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Abstraet, General factorization results are given for pairs of weights u and A for which
a positive sublinear operator 7' is bounded from F(u) to I¥(4), 1 < p < g < . These results
include the lactorization theotemn for A, weights. When T is positive and linear we show the
converse, which is a simple consequence of Hlder’s inequality. Applications include sufficient
conditions for some aperalors 1o be bounded from I (u) to 4 (1). Extrapolation theorems as in [19]
are also given in this general context.

1. Introduction. All nonnegative measurable functions x and A on (0,00) for
which the Hardy operator is bounded from I?(u) to I9(1) are well understood,
A characterization is given in [15], where it is also proved that each one of
these functions can be factored as a product of two functions satisfying very
simple inequalities (see Theorem 3 of [15]).

The characterization of the weights w for which the Hardy-Littlewood
maximal operator and certain singular integral operators are bounded on IF (w)
was obtained in [16], [10] and [4]. The problem of factoring these weights was
solved by P. Jones in [12]. This result has several interesting applications
which are beautifully collected in the monograph [8]. The long preof in [12]
was shortened by J. L. Rubio de Francia using his knowledge of vector-valued

‘inequalities. Shortly thereafter a simple proof of the factorization result was

obtained in [5] by adapting an induction argument that appeared in [19].
A similar argument has already been used in [6] in order to obtain conditions
for the boundedness of integral operators defined by a positive kernel.

All nonnegative measurable functions p and A on (0, 2c) for which the
Hardy operator is bounded from Lf(u) to K(A), with 1 <p<q< o, are
characterized in [3]. Characterizations for other operators have been obtained
in the last few vears (see [22] and [23]).

In the second section of this paper we give a general factorization result
for weights 1 and A for which an operator T'is bounded from I?(u) to I4(4) at
the same time that an operator T' is bounded from I¥ (A™%4) to I (.~ *'*), with
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1 €p<qg<co; here Tand T" are positive sublinear operators. The argument
is an adaptation of the one in [5]. This argument has been used for the case
p=g¢ in [2] and [20].

In the third section we prove the converse of the factorization result of
Section 2 when T is a positive linear operator and T’ is its dual. A coun-
terexample is given to show that the converse is not true for positive sublinear
operators. The cdse p = g and u = 4 of our main result in this section appeared
in 117, and it was obtained using the interpolation theorem for analytic
families of operators proved in [25]. We show that this result can be proved
using nothing more than Hoblder's inequality even for the case p < g and
W #E A

Some applications of the factorization result are mentioned briefly in the
second section. An extensive account of this type of applications can be found
in {20] for the case p = ¢. Instead we concentrate in the fourth section on
applications of the converse of factorization. We give a simple proof of the
results in [3] for the Hardy operator, the results in [1] and we also treat the
case of the multidimensional Hardy operator.

The last section is dedicated to extrapolation, The first result of this kind
was proved by J. L. Rubio de Francia in [19] using vector-valued inequalities.
Constructive proofs have been given in [7] and [11]. Here we use the argument
in [11] to prove that weighted inequalities can be extrapolated to include the
case p < gq. The case p = ¢ of some of these results has already appeared in
{201
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2. Factorization. All operators considered here will be applied to (real or
complex) functions defined on a measure space (X, dx), and their values will be
functions defined on the same measure space. One ofithese operators, T, will be
called sublinear if [T(f+g} <|T(N+I|T(g) and positive if [f]<g=
IT(f) < T(g), where f and ¢ are functions defined on X that belong to the
domain of T.

Given a nonnegative function u on X, I7(u) will denote the set of all
measurable functions defined on X for which ||flleqy = (§, 106} [P (x) dx)** < co
and L& (,u) will denote the set of all nonnegative elements of I?(y).

