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§ 1. Introduction

1.1. DeFINITION. Let B be a set and T: B — B a map. We will call (B, T)
a fibered system if there is a set of “digits” I and a map k: B —1I with the
following property: Let B(i) = {x€B: k(x) =i} be a cylinder of the time-1-
partition, then the restriction of T to B(i) is injective for any ie€l.

1.2. Let .# be a o-algebra of subsets of B. Then we require:

(1) T: B — B is measurable
(2) Every set B(i) is measurable

13. Let 4: #F >Ru {0} be a finite or o-finite measure, then we
additionally suppose

(3) If A(E) =0 then A(T"'E)=0

1.4. The theory of fibered systems has its roots in the so-called metrical
number theory. Classical papers in this area are Ryll-Nardzewski 1951,
Rényi 1957, Fischer 1972 and Adler 1973. We further mention Schweiger
1975a and Schweiger 1975b. A survey of some results appeared in Schweiger
1981b.

15. The following problems are ty'pical for this area:
(E) Is T ergodic with respect to the given measure A?
(C) Is T conservative with respect to the given measure A?

Note that if T is ergodic and there is a finite invariant measure u < 4,
then T is conservative with respect to u.

(M) Does T admit a finite or o-finite invariant measure p < A?

[283]
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(D) Let T admit a finite or o-finite invariant measure u < 4. Can one
d
calculate the density h(x) =£(x)?

1.6. We remark that there is a vast literature on the Kuzmin
(-Frobenius—Perron) operator 4 defined by duality as follows

[ fdi = [(4f)daA.

T 1g
Then h is an invariant density if and only if Ah = h.

1.7. We now give some standard examples. In all cases A is Lebesgue
measure.

(1) g-adic map (g = 2, integral)
B=[0,1], Tx=gxmodl,
k(x) = [gx];

T is ergodic and Lebesgue measure A is invariant.
(2) Continued fractions

1
B=[0,1], Tx=_modl,

1
k(x)=|—-1;
=|1]

T is ergodic.

The invariant density is given as:

1
hx) =15

(3) Boole’s transformation

1
B=R, Tx=x—-,
x

k(x) =0 for x <0, k(x)=1 for x> 0;

Tis ergodic (Adler—Weiss 1973, Schweiger 1975a) and Lebesgue measure A is
invariant.
(4) Tangent map

B=R, Tx=tanx,

. T n
kix)=z if ——2—+z7t <x <§+zn;

T is ergodic (Schweiger 1978, Aaronson 1978).
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The invariant density is
1
h(x) =—.
() =

(5) Series expansions of Balkema—Oppenheim type (see Galambos 1976;
Perron 1960)

1 1
= = JR— S_,
B=[0,1], k(x)=kfor ;5 <x<g

Tx = b (k) (x_k_-—:-—l_> on B(k).

The following choices of b(k) lead to classical series expansions:

(5.1) b(k) = k(k+1): Liiroth’s series (see Jager—de Vroedt 1969)
T is ergodic in this case and Lebesgue measure A is invariant.

(5.2) b(k) = k+1: Engels series (may be also called Sierpinski’s series;
Sierpinski 1911);

T is ergodic, but not conservative.
(5.3) b(k) = 1: Sylvester’s series;
T is not ergodic (Vervaat 1972).

k(k+1
If one defines h(k) = (b(-lt) ) then the sequence (h(k(T" 'x)T"x), n
=1, 2,3, ..., is uniformly distributed for almost every x (Schweiger 1972).

§ 2. Piecewise fractional linear maps

2.1. DeriNiTioN. The map T is called piecewise fractional linear it

A, x+ B,
X =—F——
Ckx+Dk

Aka—Bk Ck # 0.

for xeB(k),

2.2. The most well-known examples are maps of continued fraction type.

1) B=[a—1,a[, O<a<l,

k(x) = [§+1—a:| on B(k),

Tx = %—k(x) on B(k).
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Tanaka and Ito 1981 have found the following invariant measures for the
case 1/2< a < (\/g— 1)/2. The density function still is unknown for the case

(\/5— 1)/2 <a < 1. The result of Tanaka-Ito uses very long calculations. The
following subcases have to be distinguished:

1
(i) 5 Se<2-y2,

7+ /13

(ii) 21— Sr<as N
18

i 7+,/13<a<10—ﬁ

’" 18 ST

10— /2 5—1

(1v) 014\/_<01S\/_2 ,

In each subcase the density is given piecewise. For sake of illustration we
give the complete result for case (i) which is actually the most simple one. Let

%<a<2—\/§ and ﬂ=\/§2—1'
Then
x+1l?+2—x—/13—1 if"“1<x<a—1;+2,
h(x) = x+/11+2_x-;3—2 ifail+2<x<§—2’
x+}13+1—x._:3_2 if 2—2 <x <a.
(i) B=[a—-1,af,

k(x) = U%.+l—a], 0<a<l,

Tx = %—k(x) on B(k).

