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In this lecture we are concerned with our recent investigations in approxima-
tion of functions on the unit sphere ¢ of the n-dimensional Euclidean space
R" by polynomials in shperical harmonics. We also comment on the results
of other authors.

One of the approaches which we have been working out is based on the
consideration of suitably averaged differences of the functions under study
along geodesics on g. With the aid of those differences the corresponding
moduli of smoothness are constructed. An important point is the construc-
tion of the nearest polynomial in the form of spherical convolution with the
Jackson kernel.

Here we restrict ourselves to the power moduli of smoothness and to the
classes H7 (o). Our methods permit, however, more general moduli to be
considered, leading to Besov B} 4(c) spaces on the sphere.

1. Preliminaries
Let R" be the n-dimensional space of points x =(x,, ..., x,) and

X
1

N

= Iy: =1
6= X: =1]

M

. j
the unit sphere in it. Let L,(g) (1 < p < o) be the space of functions defined
on ¢ with the norm

WA, = (fIf @IPdp)'’” (1< p < o0);

for p= o0 we understand that L(o) = C(0) is the space of continuous
functions on ¢ with the norm

1fllcoy = max |f ()]

[281]
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Further, let

Py = Y ax*, k=(ky, ... k), [kl=Y k;, x=xitxn
|kl <N j=1

be an algebraic polynomial of degree N.

Its trace on a:

Py(x)], =Tv(w) (ueo)

is a spherical polynomial of degree N.

It is known that if Ty (u) is the trace of an algebraic polynomial Py(x) of
degree N, then it is also the trace of a harmonic polynomial Uy (x):

Pylg =Uyl, (AUy(x)=0,4 =) 0*/0x).
j=1

J

The trace Y, (1) of a homogeneous harmonic polynomial of degree k is called
a spherical harmonic. It is known that spherical harmonics Y,, Y, of different
orders are orthogonal on o:

[ Y Yi(wdp=0 (k#1,k1=0,1,2,..).

Every function fe€L,(0) has an expansion with respect to spherical har-
monics:

fw~Y YL,
k=0

converging to f at least in a generalized sense.
We will produce spherical polynomials of degree N in the following way.
Suppose there is given an algebraic polynomial Qy (u) of degree N in one
real variable u. Then for fixed y'eo

QN (x.u’) (X GR"9 #’ EO'),

where xy' is the scalar product of x and 4/, is an algebraic polynomial in x of
degree N. For fe€L,(o)

Ay (x) = [Qn(xu) f (W) dy

a

is also an algebraic polynomial in x of degree N, and the expression

(1) An(p) = [ Qn () f (W) dpt
= | Qn(cos(u) ) f (W) dy'  (neo)

is its trace on o, and hence a spherical polynomial of degree N. Here (uy)”
=y is the length of the orthodrome connecting u and '
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(1) can also be rewritten as
An() = [Kn((up) ) f W) dy  (ueo),

where Ky (y) is a certain even trigonometric polynomial of degree N.
The notion of translate of a function f €L,(o) at u€g by y is known in
the literature:

[ f)dy'.

o, 5| sin"™ 2 Y ) =y

S, f(w=

Here the integration is over the set of all y' €g at arc distance y from ueo;
we take the mean value of f(y') over this set whose (n—2)-dimensional
measure is |g,_,|sin"~ 2y, where |o,_,| is the measure of the (n— 2)-dimen-
sional sphere o,_,.

The operation

Avf = (SY—E)fa

where E is the identity operator, is viewed as the increment of fe L,(o) at
ue€c with step y > 0. If

fW~Y L (feL,(o)

k=0

is an expansion with respect to spherical harmonics, then the corresponding
expansion of S, f(p) is
© P2 (cos?)
ST~ L Tpr

m=0

where A =(n—2)/2 and P4(4) (—© <u <o) are the Gegenbauer poly-
nomials of order m, orthogonal on [—1, 1] with weight (1 —u?)*~1/2;

1
[ PaPl@)(1—u?*""2du=0 (m#1).
1

We also use the classical Laplace-Beltrami operator <, acting on
sufficiently smooth functions:
V() =A4f(x/Ix); =@ (p) (n=x/Ix| €0).

For every r > 0 we introduce the class H',(o) of functions satisfying the
inequality

(2) W4,k f(oll, < My
k>r—=21>0,k=1,2,...,1=0,1,2,..).
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H} (o) is a Banach space with the norm
1 o = f 1+ My,

where M, is the least constant in (2) (for all y > 0).
Let us now formulate an assertion whose proof will be discussed below
in a number of cases.