TueoreM 2.1 (Factorization theorem). Let T and T' be two positive
sublinear operators, let p and A be two nonnegative functions on X and
I <p<q< oo, Suppose that T is bounded from IF(u) to K(A) and that T' iy
bounded from I¥ (179" to I (u™""'7). Then, given g in LE" with ||gllycm < 1
and K > |[T|['™ +||T)|*", there exist

o€ LA (W), €L (g), w €L (17"g). v e LK (u7)

such that T(ug) < Kvg, T' (4, 9) < Kvy and p=u5"? v,, 1= v59% uyl>,
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Proof. Define the operator S,(f)=[AYg!® T(f1" u~1O}YF. The
boundedness of T and Hélder's 1nequal1ty with exponent g/p = 1 imply the
boundedness of §, on IM":

(18, (PP dx = § 4 g [T (71 = 1Py P dx
X X
S{PATQAP iy e < | TIP ] 1f1 dx.
X ¥

The operator 8, (f) = [~ T'(|f)P 4¢P 247" is bounded on 7" also. This is
a consequence of the boundedness of T and Hdlder's inequality with exponent
pig =1

-j( IS, (NP dx = ,{ w T S gt

T (11177 g8 d)es < |ITY 1P de.
X X
In the last inequality we have used the fact that (¢'/p){p'/q’) = (q/p).
© The operator § = §, +8§, is therefore bounded on I7#". Take K > j|S|| and
fe L' The series ¥ 4o (S"f)/K" converges to an element « € [Z7. Moreover, the
subadditivity of §, which is a consequence of the subadditivity of Tand T, and
the positivity of f imply Sx < Kw. Since §; and S, are positive operators we
deduce the inequalities S o < K« and S,x € Ko, These two conditions are
equivalent to T(af u~ 7)< ch'” AT and T'(afg Ur jray & KaP i,
The result follows by taking uy = «F p™ 17,y = o A7 g~ ”" u, = ocf’,l”"J L’
and v, = o” '’ m
For the case p = g in Theorem 2.1 we can take the largest g with norm less

than or equal to 1 in L*®, namely ¢ = 1. In this way we obtam Theorem A of
{20], which is stated below for future reference:

COROLLARY 2.2. Let T, T', A, p and p be as in Theorem 2.1. Suppose that T is
bounded from 17 (u) to I¥ () and that T is bounded from Il (A~7'17) to I¥' (,u“f’”’)
Then given K > | TIMY 4|\ T, there exist uge LY. (1), voe L5 (), u e LB (A7rP)
and v e L% (1 P'"%) such that T(ug) < Kvg, T'(uy) < Koy and p= uy"Pu,,

= UO 4 . ’

Remark, The proof of Theorem 2.1 shows that if 4 =4 in Cowllary 2.2
we have by = v, and o, = v,

ExampLes. We give below some examples to which Theorem 2.1 and
Corollary 2.2 can be applied. Our description is brief and we give it only to
show the type of applications of these results. See [20] for a more detailed

account.
1. If T=T = M, where M denotes the Hardy—btticwood maximal

operator in R", the remark that follows Corollary 2.2 gives the factorization
theorem for 4, weights due to P, Jones (Lrzn.
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2 Let T= M* where M f(x) =sup,. (/W) [;"" | /(0] dt and T' = M~
where M~ f(x) = sup,_ (1/h) _[x +1f (Ol dr. The remark that follows Corollary
2.2 gives the factorization of 4] and A, weights {see [23] and [14] for details).

3. Theorem 2.1 can be applied to integral operators with a positive kernel,
that is, operators of the form Tf(x) j K (x, ) f(») dy with K (x, y) 2 0. In this
case we take 7" to be the dual of T so that the boundedness of T* from
' (A7) to I¥' (u™''P) is equivalent to the boundedness of Tfrom I# (u) to 14 (1)
by a duality argument. Therefore the weights u and A for which Tis bounded
from I? () to J# (1) have a factorization as in Theorem 2.1. Particular examples
of this kind of operators are:

3.1. Hardy operator:

T.f(x) = [f(y)dy.
0
3.2. Multidimensional Hardy operator:
TfGiys s %)= | oo [t YAy . dy
0 0

and its generalizations to cones in R" {see [18]).
3.3. Fractional integral operator:

T.f(x) = If(x W "dy, O0<a<m,

which is a selfadjoint operator.
There are substitutes for Theorem 2.1 for the cases p=1 and g =
ProposITION 2.3. Let T, T', u and i be as in Theorem 2.1.