Nakada 1981 succeeded in determining the invariant measures:

-1 5-1
(1) If%sas\/—ST, then (with ﬂ=\[T:
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1 1
.f —1< S_— >
x+p+2 he X o 2
1 1 la—1
= if ——2
h(x) = x+2 PR P
! if 2= o '
x+p+1 - %
5—-1
(i) 1f ‘[2 <a <1, then
1
ifa—lesl—l,
hix) = x+2 o
)1 !
— f-—l<x<a.
+1 o

1 . . ) .
The case a = 5 (“continued fractions to the nearest integer”) was studied in

detail by Rieger 1978.

3) B=[0,1], k(¥= [1fo’

X
Tx =—— mod |,
1—-x
T is ergodic and conservative. It admits an invariant density
1
h(x) =—.
X

The conjugacy ¥(x) =1—x transforms T to WoTo¥, a map which is
related to a kind of continued fractions which are useful in number theory
and algebraic geometry (see e.g. Zagier 1981).

(4)  Rudolfer 1971 considers the maps

. b
(1) Tx = —>— modl,
1—cx
1 b
(i1) Tx =——— mod |,
ax a

and finds some invariant densities.

(5) Passing reference is given to continued fractions with odd or even
partial quotients (see e.g. Kalpazidou 1986).
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23. The examples given suggest that the densities of invariant measures
have a common structure. To test this hypothesis Schweiger 1983 considered
a special class of piecewise fractional linear maps:

(i) The partition {B(0), B(1)} consists of 2 intervals [0, a], [a, 1], say.

(i) T maps B(i), i =0, 1, fully onto [0, 1].

(i) T has no attractive periodic point.

Then T is ergodic and the invariant density takes one of the following
shapes:

oo = ———— 1
(x)_x+A x+ B’
h(X) = (x+—A)2, h(X) = x-}-_A, or h(x) =1.

24. A similar theorem is not longer true if the partition consists of > 3
intervals. No general result is known. Schweiger 1986 gives the following
example: Let N > 1, and define

T X 0<xs

=TT x4 \x\—!

*TI-(N+)x N+2

T ! k L < <1 1<k<N+1
=—— — < X<-, AL .

YEITY k41 k

Then T has the invariant density

. f ( 1 ~ 1 )
(")‘EFO 14j(N+1)x 1+((N+1)+1)x /)

25. Remark. The points of infinity in the densities correspond to
indifferent fixed points of T (see Thaler 1980).

§ 3. Multidimensional continued fractions

3.1. Bruns’s algorithm. Brun’s “subtractive” algorithm (see Brun 1957)
can be described as follows: Let

A"+l == {b =(b0, bl’ ceay b"): bo >bl ?
Then define

\"

b, > 0).

(] b =(b0_bla bl, seey bn)
There is an index i =i(b), 0 <i < n, such that the n-tuple

ndlb =(b1, ceey bi9 bO_bl’ bl'+l9 ceey bn)eA"+l.
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Here = refers to an appropriate cyclic permutation. The digit map b i(b)
induces a partition of 4"*! into n+1 cells. For the purpose of ergodic theory
we use the projection (E" denotes the n-dimensional unit cube):

p: A"*! > A" NE" = :B",

bl bn
b=—,...,— )
P (bo bo)

Then there is a unique map 7; such that the diagram
g+ A1
rl o
B". 7 B"

commutes. It is known that T is ergodic and the invariant density is given
by

@ 1

1
h(x) = [dy, [dy,...[dy,K(x, y)
0 0 0

where
Kx,)=0+x,y;+ ... +x,y,)" " .