THeorReM 1. 1) For every feH,(o) there is a sequence of spherical
polynomials Ty of degree N such that

CIMI
(N+1y

2) If for a function f €L,(0) there is a sequence of spherical polynomials
Ty of degree N such that

If —Tll, < (N=0,1,2,..).

“f—TN”p < (N = 0’ 1’ 2a )’

(N+1)
with K independent of N, then f eH)(c) and
”f”H;(a) < c(lfll,+K),

where c is independent of the neighbouring factor.

Fork=1,n=3,2>r—2/>0and p = oo this theorem was proved by
G. G. Kushnirenko [2], and for any n and 1 < p < oo by S. Pawelke [8].

Since | is a nonnegative integer, the condition 2k > r—2/ > 0 does not
admit r even if we consider only the first order differences (4,)! = 4,, i.e. if k
=1.

In the case of r even one has to consider the differences (4,)* of order at
least two (k = 2). Butzer and Johnen’s paper [1] calls attention to the
necessity of closing this gap.

The present paper is a survey of our investigations concerning the proof
of Theorem 1 and similar ones for higher order differences. Along with the .
differences (4,)* (which we will call power ones) we introduce the differences
*4% of a different kind (in some cases), which are more advantageous.

2. Case p = 2. Some comments

In our papers [3], [4], Theorem 1 is proved for any k > 2 and p = 2.

Let us comment on its proof. It suffices to prove the sufficiency, i.e.
assertion 1), since we may consider the necessity to be already established in
the above-mentioned papers.
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We introduce the Jackson kernel
sin ! m@ )2‘

(1) Dy(6) = ( e

where s is a fixed (nonnegative) integer and m runs through the positive
integers. The degree of the kernel (1) is N =s(m—1).
We set

) sy [Dy((pp) ) dp = xy ([ Dy(y) [ dpdy

W) =y
=|0,-2l %y [Dy(y)sin""2ydy = 1.
0

We introduce the operator

Tf = To(f, W) = %y [ £ () Dy ((up) ) dp

n 1
=x~la..-z|§D~(y)sin"‘27(— ] f(mdu’)dv
0

|0 2| sin"" g V) =y
= %5 |6,- | [Dn(y)sin"" 2y S, f (u)dy.
0

Fori=1,2,..., put

Tf =Ty (f, #) = {~(E— TY+E} f ().

We show by induction that ‘Tf is a spherical polynomial of degree N.
indeed, for i = 1 this is so; and if ‘! Tf is a spherical polynomial of degree
N, then

“Tf = {(E~T)[~(E- T} "'+E—E]+E}f
= {(E-T)("'T-E)+E} f
={'T-T-""'T+T} f;

the right-hand side is clearly a spherical polynomial of degree N.
We also introduce the operator ‘Uy(f, p) ='Uy f by the formula (i
=1,2,..)

SW="Uy(f, W) = %yl|0,-2 [Dx () Sin"_ZY(E—S;)"f(#) du.
0
It turns out that if f(u) ~Z: Y, (1), then

E='T)f (W= T &%,



286 S. M. NIKOL'SKIl AND P. I. LIZORKIN

(E-'Upy) f(W= ‘_,/: u, Y, (),

k=0
where

. p 1 Pl "
T = {xNIO’,,_ZI _fDN('Y)smn_z y(l - —"’—)(—E%S)l))d?} ’

0
. P 1 - Pl ..
Uy = xy|0, -, (J;DN(V)S‘n" "y (1 - —klf_tc(ols)_w) -

Moreover, using the properties of Gegenbauer polynomials one can prove
that

n<u (k=0,1,2,..).
But then the Parseval equality yields
Q) FTa f = fll2 < IS ="Un £l

= ||f Du ) sin"™ 2 (S, ~ E)'f (u)
0

< lo,- 2%y [Dy()sin™ 2 y]l(4,)f (Wl dy.
0

Ifi=k+1, if feH (o) and if s is suitably chosen, then the right-hand
side of (3) may be estimated in such a way as to finally obtain

cM
k+1 T S J
I T Bl <
where the constant ¢ is independent of N.
Thus assertion 1) of Theorem 1 is proved for positive-integers of the
form N = s(m—1). It is well known how to extend it to all positive integers.

