it defines a product in 9M,. The correspondence
(Pos s Pa=1s Ry)=(rg, - Pu—15> Ry)

gives a notion of adjoint in M. The space I, becomes a selfadjoint Banach
algebra with the norm

1(Pos s Pav=1> Rl = sUp |ipjllss+ IRl

0gji<N

Moreover, A is a continuous homomorphism of algebras that commutes with
adjoints.

(1,14) DeriniTION. 9%, consists of N-tuples 2 = (pg., ..., py—1) such that
pies. ‘
M, is a selladjoint Banach algebra if we define
¥ = (ry, o, Pyeq)  with vy as in (112),

PR w8y, e, Sy ) With s, as in (113),

I, = sup lipjlss
ke

oS <N

Given ## = (py, ..., py-1), we will call p, the principal symbol of #, o ().
We have

G, (%) = 0, (#),  0,(@2) = 0, (@) 0, {2).

Thus, if # is a selfadjoint N-tuple, its principal symbol has to be a real function.
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The map
(2 m'tk"_’gtk: (p()!"': pN—l:R)—’(pOa“'s PN—l)a

is a continuous and surjective homomorphism of algebras. Its kernel is the
subalgebra {{0,...,0, R}|Re#,}, which can be identified with Z,.

Since the product of two (N + 1)-tuples (pg, ..., Pv—1> O {qos .+. Gv-1, 0)
might have a nonzero regularizing coordinate, 9, cannot be identified with
a subalgebra of M, Thus, the map

Ql: mkﬁm’tks '@'—)(gﬂzo)a

which is linear, continuous and satisfies (¢, = identity, cannot be a homomor-
phism of algebras.
We will now define a class 2, of formal differential operators 4. This class
generalizes the class of characteristics, introduced by A. P. Calderén in [6].
More precisely, we consider operators % which act on CF in the following
way:

@fx.0= ) DE[U(x0f]
|| <N
Each coefficient U, is an (N —|u|}-tuple (g, -.-» Un-[a~1,.) a0d each
coordinate u;, belongs to $j, (ef. Definition (1.1))
Given two monomials % =Df(U, ), =D{(V, ), 0<la,ifl<N,
f,g€C§, we have formally

(DZ(U,DEV,Y.g) = (— D" (1, ¥, DE(U, D¢ g))

= (—1)#l (f, v, ¥ ('8>Df_’.'U¢DE‘+?Q)

ogyep T

2 (ﬂ)(— D= 1+ (DE™? (V, DI U, f).4)

0sy<p

Z (A:B_a)(... 1)lac+li+ﬂ-l (Dé'(Vﬂ Dgrirﬂ -a Um.f‘), g),

S ASetf

where A = a+y. Thus, a tentative definilion of the product % ¥ could be

ﬁ lo--g+2] 2 '
as.léaﬁ-ﬁ (’1“‘0‘)(—“]) Di(W, )

" once we give a sense to W, =V, DF"ATAU,
First, we define W, = 0if |4 > N. If |A] < N, W, will be an (N —|A|)-tuplc
(Wa,a5 v ees Wa=|a[-1,0)-

Functionad calewdt for pdo's, 163

Let Vg = o -s e Oywypl- 1ph Uy = (g gr .o s Uy gy~ 1.0)- TU 15 €ASY to sShow
that v,, D**# " *u,, belongs to Sl EMpp 1 ja+ A < N. So, for
|l < N, j<N~—|4, define

wpeuf B o
W)y = (= 1)) M(
M Aot :-l-m-\q%:--;.lmj

This correspondence, extended to %, by linearity, gives an associative product
(cf. [1], p. 46). N, is a Banach algebra with the norm

+H-2
v DT ug

11 == sup |lugqll
'?lk o o S{ml
Given # == (Py, .0y Py )8, we will define the operator

U= 3 DF(U, ), where

la] =N

‘ i\ 1
U,= (”'j.cc)n Wia = :2;) aDi P
By analogy with [6], we will call %, the characteristic of #.
Consider the map
M- W, P,
7 is an injective continuous homomorphism of algebras,
Now, consider the map
g W= Ny, Uy
7, is linear and continuous but does not cominute with products. However, if
e, and # en(Ny), then w, (U+) = n (#)m, (¥). Obviously,
n, 7= identity, wm, (#) =% if Wen ().
Furthermore, 7(M,) is a closed subalgebra of ;.

