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We will say that a weight function w(x) > 0 has a singularity at x, if w(x)™!
is Lebesgue integrable in no neighbourhood of x,. The singularity will be
called of finite order if |x—xo/"w(x)~! is Lebesgue  integrable in some
neighbourhood of x, for some n > 0. If w has a singularity at one point at
least, then clearly every L?(w) space, 1 < p < o0, contains a function which is
not Lebesgue integrable. Therefore, as a rule, the study of the usual integral
operators or families of operators generated by some kernels is impossible in
such weighted spaces. In [5] we announced the results which show that for
weight functions with singularities of finite order in a finite number of points,
it is possible to modify the well-known classical kernels in such a way that
the new kernels often play the same role in the L? spaces with those weights
as do the classical kernels in the usual L” spaces. This idea arose in the study
of the basisness, in various senses, of subsystems of the classical orthonormal
systems in weighted L? spaces. The point is that if we are given a function w
with a finite number of singularity points of finite order, then the classical
orthonormal systems are no more minimal in L?(w) spaces, but we may
obtain a closed minimal system in L?(w), 1 < p < o0, by deleting a finite
number of functions from the given system. Also, it is very important that we
can write.- down the unique biorthogonal system. Now, considering the
biorthogonal expansion of an LP(w) function and forming the means for
various summability methods, we arrive at the truncated kernels mentioned
above.

Another approach is-also possible: we forget about the weighted func-
tions, the closedness and minimality of subsystems, etc. and we just assume
that there is given a measurable function f which may not be Lebesgue
integrable, but whose product f - T with some trigonometric polynomial T is
integrable. Further, basing on the zeros of T and their multiplicities, we

13 — Banach éenter t. 22 [193]
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define the coefficients of the expansion of the given function to be equal to
the coefficients of the biorthogonal expansion described above. All the
necessary precise formulations and the notation are given in [6]. We also
consider there the problem of Abel-Poisson summability of such generalized
Fourier series with respect to the trigonometric system as well as the almost
everywhere convergence of generalized Fourier—-Haar systems. Note that in
[6] the generalized Fourier-Haar series for functions with infinitely many
singularity points were also considered.

The term “generalized Fourier series” is taken from A. Yu. Petrovich’s
work [9],(}) where a generalized Fourier series is defined for functions with a
singularity at a single point, and where the problem of (C, o) summability of
such series is considered. Observe that earlier R. Boas [1] studied the
coefficients defined by

n

a,=n"" [ f([cosnt—1]dt, b,=n"' [ f(t)sinntdr
for f odd and even respectively. A. Yu. Petrovich [9], basing on R. Boas’
works, subtracted, in defining the coefficients, from cos nt and sinnt the first
terms of their Taylor series at x, = 0. In this connection, let us also mention
M. 1. D’yachenko’s papers [2], [3].

We now turn to the necessary formulations and definitions. Let X
= |x;}5=, be an arbitrary collection of distinct points in [—n, n), and let «
= (a,, ..., &) be a vector of positive integers. We let 4 =) 5., «; and, for X
and o given, we define the collection of fundamental interpolating polyno-
mials T;,(x) (1 <j<s, 0<1<a;—1) as follows:

IfA=2m+1(m=0,1,..), then T, is the trigonometric polynomial of
order at most m which satisfies

(1) TH(x) =66 (O<h i<o—1,1<i,j<5s),

where T denotes the hth derivative of T, T'” = T and §;; is the Kronecker
symbol.

If A=2m(m=1,2,..), then in order to get the uniqueness of the T},
we impose, besides (1), the following condition: either the order of T;; is
strictly less than m, or the ratio of the leading coefficients of these polyno-
mials divided by the similar ratio for the polynomial

2 w(x) = f[ sin/ 1 (x—x;)
j=1

is equal to —1. If the coefficient of cos mx or sinmx in w(x) is zero, then so
are, by definition, the coefficients of sinmx and cosmx respectively in T} ;.