D If 1<q< oo and T is bounded from I {179 to I*(u™") (here
feI® (,zfl)@r”fu 1|§DO < o) we have T' (244 g) < p for all ge L% with norm not
exceeding 1.

(2 If t'<p<co and T is bounded from IP(w) to IP(A) (here

JeL* (A)=|lfill, < o) we have T{gu™ ") < 17 for all gcLf with norm not
exceeding 1.

Proof. To prove (1) observe that the boundedness of T’ implies
T (A% g u™ Y < {iglie < 1, so that T (A g) < p. To prove (2) observe that
the boundedness of Tlmplies IT(gu™ ") 1) < lgll» € 1. From here the result
follows. =

We finish this section by mentioning that Theorem 2.1 for p < ¢ can be
deduced from Corollary 2.2 and the following proposition, which is a con-
sequence of Hélder’s inequality:

PROPOSITION 2.4. Let 1 < p < ¢ < oo and let 2 be a nonnegative measurable
Sunction on X. Then:

(1) () is continuously embedded in I¥ (A¥4y) for all g e " with inclusion
norm not exceeding the norm of g, and
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(2) IF (AP g™ FIPy is contimwously embedded in I¥ (A~
with inclusion norm not exceeding the norm of g.

714y for all ge LYY

Proof To prove (1) apply Holder’s inequality with g/p > 1. To prove (2)
apply Hélder’s inequality with p'/y’ > 1 and use (q'/p)(p'/g") = (g/p). =

We now show how Corollary 2.2 implies Theorem 2.1. Take ge I¥?" with
norm not exceeding 1. Since we are assuming that Tis bounded from I¥(u) to
I4(A), part (1) of Proposition 2.4 implies that T is bounded from If{u} to
I7 (AP g). The assumption that T” is bounded from I7 (A79M) to IF' (u~7'7)
together with part (2) of Proposition 2.4 imply that T’ is bounded from
(AP g=riry v I¥ (™ "P). We can now apply Corollary 2.2 to the operators
Tand T and to the nonnepative functions u and 274 g 1o obtain nonnegative
measurable functions u,, vy, u, and v, with the integrability properties given in
Corollary 2.2 such that T(u,) < Kvg, T (4,) < Kv, dnd pe=ug My,
APl g = g5 PPy Write 4 = vy P (u, g~ Y)%? and let §, = ulg , $0 that ug, vy,
#, and v, satisfy the conclusion of Theorem 2.1.

3. Converse of factorization. When the operator T is linear, that is,
T{f+g) = T(f)+ T(g), and positive and T" is the dual of Tthere is a converse of
the factorization theorem 2.1:

THEOREM 3.1. Let T be ¢ positive linear operator, let p and A be two
nonnegative measurable funciions on X and 1 < p < g < c0. Suppose that there
exist finite positive numbers K, and K, such that for all g in LY with
lgllcarmy < 1 we can find nonnegative measurable functions g, vo, 4y and vy such
that T(ug) < K, vy, T*(u, g) € Ky v, and = ug ¥ vy, A = g 4 uf®. Then Tis
bounded from IF (1) to 14 (4) and T* is bounded from I8 (A7) to I¥F (u™ 7P with
norms not exceeding Ki/P' Ki/v.

Proof The proof is based on Hélder's inequality for positive linear
operators:

(3.1} IT( < LTSPVP [T (g3
This inequality is proved as the usual Holder inequality replacing the integral
by the operator T, and details are therefore omitted.

It is enough to prove that T is bounded since the statement concerning T*
follows from the previous one by duality. Let fe IF (u); by duality, there exist
geli? with |lg|lwm < 1 such that

I=(JIT (N Adx)" = (I iT(/)

1 <p<oo,

| Arfag d x)lfp.