The following “multiplicative acceleration” of Brun’s algorithm may be
considered. Instead of using o, take J,, namely

0,b=(bo—kby, b,,....,b), k= [%9]
1
The corresponding map 4,: B" = B" is ergodic and has invariant density
h(x) = | K(x, y)dy

Ell
(see Schweiger 1982).

3.2. Selmer’s algorithm. The “subtractive” algorithm of Selmer (see Sel-
mer 1961) is similar to Brun’s algorithm. For beA"*! we consider

GZb =(b0;bn, bl’ sy bn)
Then there is an index j=Jj(b), 0 <j<n, such that
1t0'2b = (bl’ bz, ceny bJ’ bo—b", bj+1, veey b")EA"+l.
The map T,: B" —B" is defined in a way such that the diagram
An+lu:3 An+l
) )
Bn - Bil

) ) T2
1S commutative.

19 ~ Banach Center t. 23
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The ergodic behavior of T, differs noticeably from that of T;. The basic
set B" splits into a transient part 4 (almost every x €A leaves A forever) and
a conservative part C. The restriction of T, to C is ergodic and has the

invariant density
= ]

hix) = {... [K(x, y)dy
0

0

(see Schweiger 1982).
As before one can look at the “multiplicative acceleration” defined by

52b=(b0_kbn, bl,..., bn), k=[z_o]

For n> 2 the ergodic behavior of the related map is unexplored. The
difficulty is connected with the following property: For any digit k the image
TB(k) is not a union of cylinders of the time-1-partition.

3.3. Jacobi-Perron algorithm. For any (n+ 1)-tupel

a=(a0aa1,---:an)9 aj>0, 0<]<n,

define
0sa=(ay, a,—k,a,,...,a0—k,a,),

k, = [“—2} ok, = [59]
a, a, B

Various aspects of this algorithm are considered in Peron 1907, Bernstein
1971 and Schweiger 1973. The metrical theory is obtained by considering the
map T; which makes the diagram

93

(R+)n+1 _>(R+)n+l
le le
E’l — En
T3

commutative. It is known that T; is ergodic and that there exists an
invariant measure, but up to now all attempts have failed to calculate its

density for n > 2.

3.4. Giiting’s algorithm. The following map was proposed by Giiting
1975: Define
64(b0s bl, ceny bn) = (bla bZ’ teey bm bO—gl bl e _gnbn)s

_ b _|bo=91bs
g1 bl ’ 92 bz ’

_ bo—g1b,—g2b, 1bo—91by— ... —gp-_1 b,
g3 = b s eeny G = b .
3 n
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Clearly, for questions of ergodic theory one uses T, as in
An+1 i‘},An+l

lp r
B* —B :

T4

It is known that T, is ergodic and admits an invariant measure (Schweiger
1977).

3.5. Skew products. Recently Shunji Ito has investigated several types of
2-dimensional skew products with applications to number theory (Ito 1984).
An n-dimensional generalization is the following algorithm:

0s(ao, ay, ..., a4) = (ay, ap—k, ay, ay—kya,, ..., a,—k,a,),

ky = [‘-’9] k, = [“—2] ok, = [“—]
a, a, a,

In inhomogeneous terms

1 X, X
7;()(31, X2y eves xn) = (*_kl’ —_kZ, R —l-kn)
X1 X1 X1
Let # = n(x) be a permutation such that
Xp1 £ Xp2 S o0 & Xy

Then put
Ej= 1x=(xy, X3, ..., X)) Wj =1].

The invariant density is given piecewise as follows:

1 Jj=1
b = [ 04

YAt x )t Y1, X€E; 1<j<n.
0 1)1

Since this result has not been published, we will sketch the proof. The digits
are subject to the following conditions:

- @ k() Z2ki(x)20, 1<j<n
(b) ky(x) 2 1,
(c) If ky(x) =k;(x) for j = 2 then k;(Tx) = 0.

Condition (c) implies:

(c) If kj(x) =1 for j =2, then for any z with Tz = x the condition
ki (z) > k;(z) holds.

Let x€E;. Then without loss of generality we may assume

ng...sx.’-sxlSXj+1<...<xn.
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Hence
k2=...=kj=0, kj+l>1?""kn+l>1°

If Tz =x then

( 1 92’*‘-"2 gn+xn)
gi+x, gitxi U gi+x )

By conditions (a) and (¢') we have
OSgZ <gl"'-a0<gj<gl9
0<9;+1<91,--,0<g,<9;.