The map 7€ from 9, into 2, was denoted in [1] by x. Given 4 MM,
y(#Y is called the characteristic of X",

We also define the map
2ot Wemr Wy, W Qiig,05 oevs Hy-1,00 O
%, is a linear and continuous map that satisfies
' jo () = W, U e ().

We will now state the invariance of .4, under changes of coordinates in
R", The proof is almost identical to the one of Theorem 0.4 in [2], p. 39, and it
will be- omitted.
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Let U,,U be open bounded subsets of R". For a given M, let ¢: U, - U
be a difftomorphism of class CY. Suppose that ¢ can be extended to
a neighborhood of U,.

(1.15) TueoreM. Let Ae.#, and let @: U;—U be a diffeomorphism as
above, with M = 2[n/2]+n+2N+k+5. Then:

(i) Given a compact set C, < U,, there exists Aje., such that
A (g (x)=Algoge~ e e for xeCp,geCF(C)).

i) Ir
A='3 1 p OF L R,
Af='T g DO RS,
then J

. J i\l o -
(116) qj(xag)=m§0 1a]=jam(-2‘E> 'D—LnyDﬁ[pm(go(x)a‘jt (Xa.VK)

x |det J (y)lidet J (x,y)"]y=sn  x€Cy,

where J denotes the Jacobian matrix of ¢, J (x,y) is the matrix §§ J (x 4-s(y—x)) ds
and J,(x,v) is the transpose of J(x,p).
(ii]) The map

o*: (pg, ..o Py-1) g, -y dn-1)

is a homomorphism from the algebra N, into itsell. Moreover, if » = ¢,0 @y, then
@* = plool.

§2. The classes .#, and %, on compact manifolds. Theorem (1.15) is the
main ingredient in extending the operator classes .4, and 4, to differentiable
maunifolds. _

In the sequel X will stand for an n-dimensional compact dillerentiable
manifold without boundary. We will assume that X is a C" manifold, r = M,
M =2[n/21+n+2N +k+35. The reason for this value of M will appear later.

We will also suppose that a measure g is fixed on X, Moreover, in terms of
local coordinates x = (x,, ..., x,), ¢ is given by G(x)dx,...dx,, where G > O is
a function of class C"7 1.

Let UJ,, U, be open bounded subsets of X or R*. Given a " diffeomor-
phism ¢: U,—U,, we will always assume that ¢ can be extended to
a diffeomorphism defined in a neighborhood of U,.

Given a function f defined in the ambient space of U, ¢* (f) will denote the
function defined in the ambient space of I/, which coincides with fogp in U,
and is zero outside.

Functional cateuli for pdo's, 11 N

Given an operator A acting on fanctions defined in the ambient space ol
U,, 0*(A) will denote the operator acting on functions defined in the ambient
space of U as @*(4) (f) = @*[A(p " "*(/)]].

Given {py, --.» Py -1 )€ Wy, we will denote by *(p,. ..., py~1) the N-tuple
that coincides with {¢g, ... gy b ¢, a8 in (116), when xeU,; and is zero
atherwise.