After writing /= uy/" fu; " and using (3.1) we obtain
I ([T o)1 LT f17 wg i ] A%/ag o) e
X
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Using T{u,) < Kz, and &= p; %" u§’? we deduce

P KV (FLT 17 g ") uyg dx)'.
X

Using T*{w, y) < K v, we obtain

I< K7 ([1f10us o0 [T (uy )] dx)ir
X
< K%lp’ Ki”’(f |f‘,r»”(-)-w‘p’ v, {[x)f/p
X
< KPR ([P ),

X

which is the desired result. =

The case p = ¢ is simpler since it is cnough to take ¢ = 1. We obtain in this
way the converse of Corollary 2.2 when Tis positive and linear and T” is the
dual of T The statement is given below, but the proof is omitted since it follows
the same pattern as the proof of Theorem 3.1 with obvious modifications.

PROPOSITION 3.2. Let ', 41, 4 and p be us in Theorem 3.1. Suppose that there
exist finite positive numbers K| and K , and nonnegative measurable functions ug,
Lo, 4y and vy such that T(u)) < K vy T*(u) < K,v, and = ul™? vy,
Jo=05"Pu,. Then T is bounded from K'{p) to (A} and T* is hounded from
I (ATF%) to P (i) with norms not exceeding K Kl

Proposition 3.2 is proved in [11] for the case s = A and in [20] for the
case it # A. In both cases the proof uses the interpolation theorem for analytic
families of operators due to E. M. Stein ([25]) In fact, the interpolation
theorem with change of measures that appears in [25] can also be used. We
have shown, however, that a simpler proof can be given using only Holder’s
inequality.

Remark. There is also a converse of Proposition 2.3 when we assume
that T is linear and T’ js the dual of T In fact the conclusion of (1) in
Proposition 2.3 implies the Tis bounded from I! (1) to IZ(A) and by duality T*
is bounded from I¥(A79%) to I*(u~'). Similarly, the conclusion of (2) in
Proposition 2.3 implies that T* is bounded from I (A1) to ¥’ (17" and by
duality T is bounded from ¥ (W) to £(4)

Let M be the Hardy-Littlewood maximal operator on R" In [2] it has
been shown that if w = u} ™" u, with Mu; < K;u, j = 0,1, then M is bounded
on IF(w) for all 1 < p < oo, This is & converse of Co.rollary 2.2 for the sublinear
operator M and equal weights u = A = w. It is therefore natural to ask if
Proposition 3.2 or Theorem 3.1 remains valid for sublinear operators and
different weights. The answer is negative, for we shall show that even for the

case p=g =2 and different weights the analogue of Proposition 3.2 for
M cannot be true.

icm
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The example we are going to give appears already in [16]. Let

o =x"log (XN x.yn(x), v, =1, p=uy! Vps

vy = (Mug)(x),  uy = y0.yn{x),

Thus ¢ and A are factored. Observe that (Mugy)(x) =x"!log(x)|"" for
xe(0,1/2). Taking /= u, one sees immediately that feI?(n) but M fé¢[2(i).
Thus M is not bounded from I2(p) to I2(1),

There is a weak converse of Theorem 2.1 for sublinear operators that are
“linearizable”. A sublinear operator T is lincarizable by a family {U ) pee of
positive linear operators if for cach fe C there is a positive linear operator U,
such that
(3.2) TN <G UAS,

(3.3) Urllgh < €, THy)

for all geC, with €, and C, constants independent of /. yeC, where C is
a dense subspace of If (X) for every pe(l.w).

Ao=npgtu,.

THeOREM 3.3. Let T be a sublinear operator which is linearizable by the
Samily {U;}rec of positive linear operators, let u and L be two nonnegative
measurable functions on X and | < p < ¢ < o0. Suppaose that there exisi finite
positive numbers K, and K, such that for all g in L% with ||gl| e < 1 we can
find uye L% (), vee LY (A4 g), u, e L% (A7 g) and v, e Lf (w717 such that
T(ug) € Ky vy, Uy 9) € K, v, with K, independent of fe C, and p = ug "7 v,,
A= vy 9P ug? Then T is bounded from IP(u) to I9(J).

Proof. For fe C, (3.3) implies U, (u,) € C, T(uy) < C, K, v Therefore we.
can apply Theorem 3.1 to U, and U¥ to deduce that U, is bounded from I7 ()
to I#(4). From here, (3.2) and an obvious density argument imply the desired
result. w 2

Remark. There is a similar result for the case p = 4. The necessary
changes are as in Proposition 3.2 and are therefore omitted. Examples of
operators covered by the above theorem are maximal operators and operators
of the form T*f(x) = sup, T;(|f1)(x), where T, is a sequence of positive linear
operators.

