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For an ergodic automorphism T: (X, 4, u) —(X, 4, u) with pure point
spectrum and its ergodic G-extension T, (G is a compact metric abelian
group) we prove that the set X, < X of those x’s which lift- to the centralizer
of T, is of Haar measure zero. Some related problems for weakly mixing
two-fold simple automorphisms are considered.

Introduction

Let T: (X, 4, u —(X, 4, u be an ergodic automorphism of a Lebesgue
space. By the centralizer C(T) of T we mean the semigroup of all endomorp-
hisms S: (X, ‘B, W~ (X, 4, p commuting with 7, i.e. such that ST = TS.

Let T: (X R, i) —->(X 4, [) be another ergodic automorphism. Assu-
me that # < B, |, =u T|,= T and, besides, for every SeC(T)

(1) St =24

Then it is well-known that S can be represented as a skew product over an
SeC(T), ie.

X=XxZ and .§(x, z) =(Sx, S, z).

In this case it is natural to say that S € C(T) can be lifted to the centralizer of
T. .
The problem we deal with in this paper is to answer the question, how
large is the set of such S’s.

To ensure that condition (1) holds we will restrict our attention to the
following classes of automorphisms:

X' the clas of automorphisms with pure point spectra,
¥, the class of weakly mixing 2-fold simple automorphisms.

[455]
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Moreover, we will assume that the automorphism T is the so called group
extension of T (over G), where G is a metric compact abelian group, 1e. T
=T,, ¢: X =G is measurable and

T,: (X xG, p) > (X xG, p)

T, (x, g) = (Tx, @ (x)+g).

Here i = uxu; and ug is the Haar measure on G.

If Te X then we can identify it with an ergodic translation o,: (X, px)
= (X, py), 04,(x) = x+xo, where X is a compact, monothetic group, uy is its
Haar measure and x, is a cyclic generator of X. Then

(3) C(T)=C(o,) = 105,: X €X} = X.

2

When T, is a G-extension of T we let X, denote the set of such x,’s that o,

can be lifted to the centralizer of T,,. In view of (3) we can use Haar measure
to estimate how big the set X, is. The main result of the paper is the
following

Tueorem 1. If T, is an ergodic G-extension of a pure point spectrum
automorphism T: (X, uy) = (X, ux) then X, is_measurable and either

4 ux(Xo) =0 or
) X, = X.

Moreover (5) holds iff T, has also pure point spectrum.

The case Te.¥, seems to be more complicated. In Section IV we
explain some difficulties and distinguish some subclass of #,-automorphisms
for which a result analogous to Theorem 1 holds.

I. Definitions and remarks

Throughout the paper all automorphisms are assumed to be ergodic (unless
otherwise state) and acting on a Lebesgue space.

Let T: (X, %, —»(X, %, ) and 1: (Y, €, v) = (Y, ¢, v) be automorp-
hisms. We call © a factor of T if there exists a measurable map f: X =Y
such that fu=v, tf = fT If, besides, f is invertible then T and t are
isomorphic. It is well-known that if 7 is a factor of T we may (and we do)
identify 7 with T: (X, ¥, v) =(X, %, v), where ¥ — # is a T-invariant sub-o-
algebra (we will write T: 4 — % to denote the factor).

T is said to be coalescent if for every T-invariant sub-c-algebra 4, €
= 4% whenever T: 4 - % and T: # — % are isomorphic. This condition is
equivalent to the following: every S eC(T) is invertible ([9], [10]).
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Let 4 — # be a T-invariant sub-g-algebra. We call ¢ completely inva-
riant ([10]) if for every SeC(T), S~ % =% (ie. every endomorphism S,
S eC(T) becomes invertible on %).