Let @ U Uz yi Uy -+ Uh e dilfeomorphisms and supposc that U,
U7, are nondisjoint subsels of the same ambient spuce. Then ¢ 0@, will be the
diffsomorphism that maps o, ' (U, U3} onto o, (U, nUY). Moreover,

If A, and A, are operators which map functions defined in the ambient
space of U, into functions supported in U, then {p,00,)*(4,04,)
= i (A, )Jop(d,)

For | < p = o, I7(X) will denote the functions which are integrable to the
pth power with respect to i For k < r, LE (X) will denote the functions which in
local coordinutes adnit p-integrable derivatives up to order k. We will identify
LE(X) and L7 {X)

A norm can be defined in L{(X) in the following way. Let {U} << be
coordinate neighborhoods in X and let ;0 Uy, (U)) = R" be C" diffeomor-
phisms. For each j, let ;& C% (U ) be a function such that 6,2 0,3 ;0,> 0in X,
Then, given fe LE(X) we define

M
(21 WAL, = 2 i O -
i ke

e =

It is not difficult to verify that any two such norms are equivalent.
LE(X) is a Banach space and L (X) is a Hilbert space.

(2.2) DerNimoN. (a) Given 1< p, €2, #,(X) is the class of linear
operators R such that R and R* map continuously IF(X) into Lf(X) for
Py § P < po.

(b) Given | < p, € 2, .#,(X) denotes those linear operators A that map
continuously I7(X) into itself for p, < p<py and satisfy the following
conditions. ‘ '

(@) 1F @ e Ch(X) have disjoint supports, then ¢, dp,e#, (X).

(i} ket U o X be open and let g U= U, be a " diffcomorphism,
U, o R, Suppose that ¢ can be exlended to a neighborhood of U. Then there
exists an operator 4, &.#, such that ¢ A ey = @ @* () ez, @1, e, e Cy(U).

(2.3) Tuvorem (el [21, p. 44]. #,(X) is a selfadjoint algebra and #,(X) is
a two-sided ideal of #AX). Given Ag.#,(X), A Is a continuous operator Jfrom
LE(X) into itself, for po<pspy 0€mKh :

We will endow #,(X) and .7, (X) with the norms
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”R”.@k()() = “R”B By + ”R[ C, Ck+ ”R*HB Bk+ ”R*”C,Crc:

E [IIAHBm B l4llc.cinls

m=0

1ALy =

where B = [#(X), B;=Lr(X), C= LPe(X), C;= Lio(X). #,(X) is then
a selfadjoint Banach algebra, and #,(X)isa selfadjomt normed algebra, not
complete. 24, (X) is continuously included in .4, (X}

Now, we will define the counterparts of the auxiliary classes M, and 9, on
the manifold X. They will depend on the cheice of coordinate neighborhoods
and a partition of unity in X. So, fix in X coordinate neighborheods [U,}, C
diffeomorphisms ¢;: U;~ @;(U), nonnegative functions 0, Co (U) dnd a pat-
tition of unity {n;}, under the following assumptions:

() n;eCo(U))
(i) If supp( )msupp(l?) # @, then supp(f),supp(0) = U;n U,
(ili) ;=1 in a 11e1ghborhood of supp{n) when i=j or when
supp (1;) N supp (1) 9.

Under the above conditions, consider for each j the restriction to ¢, (U)) of

an ‘N-tuple {pg, ..., py—-1) P»€S" Denote this restriction by (plf’, . pfv’ N
We define the norm
; ; |DE D D p (x,0))
(2.4} Nt ... pR- Ol = SUP(1 _I_|E|)—h(1~rr)+alal—lﬁ+vl’
where the supremum is taken over xeq,(U), [eR", ) <n+N+2-h,

e+ Bl < 2[n/2] + N+k+2—h
For j fixed, the product of two N-tuples is defined as in (1.10). Namely,

e, ... po )@, g ) = ),
where
. i\l g . .

{2.6) DEFINITION. The space ¥R, (X) consists of tuples 2" = {(p{, .... p¥- 1),
R}; with Re#,(X) and (p{, ..., p{- 1) as above, satisfying the compatibility
condluon If U;n Uﬂéﬁ ¢y =@, 07 ', then

(2.7) B, ... o) = o5, ..., PR )
M, {X) is a Banach space with the norm

||m|mzk(X)-SuP|| oY, ..., p-1)

in o U,nU).