4. Applications. In this scction we use the results of Section 3 to obtain
sufficient conditions for boundedness of some positive linear operators between
weighted Lebesgue spaces. In a particular case the sufficient condition is also
necessary.

4,1, Some integral operators with positive kernel, Let K (x,y) 2 0 be defined
on 4 ={(x,y)eR* y < x} and consider the operators

@1 (Tf)x)= f K(x,0)fG)dy, (TEf) ()= j K(,x) f(y)dy.



@
186 E. Hernandez Im“

We shail apply the results of Section 3 to prove the following theorem
which appeared for the first time in {1]:

THEOREM 4.1. Let Ty be the operator defined as in (4.1) with K(x,y) 2 0
nonincreasing in x and nondecreasing in y. If 1 <p<q <o and p and A are
nonnegative measurable functions on R which satisfy

1y’

o0 1/ r
(A) SUD(HK (y,r)]""’i(y)dy) q( { K.y E#(y)]"’""dy) =K < o0,

r>0
then Ty is bounded from IF(u) to I3 (i) with norm not exceeding K (p)'4{p'y'*",

Preof We give details for the case p < g, since the case p = g requires
only minor modifications. Let

x ~1/p
uo(X)=f#(X)]"’""(_! K(X:J’)[ﬂ(}’)]""”’dy) ;

% -1/p’
vl(X)=(I K(x,y) [u(y)]"’"”dy) .

o

so that u is factored as ug#7 v,. Since K(y,z) is nonincreasing in y we have

¥ ~1ip
(Tig) (x) = j K (x,0) ()1 m([ K (y,2) [p(@)]” f’”'dz) dy

' -1y
< I K(x,y) [u(y)]“"’”(f K(x,Z)[u(Z)]‘”"”rJZ) dy.

bl 2] - o

The change of variables f(y) = [~ ., K (x,2) [1(z)]~7/* dz allows us to compute
the integral on the right-hand side of the above inequality so that we obtain

1
(4.2) (T ug) (x) ( | K(x,z)[p{z)]~ I’“’clz) .

-

Using (A) we obtain Ty (u,) < Kp' v, with v,(x) = (5 [K (y, )19 A{y) dy)™ 4,
Taking

' o -~ piap’)
uy(x)=[4 (x)i]”“(j [K (y, x)]“" A (y) dy)

we have factored 4 as vy #7 u§?. Let g be any function in L¥"" with norm not
exceeding 1. Holder’s inequality with exponent g/p> 1 and K(z,y) being
nondecreasing in y give

Tk (uy ) (x { T [K (v, 0177 4.(9) (J [K (z, )1 A(2) d )’ dy}m

¥

< {I [K (v, %) i(y)(f [K(z,x)]%" A (2) dZ)—W dy}m-

¥
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The change of variables f(y) = [, [K{z, x)]** A(z) dz allows us to compute the
last integral in the above inequality to obtam

ke i/pyrla
{4.3) TR, Px) € {P(j" [K (z,x)]"“’ft(Z)dZ) } .

x
Using (A) again we deduce T% (u, ¢) < K (p)"*v,. The result now follows as an
application of Theorem 3.1.

There is a corresponding result for T¥ which can be proved by the same
method as Theorem 4.1 or deduced from it by duality:

TurowreM 4.2. Let T, be the operator defined as in (4.1} with K(x,y) >0
nonincreasing in x and nondecreasing in y. If' 1 < p < g < oo and p and A are
nonnegative measurable functions on R which satisfy

r g /o 1ip’
(A%) SUP( | K (r,y)ft(y)dy) (J (K (y,r)]"""'Eu(y)]"’"’.’dy) =K < 0,

p> N
then T§ is bounded from I7 (1) to I9(2) with norm not exceeding K (p)*/¢(p)/¥'.