If z €E; then exactly i digits out of g,, g3, ..., g, are zero. Therefore, if z €E,,
then

h'< 1 gtXx; . gn+xn) 1 =3~ (1+y,) ! y
gr+x: gi+xy 7 gi+x J(gy+x)"! ol +x +y)"tt

Let A(j, g,; i) denote the number of all (n—1)-tuples (g,, ..., g,) which are
admissible for z €E; (given the value of g,). Then

@® n 1 i—1
. Lo (1+yy)
h(z)z7*! = AU, 9150 d
Tzz=x ' glz=li=zl V@i x )t .

i l‘-(gl +1+y,Y gy +y)" ¢

d
91=10 @1 +x+y,)"! h

@ Ol 1yl

= ] dz

g12=:1 gjl (zy +x)"*1 !
NS r S (e
— l —_—

1 (@ +x)H! —b(l"'xlwx) b

3.6. Remarks. (1) A good account on arithmetic properties of several
multidimensional continued fractions is Brentjes 1981.

(2) The known densities are given in the form of integrals. This represen-
tation has its explanation in the theory of dual (or backward) algorithms
(Schweiger 1979, Ito 1984). '

§ 4. The Parry-Daniels map
4.1. Daniels’ 1962 and Parry 1962 consider the following map. Let

4= 'xeE™ Z x; =1].

i=1
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Denote by n a permutation such that
Xpp € X2 £ 00 S X
Then define T: 4 =4 as
E Xn2 = Xq1 Xnn— Xa(n— l))

T(xl,xZ,..., x,,)-;( y sony
xnn x‘n'l xnn

4.2. The restriction of the measure with density

1
X1 (x1+x2)...(x1 +Xx,+ ... +x,,_1)

h(x) =

to 4 is an invariant measure (see Daniels 1962).

43. The case n = 2 can be reduced to continued fractions (Parry 1962).
Therefore in this case T is ergodic.

44. It is unknown if T is ergodic for n > 3. However Schweiger 1981a
proves that T is not conservative for n = 3. The proof consists in construct-
ing a Cantor set F with TF = F but A(F) > 0. Unfortunately the method
breaks down for n > 4.

§ 5. Final remarks

The aim of this survey is to show that there are examples of maps which
arise in more or less natural contexts. But their ergodic behavior is not easy
to determine or leads to problems which are unsolved up to now.

References

J. Aaronson, 1978: Ergodic theory for inner functions of the upper half -plane, Ann. Inst. H.
Poincaré, Sect. B, 14, pp. 233-255.

R. L. Adler, 1973: F-expansions revisited, in: Recent Advances in Topological Dynamics,
Lectures Notes in Math. 318, pp. 263-278.

R. L. Adler and B. Weiss, 1973: The ergodic infinite measure preserving transformation of
Boole, Israel J. Math. 16, pp. 263-278.

L. Bernstein, 1971: The Jacobi-Perron algorithm. Its theory and application, Lecture Notes in
Math. 207. Springer-Verlag. Berlin—Heidelberg—New York.

A. J. Brentjes, 1981: Multi-dimensional continued fraction algorithms, Mathematical Centre
Tracts 145, Mathematisch Centrum Amsterdam.

V. Brun, 1957: Algorithmes euclidiens pour trois et quatre nombres, in: 13 iéme Congr. Math.
Scand., pp. 45-64. Helsinki.

H. E. Daniels, 1962: Processes generating permutation expansions, Biometrika 49, pp. 139-149.

R. Fischer, 1972: Ergodische Theorie von Ziffernentwicklungen in Wahrscheinlichkeitsrdumen,
Math. Z. 128, pp. 217-230.



294 INVARIANT MEASURES AND ERGODIC PROPERTIES

J. Galambos, 1976: Representations of real numbers by infinite series, Lecture Notes in Math.
502. Springer-Verlag, Berlin—-Heidelberg—New York.

R. Giiting, 1975: Zur Verallgemeinerung des Kettenbruchalgorithmus, 1, J. Reine Angew. Math.
278/279, pp. 165-173.

Sh.1to, 1984: Number theoretic expansions, algorithms and metrical observations, Séminaire de
Théorie des Nombres de Bordaux Année 1984-85 exposé no. 3.

Sh.Ito and S. Tanaka, 1981: On a family of continued fraction transformations and their ergodic
properties, Tokyo J. Math. 4, pp. 153-176.