N+ (R Rt -

We will now define & map from 3, (X) onto .#,(X), which will play a
main role in the construction of a functional calculus on ., (X).

icm
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Given an N-tuple (p§},

PY-1), we define an operator A, = A(pd,
e pi-y) as follows: 1

N—1

Z .f@ Zniel s ( C)f(fa’)dc, xemj(Uj)-,
(2.8) Aj (/) (\:) —_ VED)
0 otherwise,

Now, given 4 &9, (X), we define
A (A = nyJ of (4)0,+R,

J
= A L. P ).

(2.9) Truorem (¢f. [ZJ p- 53] Ay is a linear continuous operator that maps
M (X) onto 4\ (X). Furthermore, suppose that Ae . #,(X) Is selfudjoint. Then
A= A . o0 ) RY, where pY) is a real funczmn Jor every |

A producl can he defined on 9, (X) in such a way that Ay becomes
g continuous homomorphism of Banach algebras (cf. [2], p. 56). Moreover, the
subclass W (X) of I (X) that consists of {(0), R} is u closed two-sided ideal.
Finally, the element {(1,0,...,01L,0} is a unit of M, (X).

(2.10} Dervmion. The space 9%, (X) will consist of tuples {(p§?, .
satisfying the compatibility condition (2.7).

where A; =

pﬁllj I)jp

With the product (2.5) and the norm sup, (2.4), M, (X) is a Banach algebra.
It can be identified with the quotient N, (X)/R(X).

§3. Definition of a functional caleulus on ., (X). As mentioned in §1,
a roundabout argument is needed in order to overcome the lack of uniqueness
in the representation of the operators in ., (X). The crucial step is to obtain
a polynomial estimate for |le™ 2™*|ly, ), t& R. This is provided by the following
result.

(3.1) Trrorem. Let ' = {(p. ..., pil. ), R} be such that the p§’ are real

Junctions and the operator Ay (#) is selfadjoint as a bounded operator in 2 (X).

Suppose that 1/p,—kin < 1/2. Then there exists C > O such rthat

[l 25 gy & C LT 1A o) (1 E)]200 0
With e N (N 1242 (/2] --n-+ k- 5.

Before proving this theorem, let us conclude the definition of a functional
caleulus on .#,(X). Since .#(X) is not a complete algebra, given Ae.#,(X)
the exponential ¢ *™4 will not necessatily belong to #,(X). However,
since A is a continuous homomorphism of Banach algebras from M, (X) onto
M, (X), the kernel of A, is a closed two-sided ideal of M, (X). So, il we define

AN = inF (Il ey | Ax () = A}
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it is easy to prove that (., (X), ||| [I) is a Banach algebra. Moreover, A is still
a continuous homomorphism and given A&.4#,(X), |4l < CIIAJ

Even though .4, (X) is a selfadjoint class, there is no notion of adjoint in
i, (X).

Now, given Ae.#,(X), the exponential e >4 has a sense in (.#, (X), ||| 1|}
If A is selfadjoint, then Theorem (2.9) asserts that 4 = Ay (#"), for some
H={p{.....p§ 1), R)}, where the pif! are real functions. Then, if
Vpo—k/n < 172,

llle™ 24441 < C [EL A+ NI AND (14 (e b

with x as in Theorem (3.1).

Thus, if fe L2, s > 2u+5/2, the Bochner integral " Wl 24 sy dt con-
verges in 4, (X). Moreover,

a9

.

|l|_°f e AT ]| < CHIANT T VA1,

Since A4 is a linear continuous selfadjoint operator on L7 (X), it admits
a resolution of identity {E;}. We have (cf [12], p. 91) the following
compatibility:

]

Cf [ j‘ E’_znides]_f(t)dt

= a(d)

? e—ZufrAf"(t) At

§ [ e fiydi]dE, = | f(s)dE,,
ald) —= a(d)
where ¢(A) denotes the spectrum of A.

We will summarize the results above in the following theorem.

