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§ 1. Introduction

Let us consider the differential equation

dx

— =A(4

where xeR", A(4) is an nxn-matrix depending differentiably on a parame-
ter A that belongs to a differentiable manifold A of finite dimension. We put

f(A) = lim 1lnlle‘“‘”'ll.
t=+o [

Then f(4) is equal to the greatest real part of all eigenvalues of 4(4) [1]. In
general, f(4) is a continuous but not necessarily differentiable function of A.

In the case where dim(A) is less than 2, V. I. Arnol'd [2] has classified
singularities of f(4) by using versal deformations of matrices. Qur purpose is
to consider the problem in the case where dim(A) is arbitrary and the
equation has the form

ao(4) y(")‘*'al (4 y("_ Dt.. +a,(l)y =0,

where a; eC®(A).

Our method makes use of the technique of stratification, the Weier-
strass Preparation Theorem, Mather Division Theorem, Thom Transversality
Theorem and a lemma on a family of Morse functions. Our paper consists of
several steps:

— stratifying the space of polynomials,
— describing the behaviour of polynomials in a neighbourhood of a
stratum,

[165]
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— determining equations and calculating the codimension of the strata,
— using Thom Transversality Theorem and lemma on a family of
Morse functions to find the local models of f(4).

It will be proved that in the “general case” f(/) admits only a finite
number of local models which can be written down in a list. Note that in the
case of ay(4) =1 the finiteness of the number of these local models was
proved geometrically by L. V. Levantovski [5].

The authors are very grateful to Professor V. I. Arnol'd (Moscow) and
Professor J. Martinet (Strasbourg) for their valuable advices and kind interest
in this paper.

§ 2. Stratification of the space of polynomials

Let us consider the set P of non-constant polynomials

n—1
P={xot"+x, " '+.. . +x, > x}#0}.
i=0

We denote by S;(k, k,, ..., k,) the set of polynomials of degree n—1 (i.e. with
Xo=...=%-1 =0, x;, # 0) such that the maximum real part of its roots is
attained at a real root of multiplicity k and r pairs of complex roots of
multiplicities k,, ..., k,, respectively. Then we have

n—1
P=U USik;ky, ..., k).

1=0 kk;

These sets S,(k; ky, ..., k,) are disjoint. Besides they form a stratification of
P, whose strata are S,(k; k,, ..., k,) for all possible k, k,, ..., k, (that means,
the closure of each stratum is composed of itself and of the finite union of all
strata of lower dimension).

§ 3. Description of the behaviour of polynomials
in the neighbourhood of a stratum

3.1. We use the following notation:

Cy  =ring of germs of real C®-differentiable functions at a point p,

%,  =ring of germs of complex valued C*-differentiable functions at
a point p,

M, ={ueCy u(p) =0,

M, =vety v(p)=0],
C;[t] =ring of polynomials whose coefficients belong to C,°.
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Let us consider the polynomial,

ao(x)t"+a, (x)t" '+...+a,(x) where q;eCY for i=0,1,...,n.

LemMaA 1. (a) Suppose that the equation ) a;(p)t"' =0 has one real

i=1
root o of multiplicity k. Then there are b,eM, (i=1,2,...,k), c;eCy (j
=0,1,..., n—k) such that in a neighbourhood of p€R' we have .

n k n—
@ S att=(=af+ ¥ b—af) Y G
i=0 j=1 i=0

(b) Suppose that the equation Z a;(p)t"~' = 0 has one pair of conjugate
i=0
complex roots atiw (w #0) of multiplicity k. Then there are bje M#, (j
=1,...,k),c;eCr(j=0,1,..., n—2k) such that in a neighbourhood of p R’
we have
n k k
(2) Z a; t"_i = (Tk+ Z bka—j)(fk+ Z EJ‘E*_")
i=0 j=1 j=1

n— 2k

n—2k—j
> ot
j=0

where 1 =t—a+iw.
Proof. Let us consider the polynomial
P(Zg, Z1y ooy Zny W) = ZoW'+Z W' 1+ 4z, W2z,

where (2o, 24, ..., z) €C"*1, weC.

Suppose that P(aq(p), ..., a,(p), B) = 0, where B is real or complex and
that P(ao(p), ..., a,(p), w) # 0. It follows from Weierstrass. Theorem that in a
neighbourhood of (ao(p), ..., a,(p), B)eC**! x C we have

P(zo, ...y 2y W) = {W=B)*+Dp1(Zo) - .., Zd(W=B) "1 +...

vt D (205 -5 Z0)} @ (205 -5 Zyy W),

where k>1 is the multiplicity of B, pi(ao(p), ..., a,(p)) =0,
©(zg, ---» 24, W) # 0; p;, @ are holomorphic in this neighbourhood.