Following [10] we call T a canonical system if, whenever it appears as a
factor of an ergodic U: (Z, 7,v) =»(Z, ¢, v), then there is a unique U-
invariant sub-c-algebra %' such that U: ¥’ — 2’ is isomorphic to T. Using
this notion D. Newton in [10] developed a method to obtain forms of
isomorphisms between group extensions of canonical systems. However, as it
was shown in [8] the class of canonical systems is rather small and coincides
with ). Moreover, when dealing with the centralizer C(T,) of T, given by
(2), we need merely know that the o-algebra

(6) B=AxG: AeR

is completely invariant to conclude the validity of Newton’s result. If this is
the case then for every S e C(T,) there exist a group endomorphism v of G, a
measurable function f: X -G and an automorphism S €eC(T) such that

U] S(x, g) = (Sx,f () +v(),

®) S0+ f(x) = f(T)+v(e(x) ([10D.
Actually, Newton proved something more (Th. 2.1 [10]). Namely,
) vis a continuous epimorphism of G.

By J(T, T) we mean the space of all 2-joinings of T, ie. AeJ(T, T) if A is
a Tx T-invariant probability measure on #, x#,, #;, =4 i=1,2 and 4|,
= ,L

Following [4], [12] T is said to be 2-fold simple if every ergodic
AeJ(T, T) is either the product measure uxpu or a “graph measure”
us, S €C(T), where

(10) us(A xB) = u(AnS~!B).

It is easy to see that every 2-fold simple automorphism is coalescent.
The class of all 2-fold simple automorphisms includes ¥ As we will see in
Section IV, (7) and (8) hold for the class of weakly mixing group extensions
of automorphisms from .%,.

I1. Proof of Theorem 1

We divide the proof into 2 steps: (1) X, is measurable, (2) ux(X,) =0.
Step 1. In view of (3) equation (8) can be rewritten as follows

(11) @ (x+x;)—v(@(x)) = f(x+x0)— f(x).
Consider the set .# of all measurable functions h: X = G. Then .#



458 THE CENTRALIZER OF ERGODIC THEORY GROUP EXTENSIONS

becomes a Polish space with the metric

(12) o(h, ) = ‘[d(h(x), W (x))pux(dx), h,he.H
X

where

(13) d is a rotation invariant metric on G.

Let &(G, G) be the set of all continuous group endomorphisms of G. If
we put
D(v, v) = supd(v(g), v'(g), v,V €&(G,G)

geG
then £(G, G) becomes a Polish space.
Define the following maps:
Fy: X > M, Fi(xy)=¢ 0, xEX,
F,: 8G,G)~»HA, F,v)=ve9, vel(G,Q0),
Fy: M > M, Fi(f)=fo0.—f J[feA.
We extend in the natural way each F; =1, 2, 3 to a map from X x £(G, G)

x .# into .#. Let Z be the set of all elements (x;, v, f)eX x &(G, G) x . #
such that

Fl (xl’ vaf)—FZ(xla vaf) =F3(x17 U,f).

Then the set X, is just the projection of Z on X. The projection p is
continuous. We will prove that F;, i=1,2,3 is continuous. Since X
x &(G, G) x .# is a Polish space and Z is a closed subset of it, p(Z) = X, is
analytic, hence measurable.

We now prove that F, is continuous. First, suppose that ¢': X =G is
continuous. Then, given ¢ > 0 we select 6 > 0 so that if |x; —x}| <J then
d(¢’(x,), ¢’ (x})) <&/3 and consequently

d(¢'(xy+x), ¢'(x1+x)) <¢/3 for every xeX.

Now,

o(F(xy), F(x)) = [d(¢' (x+x,), ¢ (x+x1))dux(x) <é/3.
X

The set of all continuous functions from X into G is dense in .# with respect
to . Since

@ F(xy), F(x}))
< [[d(poyy, @' 0.)+d(@ 0y, ¢ 0,)+d(9' 6, 90,)] ux
X

= fd(q)s (P’)#X+_[d((p’ax1’ (P'ax'l)l»‘x'*' [d((p’ ‘PI)#X <&
X X X

whenever ¢’ is continuous and g(¢, ¢') <¢&/3, the result follows.
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Now, the map F, is continuous, because

e(F,(v), F,(v)) < isugd(v(g), v'(9)) ux (dx) = D (v, V).
ge

Since d satisfies (13), F; is also continuous.

Hence the proof of Step 1 is complete.