(32) TreoreM, Suppose 1/p,—kin < 1/2. Let = N(N+1)/2+2[n/2] +n+k+5.
Let Ae M\ (X) be a selfadjoint operator. Given fe LZ, s > 2u+5/2, the Bochner
integral [~ e 2™ 4f(1)dt converges in 4,(X) to an operator which coincides
with the value of f{A) given by L( o/ SV AE,. Moreover,

A< CA+ANP 271

A main ingredient in the proof of Theorem (3.1) is to have at hand a good
estimate for jle™ ¥l .

First of all, since 9,(X) is a Banach algebra, given # = |(p{f,...
<oy PH-1)} € R (X), the exponential e”2™* has a meaning for any complex
number ¢ However, when plf’ is a real function for every j, |le™ A0 has
polynomial growth as a function of teR. More precisely:
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(3.3) Lumma, Let o7 = {(pf, ..., p§L 1)} e M, (X). Suppose that p is a real

function for every j. Then

o™ AEI {(1"0” ®...., rﬁ)_;(t))}, teC,
where
X W32 (_anis ‘
o4 0 =" 5" A g
FRait]

Y

and CY) is a linear combination of [[=, DT DE" . with Zo™ = X",
Tk X | = h, CYly = 1. Moreover, if teR, then

(3.5) ||"mzmw.“m,,(."n < C[(I+ 1ty ca0) (1 4+ 217,

where it = N (N4 1)/24+2[n/2] +n+k+ 5 and the constant C does not depend on
roor

It is in proving Lemma (3.3) that the characteristics play a crucial role. Let
us briefly recall how (cf. [17, p. 50). ' '

Given # e, let % = a+ 4, where ¢ = (ug ,0,..., 0). We define induc-
tively a sequence {#,} of operators in ¥, as (see [1])

.Aﬂ0=1 ...'-:.(1,0‘,,,_,,,0)q 331:[}51
Bogr =B A+ [a.B], s=12,...,

where, as usual, [a,#,] denotes the commutator a2,
It is easy to prove by induction that given m = 1,2,...,

n
wm = Z (m) ggs gt
by

§=0

Now, if P is a polynomial,

(3.6) Pty =Y #,P¥(uy)fs!.
$30
The main fact concerning (3.6} is that the number of terms has a bound
independent of the degree of P. Indeed, it was proved in [1], p. 52, that #, =0
for 8 2 N(N+-1)/2.
Now, let /2 R C be an analytic function. If wg e is & real function, we
claim that

NN+ 12~ 1
(3.7) S = % B W 0l
s=0
[ndeed, since 9, is a Banach algebra, / (#) has a meaning. The right-hand side
of (3.7} can be obtained by approaching fin the C* topology with a sequence of
polynomials. Furthermore, denote by uf) the coordinates of the coefficients in
B, 1t is proved in [17 that given s = 1,2,...,if j > r(r+1)/2, then uf, == 0 for
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h+lo| < 7. So, for a fixed s, let r be the largest integer such that s = r(r+1)/2.
The coordinates of %,/ {ug,) will belong to the required space if f has
continuous derivatives up to order 2[n/2]+n+k+2(N—r)+s+4. When
s varies from 0 to N (N 4+ 1)/2—1, the maximum is attained at s = N (N+1)/2—1,
F=N-—1

Finally, we can conclude that the right-hand side of (3.7) belongs to ¥,
provided that f is continuously differentiable up to order N(N--1)/2+
+2[n/2]+n+k+5.

Given & = (pg, ..., py-1h Po & real function, we set

NIN+1}2~1 »
(3.8) [P = f)= ), @I (polfsl.
s=0
Let n f (%5) = (ro. ..., ry—;). It is shown in [2], p. 36, that
hh 4 3)/2
(39} Fn = Z Cs‘hf(S) (po)/SL
s=0

where C,, is a linear combination of [],-; D¥" Df™ py,, Zo™ = Zp", Tk, + 2o
=hand Cyq =1L
When h =0, we get the expected relation between principal symbols:

(/@) = o, ().