The above results can be applied to the Hardy operator T, (f)(x) = [o/(v) dy.
In this case K (x,y) = 1 if 0 < y < x and K (x,y) = 0 otherwise. From Theorem
4.1 we deduce that the condition

iy /g /» e
(B) SUE(I A(Y) dy) (£ [« (y)]“”'“’dy) =K<
is sufficient for T} to be bounded from IF (u) to I#{4). This result was proved in
F157] for the case p = ¢ and in [3] for the case p < ¢. We emphasize that here
we have proved the result as a simple consequence of the converse of
factorization. It is easy to see that (B) is also necessary for the boundedness of
T, from IF{x) to I(4) (see [3])

Besides the Hardy operator, the above results can be applied to con-
volution operators of the form T{f) (y) = j’i o K(x—3f(y)dy, where K is
a nonnegative and nonincreasing function defined on R. A particular case is the
Jractional  integral  of  Riemann-Liouville  defined by I {fi(x) =
= [o/(») (x~y)*~ " dy, 0 € u < 1. With some previous work they can be also be
applied to the Laplace transform L{f) (x) = [q e ™ f(3)dy (see [1] for details).

42. Multidimensional Hardy operator. The simplest way to define an
analogue of Hardy’s operator on R" is

(4'4) T;tf(xli A x )-' j j‘fylﬁ tre yn)dyu"’dvU1‘

To simplify notation we shall write x = (x,, ..., x,) for a point in R" and

6 = Studin Mathemaijen 95.2
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{ <o (V) dy will denote the integral that appears in (4.4). An examination of the
proof of Theorem 4.1 shows that the conditions

© sup( [ A(y)dy)'s{ I (] Frdy)'" = K < o0,
r>Q {r,w;)
D) [ [p@E1777( [ [eO)]” “’“’dy) YPdz < Cop)( [ [p1T Iy
0.3 0,2 (0%
(E) [ 4@ [ 200dy)" 7 dz< Cop)( | Al dy)'?,
ENN ¢z,00) <x @
where ¥ = (r,, ..., ,) > Omeans r; > Ofor all j = 1, ..., n, are sufficient for the

operator T, to be bounded from I*(y) to (1), | < p € ¢ < 0. In fact, (D) and
(E) is all that is needed to cbtain the anafogues of (4.2) and (4.3) for the
operator T,. Condition (C) is necessary for the boundedness of T, but it is not
sufficient if n > 1. An example can be found in [24].

The simplest example of weights that satisfy (C), (D) and (E) is u = H,f'= 1 By
and 1 = 1_[;-;1 A;, where each pair (u;, A)) satisfies the one-dimensional vetsion
of (C), ie. condition (B).

The importance of obtammg weighted inequalities for T, is due to the fact
that they play the same role in n-dimensional proofs as T; plays in the
one-dimensional case: some examples can be found in [9], [13], [17] and [21].
The problem of characterizing the weights x and A for which T, is bounded
from IF () to I (A), p < g, is still open for n = 2. It was solved in [24] forn = 2.

A more intricate way to generalize the Hardy operator to R" is through the
use of cones, as in [18], In what follows we use the same notation as in [18], to
which we refer the reader for the precise definitions. An open, convex,
homogeneous and selfadjoint cone V defines a partial ordering in R" which is
denoted by < ,. The Hardy operator associated to V is

T,(NM= [ fOdy, xel,
0.3
where (0,x) ={yeV: 0 <,y < ,x}. The function 4(x)= j oy @Y Plays in
this context the same role as the weight x plays in the classwal (one-

-dimensional) Hardy inequality. In particular, the following result appears in
Theorem 2 of [18]:

PRrOPOSITION 4.3. Let 1 < p < oo. Let V be an open, convex, homogeneous
and selfadjoint cone in R* and ¢ = max (1, —2/(n—1)). Then for y < —ap—1
we have

[ J fO)dyPramT rdx < CI[f(x]f’[A )] dx.