Step 2. First, let us notice that X, = X iff T, has pure point spectrum.
This statement folows from [4]. Indeed, each Te.¥ is 2-fold simple and
moreover if every element of C(T) can be lifted to C(T,) then T, is also 2-
fold simple (see the proof of Th. 54 in [4]). Furthermore, if T, is 2-fold
simple and has some point spectrum then it has pure point spectrum ([4]).
We have proved that X = X, implies that T, has discrete spectrum. The
reverse implication is more or less trivial.

Next, note that X, is a semigroup (this is a consequence of (7)). Hence
the set X, X5 ! is a group.

If T, has no discrete spectrum then by the assertion we have just proved
there is an element x; € X such that x, ¢ X,. Observe that x,€X,, so TX,
= 04, X0 = Xo. But o, acts ergodically and therefore uy(Xo)=0 or 1.

Assume puy(X,) = 1. Then uyx(Xo N Xo!) = 1. But this is impossible because
XoN X! is a subgroup and x,¢ X, Xg5!. We have shown that uy(X,)
= 0 and the proof of Theorem 1 is complete.

III. Examples
Now, we deliver some examples which show that the set X, can be as small
as possible, i.e.

(14) Xo=|x}: nez}.

ExampLE 1. Consider some subclass of quasi-discrete spectrum transfor-
mations on the 2-torus [0, 1] x[0, 1) given by the formula

U(x, y) =(x+a, nx+y+p)

where neZ\ !0} and the set {1, a, B} is rationally independent. Putting Tx
= x+a, @(x) =nx+p we see that U is precisely a [0, 1)-extension of the
rotation T. Now U is coalescent (this is proved in [2]). Let SeC(U). By (7)
we get

S(x, y) = (x+o', f(x)+0()

where f: [0, 1) = [0, 1) is measurable and v is a group automorphism of
[0, 1). Now (9) implies immediately that v =id (the possibility v = —id is
excluded). Furthermore from (8) it follows that

na'+ f(x) = f(x+a)
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or
exp(2nina’) exp(2nif (x)) = exp(2nif (x +a)).

Therefore exp(2nina’) is a proper value of the irrational rotation on a. That
means that na’ = ka for some integer k. In other words the set X, consists of
all n-roots of ka, k=0, £1, £2,... If n=1 then (14) hoods.

ExaMpLE 2. Let x = b% xb! x ... be a Morse sequence (see [5], [7]).
Consider the shift transformation 7 on (), (the closure of the trajectory of x
via 7). When x is regular and the lengths of the b*s are bounded then

(15) C()=t"0: neZ,j=0,1; ([7)),

where (0z) [i] = 1—~z[i], ze ;. The shift transformation 7 on (¢, is isomorp-
hic to a Z,-extension of T = 0., where o, is an ergodic translation on a

group X of some n,-adic integers (for details see [5]). Consequently by (15)
we get that (14) holds.

A more detailed description of the centralizer of continuous Morse
sequences is given in [6]. It is proved that the set X, is always of the form

[ o] a0 [« o]
(16) XO = n U ﬂ An,k.p
p=1n=0k=1
where A4,, , is a finite union of cylinder sets. Hence A,, , is simultaneously
closed and open. It follows from (16) that X'\ X, contains a G;-set. Now, let
x; €X\X,. Then the set {x{x,] is dense in X and {x}x;} = X\X, because
X, is a subgroup of X. We conclude that X'\ X, is residual and hence X, is
of the first category,
We conjecture that this result is true for every ergodic group extension
(with partly continuous spectrum) of automorphisms from ¥

IV. Centralizer of weakly mixing group extensions of
%,-automorphisms

We start with the following

ProrosiTion 1. Let T: (X, B, p) =(X, #, u) be an ergodic automor-
phism and let € < # be a T-invariant sub-c-algebra. Assume that T: € — € is
2-fold simple. Then for every S e€C(T) either

(17) S 14 =4
or
(18) S 1¢1%.

Proof. Take any S eC(T) and consider the corresponding “graph measu-
re” us given by (10). By the ergodicity of T this 2-joining is also ergodic and



J. KWIATKOWSKI AND M. LEMANCZYK 461

therefore v = ug, o, is ergodic. By the simplicity of T on % we get that
either v is the product measure (and then (18) holds) or v is concentrated on
the graph of some SeC(T, %), ie. v= ug. Now, given A €% we have

(19) Us(STPAXxX A X xA) =0, ps(S'AxX arXxA)=0. "
But ST'AxX A XxA€b®%, so
(20) ps(S"TAxX o X xA)=0.