Proof of Lemma (3.3). The expression (3.4) comes from (3.9). Since
(didx) (™ ™) = (—2mit) e ™ and s < N(N+1)/2+2[n/2]+n+k+5, we
obtain (3.5). The estimate of the constant is deduced from the value of the
coeflicient C¥, in (3.4). This completes the proof of the lemma.

Proof of Theorem (3.1} Let A= Ay(H)eH (X), A =Q(F)
={pY, ..., p¥-1)} e M, (X). We claim that e~ 2 Q. (e~ 3™*) ig of the form
{©), R}

Indeed, since £ is a continuous homomorphism of algebras and £, is
a right inverse of Q, we have

Q(e—?.nlt.#’__gl (e-2nit,x")) = e—z::ir‘xf__ggl (e—lm'm(’) = (),

Furthermore, 2, is a continuous map from M, (X) into %1, (X) and Lemma
(3.3) gives an estimate of the exponential in M, (X). Thus, it suffices to estimate
the norm of {(0), R(5)} in M, (X), which coincides with ||R (t)]ls.x)

Since Ay is a continuous homomorphism of algebras,

R(t) = Ay[e™2 X _Q (o7 2mrdY] = g AMA_ [ Q) (gAY
R () is a differentiable function from R into &, (X), and

d . ' .
(3.10) R = 72 (= 2mid) ~ Ay @ (7 (—2min)
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or
d = 2nitA ~ el .
(3.11) T RO = [e7 e 4,0, (7 90)] (—2miA)
+Ax[2, (e“z""‘”)(mz'ni&i")—ﬂl(e'“"""(——ZniJﬁ)]
= R{t)(~2miAd)+ B, (t).
We clain? that B, ()& 4, (X), for each t. Indeed,
QLR (7 290) (= 2mis ) — Q, (=2 (—2mi))] = 0.
Moreover,
B, (f)”.-u.,(xg = H‘Ql (‘-’ﬂzmx.)(“"zniw)_ﬂl (ehzniw(“zﬂix))”mm
< C (1)
Since R{(0) =0, frome (3.11) we have
L
(3.12) Rty = [ B, (s)e~ -4 gg
[}

Suppose now that p, == 2. Thus,

IR ()] < C(1+]t)*tt.

LAXRLAX)

We can also write

%R(t) = (—2mid)e™ 3 — Ay @, ((—2midk) e™ XY = (— 2mid) R (£) + B, (1).

B, (1) also belongs to 2,(X) for each t and ||B, ()]s < C(1+1t)*. Thus,
(3.13) R(f) = ie"‘z’““‘"‘ B,(s)ds

and taking adjoints,

(3.1 R* (1) = ;{Eg (s) 3nlt = gy,

R*(r) is also a lincar bounded operator from I? (X) into IZ(X) and

o RS |
IR* O,y S COFIED,

This concludes the proof when p, = 2.
Suppose now that 1 < p, <2 and also that we have the estimate

(3.15) lle ™ 24| ooy 1oy € C (L)L

T Studis Mathomutiea 952
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Since (¢~ 2mtA)k = "' we will also have

< C+| .

— Znitd
e
o™ 254,

70,76 (x)
From (3.12) and {3.14) we conclude that
ROy < C (141,
Now, let us prove (3.15). Since R(i) = ¢ ™4 — 4, 2, (™ *""}) and
g2, (3_Z"im)l|L”ncX).L"n(x1 < Cl[4, 8, (ﬁ’“zm'f)i|.m¢(x>
< Clle™ ™ g < CO+ Y,
it suffices to show that
IR @] ey e oy < C LU

The Sobolev immersion theorem shows that L{*(X) is continuously
included in L9(X)if 1/g = 1/p, —k/n. Moreover, since X is a compact manifold,
I4(X) is continuously included in I2(X), provided that g > 2. For the same
reason, I? (X) is continuously included in I (X), since p, < 2. Then from (3.13)
we get the desired estimate.