V<O

An easy proof of this proposition can be given using our Proposition 3.2,
‘We need the equalities

4.5) { [4@Tdt = C[4(x))*""
0.3
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valid for o > ¢ (sec Lemma 4 of [18]) and
(4.6) jola@)rdt=Cl4()]*
{x,00)

valid for o < — o~ 2. This last equality can be deduced from (4.5) nsing Lemma
3 of [18]. The proof is as follows: take ug = 4"0*tVPE p = g¥Wr-Lr,
pp= A7 and u; = AMPT17Y, o that 47 = ug PP v, and 4777 = 05 ¥ uy.
From {4.5) we deduce Ty, (u,) < Cv, and from (4.6) we obtain T%(u;) < Cv,.
The result now follows by applying Proposition 3.2,

We mention that other results that appear in [18] can also be proved
using the results of Section 3. We leave the details to the interested reader.

5. Extrapolation. For 1 < p< ¢ < o0 and T any mapping defined on an
appropriate class of measurable functions on a measure space X, we denote by
V,.o(T) the set of all pairs (1, A) of nonnegative measurable functions on X for
which Tis bounded from I7 (1) to I7(A). Here I (w) = {f X~ C: |[fwil, < oo}
for any nonnegative measurable function w defined on X. When p = g we write
V,(T) instead of ¥, ,(T). We start by showing how to extrapolate from
p=1=4q. .

THEOREM 5.1. Let U be a positive linear operator and let T be any mapping
which is bounded from I'(f) to I} (i) for all pairs of nonnegative measurable
Sunctions such that U* (D) < CA. Then for 1 <p < g <, Tis bounded from
IP(uy to T2(A) for all (u, eV, (L)

Proof. Case I: p = g. Let (4,4) e V,(U) and fe I (). By duality there exists
gell' (1) with norm not exceeding 1 such that

Une

(§ITfP2dx) = [ITSf]Agdx.
X X .

The pair (7 7} with 4 = U*(lg) and T = ig satisfies U* (4} < Cfi with C = 1.
Hence the right-hand side of the above formula is dominated by
Cf, /| U*(Ag)dx. Using Holder's inequality we obtain

(JITsrhdxpe < €] [Py (] U™ () PP oyt
X

By duality (x, A) € ¥, (U) is uquwcﬂent to (LM iy g ¥, (U*). Hence the last
integral in the above expression is dominated by a comtdnl This proves the
result for p =g¢. s
Case 11: p<q. Take (u, HeV,, (). By part (1) of Proposition 2.4,
(1, & g)e V,(U) for all gelWn By Case |, Tis bounded from If(u) to
I (AP g) for all g as above. Therefore. {or some qeL‘i’”’) with [jglinwen € 1 we

have
(jImsrzax) < (] i R € (]
X

This ends the proof of Theorem 3.0, m
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We can also extrapolate from weak type (1,1). In what follows the Lorentz
space I#"™ will be denoted by wI¥. The proof of the next theorem is similar to
the proof of Theorem 5.1. The case p= g can be found in [20].

THEOREM 5.2. Let § be a positive sublinear operator and let T be any
mapping which is bounded from I}(3) to wl (A) for all pairs of ronnegative
measurable functions such that S(I) < Cji. Thenfor | < p < ¢ < &, Tis bounded
from I2(w) to wIf(A) for all (u,2) such that (A™4", u" """ eV, (S

Extrapolation from p, > 1 is more complicated. We need to use the
induction argument of J. L. Rubio de Francia. The case p = ¢ and equal
weights of the next two results can be found in [11], from which our proof
borrows heavily. '

THEOREM 5.3. Let 1| < py < oo and suppose that S is a positive sublinear
operator and T is a mapping with V, (T) = V,,(8). Then if 1< p<p, and
psqg<o, VN>V, (8, and if py<p<cw and p<q<wm,
VoudlT) 2 V, (S} if S satisfies “(u, eV, () (172", u"F") e V,.(S) for all
L<p<oo”

Proof Case I p = g. Suppose 1 < p < p, and take (1, )& V, (S). Thus, the
operator S, (f) = AY? S(fu~"?)is bounded on I# with norm not exceedmg (LS.
Hence, given he L% with norm not exceeding 1, the function

i s

belongs to L% and satisfies
(5.1) S,H)<2|S|H, |Hlw<2, h<H

Observe that S, (H) <2||8||H is exactly S(Hu ) < CHA™ " so that the
positivity of § implies

(5.2) ISCAH™ APl < IFHTH 027 e
From (u,2)€V,(S) we deduce
(5.3) I8N A Plee < 1f a2 .