(') Earlier this term was used by A. Zygmund ([13], vol. 1, p. 84).
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We are now in a position to deline the generalized coefficients in the
form of some Lebesgue integrals, the only assumption on f being that the
integrals appearing below exist. We put

s % -1
a,(f)=n""! j'f(t)[cosnt— Y Z (cosnt) @, T},A(t)]dt,
j=14=0
(3) s @ -1
b,(f)=n""! jf(t)[smnt— ¥y Z (sinnt) @ T}'A(t)]dt.
j=124=0

It is easy to observe that a, =b, =0 for 0 < n < [A4/2], where [y] is the
integer part of y. If X is an empty set, we recover the classical notation,
where for the Fourier series and its conjugate series we have the classical
theorems of M. Riesz [10] and A. Zygmund [11] respectively; therefore in
the sequel we assume X to be nonempty. Since in that case always ay = b,
= 0, we will write the generalized Fourier series of a function f in the form

4) f [a.(f)cos nx+b,(f)sinnx].

n=1
In [6] it was shown that the series (4) is almost everywhere summable by the
Abel-Poisson method to f, ie.:
e ]
Y [a,(f)cosnx+b,(f)sinnx]r" = f(x) ae. asr—1-.
n=1
Note that in [6] we could have obtained the results describing the behaviour
of the series (4) at individual points. Since the formulations of these results
are analogous to the classical case (with the exceptional points x;, 1 <j <s,
being of course taken into account), also in the present paper we do not give
all possible formulations.
Along with the trigonometric series (4) it is natural to consider its
conjugate series

(5) i [a,(f)sinnx—b,(f)cos nx].
n=1

In this paper we obtain the results on the summability almost everywhere of
the series (4) and (5) by the Cesaro (C, f) methods, > 0, and we prove
these results to be final with respect to the scale of Cesaro summability
methods. Especially we would like to draw attention to the explicit form of
the limit of a conjugate series, which will be called the conjugate function.

Recall the definition of the (C, f) means of a series Z oUj (see [13],
Vol. 1, p. 130):
S”

|
g — p-1
(6) on An g VZO novi Ag \-;0 A"“V SV’
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where the numbers 4% (n =0, 1, ..) are determined by the formula

[+ 2] A ﬂ nﬂ
A8 x"=(1-— 31’ Aﬁ_(""') 0),
X A== =(" ) =rasy €>°
and S,=3._ u. Recall also the definitions of the usual kernels of the
trigonometric system and their conjugate kernels for the (C, f) summability
methods (see [13], Vol. 1, pp. 157-159):

8) K@) = i i ZID,(t), where D,(t) =13+ zv: cos jt,
n v=0 Jj=1
o RE(®) =5 ¥ 444D, 0,
nv=0
where
~ ... _cosit—cos(v+ it
Dy = X sinjt =—— T
550 1 _1cos(v+ Pt
(10) K4 (1) = dcot 4t ”‘_Z, v osindr

= dcot 4t —HE(¢).

Using (6), (8) and (9) it is easy to check that the (C, ) kernels for the series
(4) and (5) with coefficients defined by (3) have the following form:

) Kla(x, 0= KE(—x)- ,il ?Zl(xﬂ(x — 0N T, 0,
(12 Rixa(r 0= ReG-9- jzl (RA (x,— 0)® T, ).
The (C, f) means of these series arej— )

(13 AxalliX) =77 | FOKE 2l 0,

(14) Fxalfy )=n"" .f',f(" Rl xa(x, .

To obtain results which are final in the standard sense, we have to
impose on f certain conditions depending not on the discrete parameters
a; (1 <j<s), where the a; are positive integers, but on certain continuous
parameters B; (1 <j < s), where the B; are positive numbers. We will assume
f to be a 2n-periodic function such that

(15) SCY T sin™ 30 = x) €Ly .
i=1
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When defining the generalized Fourier series of f, we will take the positive
integers a; (1 <j <s) from the conditions
(16) a;—1 <B;<a; (1<j<ys).