Remark. As already noted, the necessity part of Theorem 1 (i.e. assertion
2)) is proved for all pe[1, co] (in particular, in [4]). We suppose that the
sufficiency also holds for all 1 < p< o (and not for p =2 only), but this
must still be considered an open problem. The attempts existing in the
literature at giving an affirmative answer have turned out to be unfounded.

In this connection we should mention M. Wehrens’ paper [9] where it is
claimed that with the use of moduli constructed on the basis of the power
differences (Ay)", k > 1, it is impossible to obtain a characterization of H/,
spaces in terms of best approximation. This cannot be true, at least because
no mention is made of the case p =2 considered above.

Wehrens [9] obtained a theorem of the type of Theorem 1 by intro-
ducing the iterated moduli of smoothness

sup ||4,,...4,, fll,.

0<7j$6
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3. Differences along geodesics (case p = )

Let us take two points u = u° and u’' = u' on ¢ and draw through them a
great circle I'. Moving along I' from u to u’ and farther, we mark on I' the
points

p=ul, pt 0? e,
with equal distances
y=@u) =) =) =
We introduce the differences
4, ) = S () f (),
4 fW=fW)=2f )+ f (W),

------------------

1)

k
4= 3 (~DICLIG).

J
By definition, f €eH", (o) if
¥ 4 fWI S M((up)y  (k>r>0).

'(Other definitions of this class are also possible, using linear combinations of
the differences 4f., the Laplace-Beltrami operator or derivatives along I')
Let

“f”ﬁrw(a) = ”f”m"'Mf,
where M, is the least constant in (2).

TueoreM 2. 1) For every f €H', (o) there is a sequence of spherical
polynomials T, such that

cM,
- < N=0,1,2,..),
If =Tl S iy g7 ¢ )
where c is independent of M, and N.
2) Conversely, if f €L,(0) and there is a sequence of spherical polynomials
\Ty! such that for some K '

(3) ”f_ TN“C S (N = 07 l$ 29 '--)s

(N+1)
then f eH', (0) and
@) I g o < c(K+IIfllo),

where ¢ is independent of the neighbouring factor.
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For n even and m divisible by 2k! we have the formula (see [5], [6])
()] Tv(—f (W) = (= D" xey (Dy((up) ) A% f (Wdy
= (Ky((ue)) f (W) dy — f (),

where Ty(u) is a spherical polynomial of degree N and

Kn(y) = ——Z( s [Z D~("“+0) - ’(v"f’g)
NJ 1 J J
(v+1)r—0 (v+1)m—0
Dy—21""" vrotTy
+ % DI Joie2 (28220

where the sum )’ is over v even, and ). over v odd. The point here is that
under the indicated assumptions Ky (y) is an even trigonometric polynomial
in y of degree N.

If feH (o), then it is easily seen that

(6) IS ()= Tn (W)l < %nlon— 1| M I y'sin"~ 2y Dy () dy

cM
<S—
(N+1)

which proves 1). We do not dwell on the proof of 2) here.

For n odd, Ty(u) in (5) is no longer a spherical polynomial. In this case,
modifying our construction, A. P. Terekhin obtained a new representation
for the approximating polynomial Ty(u) and proved the estimate (3).

The converse estimate (4) is established by applying a suitable Bernstein
type inequality for spherical polynomials.

4. Averaged differences (1 < p < o)

The differences 4% f (1) considered in the previous section can be used to
define g-moduli of smoothness of order k for the L,(c) norm by the formula

(———1 [ 14k FGpd )/
= f (Wt dy
IO',,_ZISID zy(uu')-=7 *

where the inner integral can also be written as an integral over all directions
issuing from u (in the direction of y), i.e. as an integral over the unit sphere

Op-12:

9

Lylo)

1) of, BE s

0<y<é

1

| 145 f(l*do

l n~2| Op-2

(weo,_,, dy’ =sin""2ydw, do is the Lebesgue measure on g,_,). In the



APPROXIMATION ON THE SPHERE 289

setting of Section 3, one takes ¢ = o0, p = oo and considers the case where
o (f, )2 <M 6%, k>r>0.