Interpolating between (5.2) and (53) we see that § is bounded from
Ipo(urol? HP™R0) to  [Po(Arolr gPord) This together with the assumption
Voo (T) = V. (S) allows us to obtain

(5_4) ( Po/p [P~ Po ,’[PDJ’PHP“PO)E V (T)

Take now fel?(u). By the converse of Hélder's inequality there is
a gelBPo~P(y) with norm 1 such that

(3.5) (F1fPudx)te < (§|firog—u dx)tiro,
x x

icm
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With h =g'/ mylrelr find Hell satisfying (5.1). In particular, the
condition h < H implies

(5.5) ) _q'"lﬂ = upn/p Heo,

Hélder's inequality with exponent py/p = 1 together with {5.4)-(5.6) imply the
desired result since

(JVTFIPa )’ < (JETF I 200 BP0 dac) i || ™20
< C( £|Tf|"”}”"“’H" Po x|

o JJ( |f 1o garole 2= 9o ) imo

;j;l flreg™ )i = C(i /17 pedx)trr,

The case p, = oo is similar, except that the interpolation argument leading to
(5.4) is not needed. Details are left to the reader.

Consider now the case p; < p < cc. Let (i, A)e ¥, (S). By duality there
exists ge [P'P) ()} with norm not exceeding 1 such that

(5.7) (§1Trmadx)e = ([T 17 Ag dy' 22,
X X

Since (u,A)eV,(S) if and only if (A7*7,u"""") eV, (S), and p’ < py, we can
proceed as above, so that for ki = g#/Po)ir” JL0" e 1¥" we can find H € I such that

(5.8) gA K Apelr gritelpoy
and (A~F/P HE PG, TR HY T e Vy. (S). Our hypotheses imply
(5.9) (#rm/p ¥ ielpo) ,pm/p 2 Lty )e V ( S« m (T.

Starting with (5.7) the proefl can be finished by using (5.8), (5.9) and Hélder’s
inequality with exponent p/p, > 1; in fact,

([ ITFPAdx)t? = ([ | Tf|PoAg dx)ire
X Y

& ( j [T/ | Aboip gy iipipo) dx)lfpo < ( J‘ |f|7e “m»/n HP fpipoY dx)lfp:)
X X

C(j |/|p’u dx)lfp HH”{’[[’JO(J}/;)())' £C ( j‘ !f|”,u dx)””.
X X
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Case I: p < g < co. If (i, ) V,,(8), part (1) of Proposition 2.4 implies
(1, A" gye ¥V, (S) for all gell¥”'. By Case 1, (u, A" g)eV,(T) for all ge 10V,
Given JeI?(y), choose ge %P with norm not exceeding 1 such Lhat

(f 1Ty A d)Hte = (§ T 1204y doc)ie.
X X

For this particular g, (1, 1#%g)e V,(T) so that the righi-hand side of the ubove
equality is dominated by C(j,|fludx)'’". This proves {u,A)eV,(T) and
finishes the proof of the theorem. m

For the case of positive linear operators the statement of the extrapolation
theorem is simpler:

TurorREM 54. Let 1 < py < o0 and suppose that U is o positive linear
operator and Tis a mapping with V,, (T) o V, (U). Then ¥, (T} = ¥, ,(U) for all
I<pgy <o

The case p = g needs again the J. L. Rubio de Francia argument ; dctails
can be found in [20]. The case p < g follows from this one using the same
argument as in the Corresponding case of Theorem 5.3.

After the first version of this paper was typed I have learned that E.

Harboure, R. A. Macias and C. Segovia (Extrapolution resuits for classes of

weights, to appear in Amer. J. Math) and C. Segovia and J. L. Torrea
(Extrapolation for pairs of related weights, preprint) have obtained particular
cases of Theorem 5.3. They treat the case p = ¢ und equal weights, when S is
the Hardy-Littlewood maximal operator or a modification of it. T am indebted
to my colleagues J. Garcia-Cuerva and J. L. Torrea for pointing out these
results to me.
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