It follows from (15) and (16) that the coefficients a,(f) and b,(f) defined by
(2) and (3) exist, so it makes sense to consider the summability of the series
(4) and (5). We have the following

THeoReM 1. Let f be a measurable function satisfying (15), where
B; >0 (1 <j <s). Suppose moreover that the positive integers a; (1 <j <s)
are determined by (16), and let B = max,<j<;B;. Then

ot xalf, X) 2f(x) ae on[—m, ] as n = + o0,

P x.f,x) =f(x) ae on[—n n] as n >+,
where o x ,(f, X), 64 x.(f, x) are deﬁned by (13), (14) (see also (8)+12)) and

1
(a7 70 =pw. ———j ()% :
N N (x+t)
.—‘l_l.l(‘)n+ 1t€0( )(I +Df( ** ) %
if A=2m+1 (m=0,1,..), whereas
1 1 = w(r)

(18) 7= e AL rove yrmp

if A=2m (m=1, 2,..). The function w is defined by (2).

To prove Theorem 1, we need a lemma (see [13], Vol. 2, pp. 94-96, 100,
and also [4], [12)).

LemMa 1. Let K4(t) and HE(¢), B > 0, be defined by (8) and (10), and let r
be a nonnegative integer with 0 < p <r+1. Then

dr Cnr+1

(19) E;Kﬁ(t)i < W O0<t<mn),
dr Cnr+l

(20 dt'H()SW 0<t<nm.

We have the following
ProposITION 1. Let r be a nonnegative integer. Then for arbitrary é >0
we have for B >r

max{g—;K”() iH"(t)} =0 uniformly on [—nr, n]\(—4, d)

as n—+vo,
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and ifﬁ>r+l then

dH"(t) <C for te[—m, n]\ (-6, J),

dr

Q1) nl— L ks (t)‘

dt

where C = C(d, B, r) is independent of n.

The first assertion of the proposition follows immediately from Lemma
1. To show (21), we apply the proof of that lemma (see [13], Vol. 2, pp. 94-

95) to obtain
nn r np+y 1 :|

r
L tj+l+r+ z tﬂ+l+r u+ Z ts+r n+1

where | is a certain positive integer satisfying only [ > f+r. Hence (21)
follows easily.
We will also need the following lemma.

|d— Hé ()

dr
max | |— K2 (1), e

dl’

LemMA 2. In the notation of the present paper, the following identities
hold:

s %~1 53
(22) coti(t—x)— Z JZ cot bt-x) T..(0)
j=1 4= 0 1= xj
3 {w(x)‘ w (t)cot 3 (t —x) for A=2m (m=1,2,..),
T o) to@[sini(t—x)]"" for A=2m+1 (m=0,1,..).

Proof of Theorem 1. We set

1 s .
23) I;= U U (xj+2rl=6, x;+2nl+0)n[—n,n), I5=[-n n)\l,.

1=-1j=1

Write [ = f;+ f5, where \

%j(x) for x el
for xel,.

Js(x) =

Clearly, Theorem 1 will be proved as soon as we show the convergence of
o4 xo(f, x) and 62, .(f, x) almost everywhere on I, for sufficiently small
6 > 0. By M. Riesz’s theorem [10], from (11), (13) and Proposition 1 we
obtain

(24) o8 xa(fi X) > f5(x) ae onl§as n— 4.

For the conjugate series we have to apply A. Zygmund’s theorem [11] (see
also [13], Vol. 1, pp. 157-159), Proposition 1, the equalities (10), (12). (14),
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and Lemma 2. It then follows immediately that
& xa(fi X) > f(x) ae on I as n— 40,

where f; is defined by (17) or (18), with f replaced by f;, according as A is
even or odd. Since

fs(x) > f(x) ae on[—nn as & =0+,
the proof of Theorem 1 will be complete if we sﬁow that
(25) 0% xa(f5, x) >0 uniformly on I5; as n = + o0
and for any fixed sufficiently small 6, > 0
(26) 7 xa(f5, x) =0  uniformly on I5, as n -+ o0, 6 —0+.