(a) Suppose f = a €R. According to the Mather Division Theorem [3],
p;, ¢ are real C*-differentiable functions if (z, ..., z,) €eR"~!, w eR. Besides,
pi, @ satisfy the conditions

pi(ao (), ..., 4. (D)) =0, @(ao(p), ..., a,(p)) # 0.
So we put p,(ao(x), ..., a,(x)) = b;(x), b;eM,. It is easy to see that in this
' n—k
case ¢(ao(x), ..., a,(x)) has the form ) ¢;(x)t"~*~% where k is-the multipli-

i=0
city of B, ¢; are C*-differentiable functions of x (i=0, 1, ..., n—k).
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(b) Suppose that f=atiweC, w#0, (zo,..., 2, WER"! xR. Ac-
cording to the fundamental theorem of algebra,

Zot"+Zy " 4z, U+ 2,
= {w—a—iw)*+p; (2, ..., z)(W—a—iw)* 1 +...
...+pk(201 cety Z")}' {(W—a—iw)k—,l-'_pl (209 ceey zn)(w—a+iw)k_l+...

..+E(zo, cees 201 q(20s -5 Zps W),
where q(2¢, ..., z,, W) can be written in the form of a polynomial in w and
q(ao(p), ..., a,(p), B) # O, the functions p; are holomorphic (i =1, 2, ..., k).

If we put z;=a;(x), ;€Cy (i=0,....n), then p;(ap(x), ..., a,(x))
= b;(x), b;eC satisfy

n— 2k

n k
Y &= +>: bt )@+ T BT T o
i=o0 j= j=0

j=
where 1 =t—a—iw, b;e #,, c;e€,.

Remark. In this lemma if a; = 1, then ¢y =1 in both cases.

n~1

3.2. Let us consider the equation Y aj(p)t"/ =0, where ) af(p)+#0.
j=0 j=0
Suppose that the roots of this equation are as follows:

— real roots: a; of multiplicity k,,

o, of multiplicity k,,

— complex roots: f; +iw, of multiplicity I,
B tiw, of multiplicity I
(w] # 0, j = l, 2,_-.., S).

Then, by successive application of Lemma 1 we obtain:

LEMMA 2. In a neighbourhood of p each element of C;°[t] admits the.

factorization
n

Y gt i =[] P;00 [T &® [T 2R,
i=1 j=1 k=1 k=1

where

kj h

P;(t) = (- ,)’+Z ujn (2 —a;)

upeM, for h=1,.. ,k;,j=1,2,...,r,
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Ix

N N
Qv = (t— B —iwy)* + Z Vi (t — B —ic0))* ",
h=1

vw€M, for h=1,...,,and k=1,..,s5,

Uk

0 (t) = (t—B+ iwk)’k + Y Dut—B+ iwk)lk h
h=1

n—K-2L . r s
R(t) = Z ql't" K= Z kl" L= Z Ik’
i=0 i=1 k=1
geM, fori=1,2,...,n—K=-2L, g0eC’\M,,.

Let # be the mapping

A34 = xo(A)t"+...+x,(A) eR"* 1\ {0} x...{0} xR.
Suppose that

P(Ao) = Xo(A) "+ ...+ %, (Ao) €Si(k; ky, ..., k)

and that « is the greatest real part of its roots. The following lemma will
describe the behaviour of polyromials in a neighbourhood of 2(4,).

LemMA 3. There exists a neighbourhood of Ao, which #(A) has the form

() = POT] 0,6) [1 2,6) ROS

where
k

(3) P@=@—a)-) ajc—a))Jand 1 =t—a if k=2
j=2

4 P(t)=t—a, ifk=1,

kj
5)  Q;(t) =(t;—b; )= Y bu(t;=b;)" "  and
h=2
© Q;x)=1;—-by if kj=1,
the polynomial

1
) S =Y ¢t
j=0

is constant at A,

R(@®) =R, (O R, (®), ..., R(1),
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where the factors R;(t) have the form
mj =
Rj(t)=(t_'}’j)m1+z d.-(t—}’j)m’ for j=1,..., s,
i=1

aj, b;,, c;, d; are differentiable functions of A in the considered neighbourhood,
y; are real or complex differentiable functions satisfying
Re(y;(4)) <.