We have not studied the construction (1) in the general case. In this
section we present the results obtained for 1< p< o and g=1 in (1).
However, dropping the absolute value sign in the integral of (1), we first
consider a “pure” averaged difference *4% f(y) (the absolute value may be
introduced afterwards) by setting

1
2 i = 4%, dy'.
( ) 7f(#) la"_zl Sin"_z'y(‘m,)‘[=y I f(ll) ll’

A suitable computation shows that this difference may also be written as
) A5 (W) =458, f (W)l=o,

where the right-hand side is the usual kth difference with step y of the
function S, f(u) with respect to t at t =0.
We will now write that fe*H} (o) if f €L, (o) and

4) 1*45 f (Wil, < My (k>r >0),
where M is independent of y. Set
“f”‘H;(a) = "f”p+Mj"

where M, is the least constant M in (4).
We will prove

.
-

THEOREM 3. Theorem 2 remains true with H', (o) replaced by *H', (o).

The proof of the first assertion (see Theorem 2) for n even is based on
the equality (5) from Section 3. We rewrite it in the form

G) Tw-fw
[ S d#’>dv

) =y

=(=1)*"'xylo,_,| [sin""2yD (?)(-..-—
N 2 (j). N sin 2‘})Ian—2| (up’

= (=)' xylo,- | [sin"" 2y Dy () *45 f (1) dy
0

=(=1)*"xylo, ol [sin"" 29Dy (1) 43S, f (1) |- 0 dy.
0
In the last equality we have used (3). From (4) we obtain for f €*H',(0)

ITv = Sll, < % 0,2 [sin™= 2y Dy () I1*45 £ (Wl dy
0

< Mxyla,- | ISinn_ZYDN('}’)Yrd? < cM/(N+1).
° e

19 — Banach Center t. 22
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We have obtained the first assertion of the theorem for positive integers N of
the form N = s(m—1), where m is divisible by 2k!. In the well-known manner
it can be extended to all intermediate values of N. One only needs an
estimate for N = 0:

o= fll, < cM;
this can be obtained by defining

1.
(6) To=— [y
ol 3

In the case of n odd the first assertion of the theorem can be obtained
by using the representation (5) with S, f'(u) replaced by ~S, f(u), the odd 2n-
periodic extension of S, f(u) as a function of ¢ from the interval (0, nr). The
calculations get a little more involved in this case.

The second (converse) assertion of the theorem follows by applying a
specific Bernstein type inequality for spherical polynomials [7].

We know several proofs of this inequality, coming from different con-
siderations. We now present one of them which seems to be the most elegant.

Let

N

Tv(w = Y Yu(u
m=0 3
be the expansion of a spherical polynomial with respect to spherical harmo-
nics. We have

N Pl
S, Ta(p) = Z %

m=0

Y. ().

This is a trigonometric polynomial in ¢ of degree N. We apply to it M.
Ries7’s formula:

d 1 e 1+1 1
e = S (=) S .. Ta(W),
21-1
= ,A=1,...,2N.
6, N T,
Since
1 X 1

— Y —— =N,
4N = sin?(0,/2)

we hence obtain

li@/dt) S, T (I, < N max|IS, Ty (wll,-
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By induction,

li(@*/dt*) S, Ty (I, < N* max IS, Ty ()l
t

and since ||S, f1l, < |Ifll, (see [1]), we obtain
I\(@*/dt*) S, Ty (m)ll, < N*|| Tl
This obviously yields

1* 43S, Tn (1) o= oll, < (NY* | Tl

which is exactly the inequality required for the proof of assertion 2) of the
theorem.

Let us note finally that *H’,(s) may be equivalently defined as the class
of those f €L,(s) for which

I*45 D' f (wll, < My~ %,
where M is independent of y (k >r—2I> 0).

5. Symmetric averaged differences

If one means to apply the differences *4% in numerical calculations, it is
advisible to symmetrize them. In the symmetric form, just as the power
differences (4,)%, they have the doubling property (i.c. they behave locally as
differences of order 2k). Furthermore, the symmetrized differences 4* defined
below need less computations.

The symmetric differences are defined by

(k—j+1)...k
k+1).. . (k+))

With the use of these differences, one obtains a representation of the
approximating polynomial (with S, replaced by ~S, for n odd) and a theorem
analogous to Theorem 2. In proving the second (= converse) assertion, one
uses the Bernstein type inequality

k R
Afw=3 (-1V*B{S; f(w), B{=2
j=0

n2
145 Ty < o (VP TR
This estimate reveals the above-mentioned doubling property.

We also note that the advantage of the operator Z’; over *4% is that
using the former one can detect the differential properties of H', functions for
r <2k, while using the latter for r <k only.

As already noted in the introduction, we have extended the results listed
above to the case of the spaces B 4(c) for 1 <0 < o0.
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