By (14), (12), (10) and Lemma 2 we can write for x €15,

27 Fxafs, ) =071 [HE x (%, 1) f(t)dL+ ff (%),
¥
s aj—l
(28) Hyo(x, ) =H(x—0)— Y Y (HE(x—x)/P T, (1),
j=14=0

and f(x) is defined by (18) or.(19) according as A is even or odd, with fin
the integrand replaced by f5. From the definition of ff,‘(x) and the absolute
continuity of the Lebesgue integral it easily follows that f;(x) =0 uniformly
on [5 as 6 »0+. Hence (27) shows immediately that the proof of (26) will
be complete as soon as we show that
(29) f f(®Hx.(x, )dt >0  uniformly on I5; as n = + 0.
I

The proofs of (25) and (29) being completely analogous, we deal with
(29) only. Let ¢ > 0 be arbitrary and let x €I5;. We will show the existence of
a 7 > 0 such that for n sufficiently large
(30) | . AU, He x . (x, t)dt| <¢/2  for x€els,.

’y/"r\la
We use the obvious identity (see [8])

s

Y T =1.

j=1

Hence by (12) and (10) we immediately obtain

s aj—l '
(B1) Hixa(x,0)= Y [Hi(x=0T o)~ Y (Ha(x—x))¥ T, (0]
i=1 Ai=0

= Z 'Hg,x.a(xa t)j-
j=1
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Consequently, by the well-known results (see [13], Vol. 1, pp. 132, 127), (30)
will be established if we show, for every j (1 <j < s), the existence of a y; > 0
such that for n sufficiently large

(32) |, I FOHY o (x, 0;dt| <e/2)  for x €l
v,/n 3
By (1), Taylor’s formula gives
(33)  Higa(x, 0+ (HI (x=x)) " T oy 1 (1)

= {[HY (x=0) T,,0 (0)] %"

a—2

- Z (Hix—x)\? TG 0@} e—x)""",

where |x;—0(t)] <|x;—1t| and te(x -0, x;+0). Consequently, using Lemma 1
we obtain from (1) and (21) for n>d"' and xely;, writing W,
= ij,,, N(x;—0, x;+9),

| [ O [Hrixa(x, 0);+(HY (x— x0Ty (9] d
W;
a;— 1

<C j I Ole—x)" " dt Z \(H2 (@)1

Bi~a;+1%~
<c (;) 7S Ko § o [ sn -t

Jj

1 ﬂj—a_,-#-l n 8
< C(—y—) j \f @) I] sin }(t —x;)| 7 dt.

Hence choosing y; > 1 sufﬁmently large we obtain

(34) ij(t) [H: x.o(x, 0;+(H (x=x)) " " Ty (0] de] < 6/(4)),

n>y;/d.
From (1), (15) and (16) we clearly have

XJ-+6

,Uf(t) T.(0ldt <+0  (0<A<a;—1).

Consequently, by Proposition 1 and (34), there is a positive integer N; > y,/6
such that (32) holds for n > N;. Since f > B;, we hence conclude by standard
arguments (see [13], Vol. 1, pp. 132, 127) that (30) holds for y = max; ¢;<,7;,
with n > N, = max, ¢;<, N;.

We now prove that

(35) | [ S HE xo(x, 0);dt| <e/(2) for xels, n> N,

Tyin
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for some N > 0. Since for any fixed x €I$; and each j (1 <j <), H’ﬁ,{'x_, (x, 1);
has a zero of order a;—1 at x;, applying Taylor’s formula we get from (31)
and Proposition 1

s Xityn
| SO e, 0, =3 [ SO[Hobealx, 0O)]Y = x|
/n i=1x;—y/n
y s xityn
<SG Y | If@le—x"dt <e/(2) for xel5, n> N,
i=1x;—y/n

where the last inequality follows by a suitable choice of N > 0. This shows
(35), which together with (30) yields (29). The proof of Theorem 1 is
complete.

The following theorem holds ([7]):

THEOREM 2. Let {x;)5-, be distinct points of [—n, m), let {B;}}- be any
positive numbers and put B = max,¢;<,B;. Moreover, suppose V is a 2n-
periodic even nonnegative function which is monotonous on [0, nt] and satisfies
lim, o V(x) = 0. Then there is a function f such that

(36) q V(- = x) £()sin3(- = x) €L nm

and if a; (1 <j <) are any positive integers satisfying

37 ;2p (1<j<ys),

then the coefficients of f defined by (3) are not o(n®).
We will prove a stronger assertion:

THEOREM 3. Under the assumptions of Theorem 2, for every i (1<i < 5s)
there is a function f such that

s

(38) V(= x)f () [] Isin 3 = x) €Ly rm
j=1
and such that for any o; (1 <j <) satisfying (37) the coefficients
r -1 4 ]
(39 a,(f)=n"! [f(t)[cosnt-’l,?.o(t)-,- Y d—lcosntl_ T, (1) |dt,
Zn 1=0 dt = Xi .
n ‘i_ld). 7]
40 b, (NH=n""! [f(t)[sinnt-ﬁo(t)— y —zsinntl,_ T, () |dt
n iz dt =x i

are not o(n’).