Proof. At first we notice that the polynomial 7"+ x,t"~'+...+ x, can be
written in the form

(8) (T—yl)"—__z yile=y)"™t ifn>2

i=2

2
X4 ,(*
where y, = - Y, = —Xy+C; (;) sy ees Y = Xp+...

The mappings R">(x,, ..., X,) -'->(y1, ..., ¥ €R" and I'"! are both poly-
nomial mappings. So I' is difftomorphism. Note that polynomials of the
form (8) have t =y, as a root of multiplicity n iff y, =y; =...=y,=0.

Now, applying Lemma 2 we obtain Lemma 3.

§ 4. Equations and codimension of strata

Let us consider the family:
Xot"+x, " V44X, (Xos-.nr X) ERTIV {0} x... x {0} xR.
According to Lemma 3, if (x3, ..., x%)€S,(k; k,, ..., k,), then the stratum

Si(k; ky, ..., k,) is defined in a neighbourhood of (x3, ..., xJ) by the equa-
tions

a, =0 for h=2,...,k,

Re(bj) =Im(by) =0 for h=2,..,k;, j=1,...,r,
a, = Re(bj;) forj=1,...,r,

¢, =0 for h=0,...,1-1.

So it follows that codim(S,(k; k,, ..., k,)) is equal to

j=1

J
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§ 5. Application of the Thom Transversality Theorem and a lemma
on a family of Morse functions. Local models of f (1)

Let A be a differentiable manifold of finite dimension. In view of Thom’s
Transversality Theorem the set of mappings

A4 = xo()t"+...+x,() eR" 1\ {0} x...x {0} xR

which are transversal to every S,(k: k,, ..., k,) forms an everywhere dense
set in C®(A4, R"*'\ {0} x... x {0} xR) with Whitney C®-topology. We say
that x;(4) (i=1, ..., n) are generic.

LEMMA 4. Let P be transversal to the stratification at A, defined above.
Then there exists a system of local coordinates in A around A, such that, if
P(4o) €S,(k; ky, ..., k) we have

foP(A) =a+g(A)+ max (4, 4, +v;, E—a—g(4),

1<j<r

where 1+k+2 Z kj—r—1 first coordinates of A are denoted by 1,, ..., A,

j=1
Aits Ajzg-15 Ajans Ao1> - dor U=1,...,r;m=2,...,k), u is the greatest

real part of all roots of the polynomial
k
=Y AT i k22, u=0ifk=1,
i=2

v; is the greatest real part of all roots of the polynomial

kj

1= Y (g1 +idp) 0" i k22, v, =0 if k - 1,
=2

n

¢ is the greatest real part of all roots of the polynomials
Aort'+. .+t +1  if (Aor, o) #(0,...,0), & =a—1
if (Ag1s...r Ao)) =(0, ..., 0).

Proof. According to Lemma 3 we can represent P(4) in a neighbour-
hood of A,€A4 as the product

P(A) =P [] Qi) [1 QizpR®S(),
j=1 ji=1
where the expressions P(7), Q;(t;), R(t), S(¢) are defined as in Lemma 3 (see

3)H7). So
fo 2(4) = max (fP,fij,foS)-

1<j<r
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According to (4)+8) we have
JoP=oa+a;+u(ay, ..., a), where u(a,, ..., a)

equals zero if k =1 and equals the greatest real part of all roots of the
equation P(t) =0 if k > 2.

f0Q; = a+Re(bj)+v;(Re(b;r), Im(bjy), ..., Re(bj,,j), Im(bjkj)),

where v;(...) equals zero if k; =1 and equals the greatest real part of all
roots of the equation Q;(r) =0 if k; > 2 f,8 = &(co, ..., ¢) where £(..) is
1

the greatest real part of all roots of the equation Y c¢;t'™/ =0 (cq # 0) if

j=1
(cyy...,c)#(0,...,0) and éE =a—1 if (¢q,...,¢) =(0, ..., 0). Since c,(4) is
different from zero in the neighbourhood under consideration we can put
co(4) = 1.
On the other hand, the condition of transversality of P to
S,(k; ky, ..., k) at A, is equivalent to the fact that ¢, is a submersion in a
neighbourhood U of 4,, where

r
‘+k+2_z ki—-r—1

R\ 10 x...x {0} xR> U(P(4)) R i£1

is defined by

a, for v=2,...,k,

Re(bﬂ,), Im(bﬂ,) fOl‘ h=2,...,kj,j=1,...,r,
x —

Re(b;1)—a,,

Ch for h=1, ..., 1

Note that in this case
U(2o) N Si(k; ky, ..., k) = 971 (0).