H. Jager and C. de Vroedt, 1969: Liiroth series and their ergodic properties, Indag. Math. 31,
pp. 3142

S. Kalpazidou, 1986: On a problem of Gauss—Kuzmin type for continued fracnon with odd
partial quotients, Pacific J. Math. 123, pp. 103-114.

H. Nakada, 1981: Metrical theory for a class of continued fraction transformations and their
natural extensions, Tokyo J. Math. 4, pp. 399-426.

W. Parry, 1862: Ergodic properties of some permutation processes, Biometrika 49, pp. 151-154.

O. Perron, 1907: Grundlagen fiir eine Theorie des Jacobischen Kettenbruchalgorithmus, Math.
Ann. 64, pp. 1-76.

— 1960: Irrationalzahlen, Walter de Gruyter & Co., Berlin.

W.Philipp, 1967: Some metrical results in number theory, Pacific J. Math. 20, pp. 109-127.

A. Rényi, 1957: Representations for real numbers and their ergodic properties, Acta Math. Acad.
Sci. Hungar. 8, pp. 477-493.

H. G. Rieger, 1978: Ein Gauss—-Kusmin—Lévy-Satz fiir Kettenbriiche nach nidchstem Ganzen,
Manuscripta Math. 24, pp. 437-448.

S. D. Rudolfer, 1971: Ergodic properties of linear fractional transformations mod one, Proc.
London Math. Soc. (3) 23, pp. 515-531.

C. Ryll-Nardzewski, 1951: On the ergodic theorems (Ergodic theory of continued fractions),
Studia Math. 12, pp. 74-79.

F. Schweiger, 1972: Metrische Sdtze iiber Oppenheimentwicklungen, J. Reine Angew. Math.
254, pp. 152-159.

— 1973: The metrical theory of Jacobi—Perron algorithm, Lecture Notes in Math. 334. Springer-
Verlag, Berlin-Heidelberg-New York.

— 1975a: Numbertheoretical endomorphisms with o-finite invariant measure, Israel J. Math. 21,
pp. 308-318.

—,1975b: Some remarks on ergodicity and invariant measures, Michigan Math. J. 22, pp. 181-
187.

—,1977: Uber einen Algorithmus von R. Giiting, J. Reine Angew. Math. 293/294, pp. 263-270.

—, 1978: tan x is ergodic, Proc. Amer. Math. Soc. 71, pp. 54-56.

—, 1979: Dual algorithms and invariant measures, Arbeitsberichte Inst. Math. Salzburg 3/1979,
pp. 17-29 (mimeographed).

—, 1981a: On the Parry—Daniels transformation, Analysis 1, pp. 171-175.

—, 1981b: Ergodic properties of fibered systems, in: Proc. Sixth Conference Probability Theory
1979, Brasov, Romania, Editura Acad. Rep. Soc. Rom., Bucuresti, pp. 221-228.

—, 1982: Ergodische Eigenschaften der Algorithmen von Brun und Selmer, S. = Ber. Oster. Akad.
Wiss. Math. naturw. KL Abt. II, Math. Phys. Techn. Wiss. 191, pp. 325-329.

—, 1983: Invariant measures for piecewise linear fractional maps, J. Austral. Math. Soc. (Series A)
34, pp. 55-59.

—, 1986: Piecewise fractional linear maps with explicit invariant measure, S. = Ber. Oster. Akad.
Wiss. Math. naturw. KIl. Abt. II, Math. Phys. Techn. Naturw. 195, pp. 171-174.

E. Selmer, 1961: Om flerdimensjonal kjede brpk, Nordisk Mat. Tidskr. 9, pp. 37-43.

W.Sierpinski, 1911: Sur quelques algorithmes pour développer les nombres réels en séries, in:
Oeuvres choisies. Tome 1 Warszawa 1974, pp. 236-254.



F. SCHWEIGER 295

M. Thaler, 1980: Estimates of the invariant densities of endomorphisms with indifferent fixed
points, Israel J. Math. 37, pp. 303-314.

W.Vervaat, 1972: Success epochs in Bernoulli trials (with applications in number theory), Math.
Centre Tracts 42. Math Centrum Amsterdam.

D. Zagier, 1981: Zetafunktionen und quadratische Korper, Springer-Verlag, Berlin—Heidelberg—
New York.

»