Finally, that the constant involved in the estimate is of the form
CO+|# gy comes from Lemma (3.3} and the proof above. This
concludes the proof of the theorem.

{3.16) Remark. This theorem was proved in [2] for p, = 2. It is clear that
the crucial step in the proof above is to majorize |le™*™4|| 7oy, 1¥a(x), DY
a polynomial in ¢ This is obvious when p, = 2. When p, < 2 the proof relies
heavily on the Sobolev immersion theorem and the fact that X is a compact
manifold. So, the condition 1/p,—k/n < 1/2 has to be imposed for technical
reasons. We do not know if (3.15) remains true without this assumption,

It is also an open problem to obtain a polynomial estimate of

. lle” 2““'4||LP(RH),LH(R")-

A positive answer would permit us to apply the results in [4] to comstruct
a functional calculus in the euclidean case.

The Weyl formula can be used to construct a functional caleulus over
r-tuples of selfadjoint operators, without additional work. Indeed, Iet
Ay, ..., A, be r selfadjoint operators in ., (X). Consider the Bochner integral

j‘ e-—-z::tz-.d f(t}tﬁ,
Rl'

where t+A =1t 4;4+...+1,4,. We can split this integral into two terms,
namely, [ o+,  The first one can be easily handled. Now,
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j’ L,---zm'!-fi f(l)a't — j‘ ewlni|1|(t/|(|-.4)f”(t)dr,

HES! 21

and it reduoces 1o the-l-dimensional case (cf [1], p. 58, and [2], p. 62, for
details).

References

(17 4 Alvarcy and A, P Calderén, Functional caleuli for pseudodifferential operators, I, in:
Fourier Analysis, Proc, Sem. held at El Escorial, 1979, M. de Guzmén and I. Peral {eds.),
Agoc. Ml Espafiola 1, 1980, 361

(2] —, =, Functional calewli for psevdodifferential operators, 11, in: Studics in Applied Math-
ematics. V. Guillemin {ed), Adv, in Math, Suppl. Stud, 8, Academic Press, 1983, 27-72.

[3] J. Alvarer, Existence of o functionul cafeulus over some algebras of pseudo-differential
aperators, Rev, Un. Mat. Argenting 29 (1979), 55-76.

[41 —. An algebra of -bounded pseudu-differential operators, J. Math. Anal. Appl. 94 (1983),
268282,

[51 R. F. V. Andcrson, The Weyl functivnal calenlus, J. Funct. Apal. 4 (1969), 240-267.

[6] A.P. Calderan, Algebras of singular integral operators, in: Singular Integrals, Proc. Sympos.
Purc Math. 10, Amer. Math. Soc., 1967, 18-55. ’

[7] —, Lecture Notes on Pseudo-Differential Qperators and Elfiptic Boundary Value Problems, I,
Cursos Mat. 1, Instituto Argentino de Matematica, 1976,

[§] Chin-Hung Ching. Pseudo-differenticl aperators with nonregular symbols, J. Differential
Fquations 11 (1972), 436-447.

{97 R.Coilman et Y. Meyer, Au deld des opérateurs pseudo-différentiels, Astérisque 57 (1978).
£10] L L Hirschman, On multiplier trangformations, Duke Math, J. 26 (1959), 221--242,
[11] E. Nelson, Operator Differential Eguations, Lecture Notes, Princeton Univ., 1964-1965.
[12] M. K. Taylor, Functions of seoeral self-adjoint operators, Proc. Amer. Math. Soc. 19 (1968),

91--98,
[13] S. Wainger, Speciul trigonometric series in k dimensions, Mem. Amer. Math. Soc. 59 (1965).
[14] H. Weyl, The Theory of Groups and Quontum Mechanics, Dover, New York 1931

DEPARTMENT OF MATHEMATICS '
FLORIDA ATLANTIC UNIVERSITY
Boea Rnlon, Florida 33421, USA.

Received June 1, 1988 {2449
Revised version December 30, 1988