As

r
4 l+k+2 ki—r—1
®0? .Zl i

As Uty Z5R 5F

is a submersion at A, €/, there exists a system of coordinates around 4,

whose the I+k+2 ) k;—r—1 first coordinates are denoted by 4,, ..., 4,
i=1

j"l’ ).-2,'-1, ).jz,,, }'Ol""’ ).0, (j=1,..., r, r’=2,..., kl) such that in this

J J

system ¢, becomes the canonical projection onto I+k+2) k;—r—1 first

i=1
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coordinates
a,=»4, for v=2,...,k,
Re(bj))—a; =4;; forj=1,...,r,
Re(b;,) = Ajzp—-1 for j=1,...,r,n=2,...,k
Im(bj,) = 4, for j=1,..,r,n=2,...,k;,
Ci—n = Aon for h=0,...,1-1.
According to Lemma 2, s, = Re(b;;) =g(4) where g is a C>-differ-

entiable function, g(0) = 0 and we can write

Jo? = max (f, P, £,Q), /o S)

1sjsr

=a+g(1)+ max (g, 4, +v;, f—a—g(i)),

1<j<r

where yu, v;, ¢ are defined in Lemma 4.

‘ Remark (1). From the conditions of transversality it follows that if 2 is
transversal to the stratification in question, then (1) belongs to only those
S;(k; ky, ..., k) which satisfy

s=1+k+2) k;—r—1<dim(4).
A

(2) We can transform g(4) into a simple form by using the following
lemma in which we set m = dim(A)—s.

LEMMA 5 (on a family of Morse functions). There exists an open every-
where dense set of functions in C®(R™ x R°, R) which can be reduced in a
neighbourhood of (0, 0)eR™ xR* by a change of coordinates of type (x', y)
—(x, y) to one of the following forms

(1) g(x, y) = const+x,,
(2) g(x, y) =const+h(y)+ Y. &x?, &= t1,
i=1

where h(y) is differentiable, (x, y) = (X1, .., Xms V15 +--5 Y51

The proof of Lemma 5 is analogous to the Morse lemma [3].
From Lemma 4 and Lemma 5 we obtain

THEOREM. Let us consider the following family of differential equations

ag(A)y"+a, (A y" V+...+a,()y=0, Aied.

M Hel‘e (yl9"" .Vs)=(;{jl- }.jz,'_l, }‘]2',1 A.o'.,..., )'v)) Whel‘e j-——l,...,r, "=2,...,k h

=0,..,l1-1,v=2,...,k
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If the coefficients a;(A) are generic, then for every Ay €A there exists a local
systems of coordinates A =(x,y) around A, such that f(A) has one of the
Jollowing local models:

(I) o+ x, +max(u, Vit oo YtV E—a—x,),
D) a+ Y &x?+h(y)
i=1

+max(ﬂ, y1+vla cevy yr+vr’ f—a—h()’)— Z 8ixl'z)a

i=1

(M) a+h(y)+max(u, y1+vy, ..., Yo+ v, E—a—h(y),

where ay(Ao)t"+...+a,(4o) €S,(k; ky, ..., k,), u, v;, & are defined as in Lemma
4 and the coordinates (x, y) and h(y) are chosen as in Lemma 5.

Applying this theorem for each case of dim(A) we obtain.the following
lists.

List of local models for the case of dim(A) =1

Codim Strata Local models of f(4)
0 So(l), So(0: 1) a+, ati?
1 S(2 a+g(A)+Re(/2)
1 So(1; 1), So(0; 1, 1) a+g(A)+|4l
max{a+g(4), 1/4) if 2>0,
1 S,(1), $,(0; 1 .
1. $:0: 1) {a+g().) if 4<0,

where g(4) is a differentiable function, g(0) =0

List of local models of f(4) for the case of dim(A) =2

Codim Strata Local models of f(4)
0 So(1), So(0; 1) a+x, atx+y?
Jy if y=0
1 0 a+x+{0 if y<0
0 \/‘ .
y if y=20
+x2+h(y)+
2 x"+h0) {o if y<0
{ So(1; 1) a+x+y+|yl
S0(0; 1, 1) atx+|y|+h(y)

: 5,(1) {l/y if y>0

a+x if y<O
{l/y if y>0

1 ;1
$1(0:1) atx®+h(y) if y<0
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List of local models of f(A) for the case of dim(A) =2 (continued)

Codim Strata Local models of f(4)
2 So(3) a+g(x, y)+u(x, y)
5 So(2: 1) a+g(x, y)+max(\/;, y) if x>0

a+x+|yl or axx®+e()+lyl if x <0

2 So(151, 1), S0(0;1, 1, 1)

max (0, x, y)+a+g(x, y)