Combining (19) and (20) we get S" ' A =S"1A4, A€%. Since S is an auto-
morphism (we recall that 2-fold simplicity implies coalescence), S leg=q
and the proof is complete.

The next corollary says that for some special cases the possibility (18)
can be excluded.

CoroLLARY 1. Let T: (X, 4, pn) —(X, 4, ), Te¥,. Let G be any
compact metric abelian group. Let ¢:X — G be measurable. If T, is weakly
mixing then the o-algebra (6) is completely invariant (i.e. T is a completely
invariant factor of T,).

Proof. By the weak mixing condition we see that (7, x T,, i x j1) is an
ergodic G x G-extension of (Tx T, u x p). It is well-known that if this is the
case and A1€J(T,, T,) projects into the g-algebra # x A as uxuthen A=j
x i ([4)).

Now, fix an ergodic Te€.¥,. Due to Corollary 1 we can develop a
theory which is parallel to the case Te.#. However there is an essential
difference between these two cases. The reason is that for the weakly mixing
case C(T) need not be even locally compact. So, the method we have used to
prove that the set X, < C(T) does not work in general. It would be
interesting to know how big the set X, is with respéct to the weak topology.

The following result is implicitly contained in [4] (Th. 5.4 anf 3.2).

ProposITION 2. Let T€.¥, and ¢: X =G be measurable. If T, is weakly
mixing then X, = C(T) iff T,€.%,.

Now, let t: (Y, %, v) =(Y, ¢, v) be 2-fold simple and
' C) = v': ieZ).

Let H be a compact metric abelian group. Fix ¢: Y = H such that T =1,
T: (X,V)>(X,V), X=YxH, v=vxuy and T is weakly mixing. Then
Te.¥, and moreover '

C(T) = (T"o,: neZ, hvH) ([4)).

We will consider G-extensions, say T, of T. By ignoring powers of T we can
transfer Haar measure uy from H into the centralizer of T. In other words if
we denote X, = \heH: o, can be lifted to C(T;)} and assume that T, is
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weakly mixing but is not in .¥’, (Proposition 2), the question is whether or
not

(21) 1y (Ho) = 0.

Let us notice ‘that X, is Borel because the method we have used in Step 1
works well in this situation. We will deal with some special G = S'-
extensions for which (21) is satisfied.

. Fix a character y,: H —S' and define the S'-extension of T by putting

(22) T (v, D), 2) = (T (¥, h), xo(h)2).
PROPOSITION 3. T, is weakly mixing provided yq is not of finite order.

Proof. The proof is a slight modification of Glasner’s proof in [1],
Prop. 1.7.

Now we are able to prove the following
ProrosiTION 4. If x, is not of finite order then T satisfies (21).
Proof. First of all we show that

(23) Xo=kery, = \heH: yo(h)=1).

Let hy€X,. Then by (7), (8) and (9) we get that there are a map f: X —S!
and a continuous epimorphism v: S' = S! such that

(24) &ho ((y’ h)a Z) = (aho(y’ h)’f(y’ h)U(Z))
It follows from (24) and (8) that

Xo(h+ho) f(y, b) = f(T(y, m) [xo (W],

where v(z) = z". We convert this equality to the following

T(y, h .
%(}‘f’—h)’hxo(ho)[xo(hn 1
Write
o, h) =xo(h), peS', pE@=z""*', ¢ =yolhy).
We get
T(, h
% =cp(e(y, h).

Take the function f{(., h, z) = f(y, h)/p(z). Easy calculation shows that fT,
= ¢f. Thus, by the weak mixing of T,, we conclude that ¢ =1 and fis
constant a.e. This implies n =1 and hence (23) holds.
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If uy(X,) were strictly positive then the group H/X, would have to be

finite. This' means that the image of x, is a group of roots of unity of a fixed,
'say k, degree. Hence x¥ is the trivial character and we get a contradiction.
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