Proof. Without loss of generality we can assume that x; =0. If ;1
2 B;, then tl}ti absolute value of the (o; —1)th derivative at zero of cos nt or
sin nt is " according as a;~1 is even or odd. Therefore by the linear
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independence of the functions T;, (0<A<o—1) on [—n, n) we find a
trigonometric polynomial of order m, i.e. of the same order as the T, ;, which
is orthogonal on [ —r, ] to the polynomials T; , (0 </ < %;—2), but not to
T..-1- Obviously, this trigonometric polynomial satisfies the assertion of
Theorem 3. Consequently, it remains to consider the case where

(41) -1 <B <o
For B; <a; it is natural to consider a function V(-) such that
(42) V) =X (—rn<x<n).
Suppose «; is even. We estimate from below the expression cosnt - T, o(t)

—Z“"_l (d*/dt*)cosnt |, T; 1 (f) in some neighbourhood of x; =0. Using
Taylor’s formuld for cosnt and T, (0<Ai<a—1) and noting that

(o -

(cos nt) |, o = 0, we easily obtain
L Y .
T, (0 = C(nr)”!
(43) cosnt T o(t)— AZOFCOS nt|_, ialn) (nr)

for |nt] < 1/my, n 2> my,

where C > 0 is independent of n, and m, is a positive integer.
We will define by induction a sequence m = .mk,k 1 of positive integers
such that

(44) Mery >2mymy,  V(m) <1/2* (k=1,2,..).

For sufficiently large m, this is satisfied by the condition that V(x) =0 as
x —=0.
To each m satisfying (44) we assign the function

—-(B+1
GrD O for teE,

45) fat) = {0 for t €[0, n]\E,

where E = U,‘ o[1/2m;my),1/m], and f, (—1t)=f,(t) for te[0, n]. To
check (38) it is enough to observe that the upper bound for ﬂ', [ V(t)e P gt
depends on m; only, namely

(46) (@ V@ dt < a2m, -1).
0
Let us assume now thét

L -1 dl
@7 [ fu® X1j2mymy.m (D) [COS nt-Tot)— Y d—cos nt " ] T (t)] dt
0 i=o
cn’

< —
4(2m1 a;+1
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for large n with some constant C — this will be checked later. Note that
condition (47) involves only the restriction of f,, to [1/(2m, m;), =] which by
(45) depends on m,, ..., m, only. Choose now m, ., such that, in addition to
(44), (47) holds with n = m,,, and with the constant C from (43).

On the other hand, (43), (44) and (45) imply

(mymy)~ 1

j f,,,(t)[cosm,‘tﬂ,?,o(t)— Z —cosmy t
(1]

a-1 5

i
i=odt t=0

T. (T)]df

mymo ™! . | Y
>Cmi [ f@)e¥de > Cmyimym)"™ (2m m) T
0 1 ™% 1 ™%

>C(2my) % ' ml,

where again C comes from (43). Since f =f,, is even, (43) and (47) yield the
assertion of Theorem 3 for «; even. It only remains to show that the left-
hand side of (47) divided by n’ tends to O for k fixed as n — +00. To see
this, note that since a; is even and x; =0,

-1 53
cosnt* T o(t)— Y, —cosnt
i=odt
where C; is independent of n. Together with (41), this yields immediately the
desired relation.

2;— 1

a: - 1 —_
<Cn' 'ttt o,

B Ti (1)

The proof for x; odd is analogous, the main difference being that one
has to consider the coefficients for sinnt instead of cosni, and the extension
of f from (0, n] to [ —n, n] should be odd functions.

This completes the proof of Theorem 3, and hence also of Theorem 2.
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