2 50(0;2) a+g(x, y)+|Re(/x+iy)|
A Iy if y>0
al 0)+{J§ if x>0 . o
a X, . i =
g 0 if x<o "7
\
2 5,0 {Z”+‘/; if x>0, y<0
r ai—‘y2+\/;
a+x .
if <0, 0
J {aixziyz it x<0y<
2 S, (1;1) {l/y if y>0
2 5,(0;1,1) a+g(x, y+ix] if y<0

2 S2(1), S,(0; 1)

max (x+g(x, ), {(x, )
where h(y), @(y), g(x, y) are differentiable functions,

u(x, y) and &(x, y) are the greatest real part of all the
roots of the polynomials t3>—xt—y, xI*+yt+1 respec-
tively, h(0) = ¢(0) =g(0,0)=0

List of local models of f(1) for the case of dim(A) =3

Codim Strata Local models of f(4)
. \/; if 220
L s M0 i z<o
0
if z=>20
+ 2+ 2+h + \/z— 1 =
BT LY 4R {0 if z<0
1 So(1, 1) a+y+z+|z|
1 Se(0:1, 1 atx2+y?+h(@)+z
q 5, (1) {l/z if z>0
! a+x if z<0
1/z if z>0
1 $,(0;1 .
1O ) {ai—xzi-y2+h(z) if z<0
) S, 03) a+x+uly, 2)

atx3+h(y, z)+u(y, 2)
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a+g(x,y,z)+max(\/;,z) if y=20

2 So(2; 1)} a+x+|z] or a+x+y*+h(2)+|z
if y<0 '

List of local models of f(4) for the case of dim(A) =3 (continued)

Codim Strata Local models of f(4)
0 So(1), So(0; 1) a+x, atx+y+z?
2 So(1;1,1) a+x+max(0, y, 2)
2 So(0;1,1,1) a+x2+h(y, z)+max(0, y, z)

a+x+|Re(/y+ix)|

2 S,(0;2)
° a+x2+h(y, z)+|Re(/y+iz)|
1/z if z>0
2 $:(2 oz+y+\/; or aty*+zi+ /x ifz<0, x>0
atx2+y*+z2 or a+x if 20, x <0
1 if 0
5 S,(1: 1) /z if z> )
a+x+lyl or atx*+h(y, 2)+]yl
2 S;00:;1,1) .
if z<0
2 SZ(I)s 82(0; 1) max(a+g(x1 ,V: Z), f(}’, Z))
3 SO(4) a+g(x, y9 Z)+F(X, y$ Z)
3 So(3; 1) a+g(x, y, z)+max(u(x, y), 2)
v max(\/;, y,z) if x=20
3 So(2;1,1 A .
oz LD atglx.y z)+{max(0,y,z) if x<0
SO(I; la 11 l)
3 + ’ E] 0, b b
S.(0: 1,1, 1, 1)} a+g(x, y, z)+max(0, x, y, z)
3 So(1;2), S6(0; 1, 2) a+g(x,y, z)+max(|Re(,/x+iy)l, z)
3 5,0) {maX(l/x,Hg(x, yv,2)+uy,z) if x#0
! a+g(0, y, 2)+pu,2) if x=0
max(\[, 2, 1/x—a—g(x,y,2) if y=>0
3 S,(2; 1 + A e
12 1) a+glx.y z)+{max(0, x, l/x—a—g(x, y,2)) if y<0
a+g(x, y, 2)+max(0, y, z, I/x—a—g(x, y, 2))
3 Si(1;1,1),80;1,1,1) if x#0
a+g(0, y, z)+max (0, y, z) if x=0
1 if 0
3 500,2 {/z tz=>
a+g(x,y, 2)+|Re(/x+iy) if z<O0
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List of local models of f(4) for the case of dim(A) = 3 (continued)

Codim Strata Local models of f(4)

max(\/;, ¢, zj—a—g(x, y,2)if x=0
3 52(2) atgix,y, zH_{max(O,é(y, 2)—a—g(x,y,2) if x<0
3 S,(1; 1), S,(0;1,1) a+g(x, y, z2)+max(0, x, £(v, 2)—a—g(x, y, 2))
3 S3(1), S3(0; 1) a-ll-'g(x, y, 2)+max(0, é(x, y, z2)—a—g(x, y, 2))

where h(z), h(y, z), g(x, y, z) are differentiable functions,
h(O) =h(0,0) = g(O, 0,0 =0, u(y, 2), #(x9 Y, 2), 5()}’ 2),
&(x, y, 2) are the greatest real parts of all roots of the
following polynomials: t3 —yt —z, t*—xt? —yt —z, yt?>+zt
+1, xt3+yt2+zt+ 1, respectively.
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