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Let us recall first three definitions of the Mobius function u, which we shall
use below. u(1) =1 and

1) () = 0 if n is divisible by a prime power,
, Hm = (=1* if n is a product of k distinct primes.
2 Y uk)[y/kl=1 for all y>1,
k<y

where k runs over positive integers and [u] is the largest integer < u.

o uk) 1 .
3 —=—— forall s>1,
© 2k
where
()= ) k~*
k=1
is the Riemann { function. .

Riemann in 1859 (see [2], p. 305) and Ramanujan around 1910 (still before
he became acquainted with the European studies in number theory, see [10], p.
349) invented the function

@ Re) = 3 “jiccm,

k=1

where

lix=lim( —
o logu ;3,logu

sl0

179 du+" du)

They did not have any proof of convergence of the series in (4), but they
suspected that it does and probably they thought that =(x), the number of
primes < x, satisfies, for every ¢ > 0,

(5 n(x) = R(x)+ O0(x).
Today we know that (4) converges, but that (5) is far from truth. Littlewood
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discovered that m(x) > lix for infinitely many integers x (see [1] and [9] for
references and subsequent improvements). Since

R(x) = lix—41ix'"? + O(lix'/3),
it follows that (5) fails unless ¢ > 1/2, and it is known that the relation
n(x) = lix+0(x'/2*%)

for every ¢ > 0 is equivalent to the Riemann { conjecture. Still, R could have
the following significance for the distribution of primes. We can introduce an
averaging linear operator

© 7409 = £ [

and conjecture that, for each ¢ > 0,
m™(x) = RM(x)+ O(x?).

But this is still false [H. Montgomery, 1989 letter to the author]. Perhaps
applying the operation (6) several times to the equation (5) yields a truth. (See the
Addendum at the end of this note concerning possible motivations of Riemann.)

In this state of affairs, should one forget the function R(x)? It is the
purpose of this note to show that R has a demonstrable significance in the
theory of power-primes. Power-primes are those positive integers like 2, 3, 5, 6,
7,10, 11, 12, ... which are not of the form a®, where a and b are positive integers
and b > 1. We will prove two theorems which show a tight relationship
between this sequence and the function R(x). Those theorems were partly
proved in [3] and partly announced without proofs in [6]. For other papers on
power-primes see [7] and [8].

At one point of our proof we will have to use the non-elementary formulas

) %k)=o and z&’:‘)g_k=_1,
k=1 k=1
which were proved by von Mangoldt (see [2], p. 92, or [4] and [5]).
Let P(x) denote the number of power-primes < x, and put

®) H = 3 L8

ny nil(n)’

THeoreM 1 (Késsler [3].
P(x)= Y uk)[x'*—1] = H(x)+ O(logx),
k<log2x

and H(x) is related to R(x) by the equations

. *dH() K
RG) = 1+[700  and  H(x) = [logtdR(r).
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Proof. (Unlike Késsler we shall not use (7) in the proof of the first part of
this theorem.) The first equation follows immediately from the definition of
P(x) by an inclusion-exclusion argument using the definition (1) of u(k).

To prove the second equation we need two elementary facts. For all y > 1

Z’@m

k<y k

(this follows easily from (2)), and
Y, (@*=1—y/k)=0(),
y<k<w

which is an easy exercise.
Putting y =logx in the above relations, and using (3) and (8) we get

Y a@x*—1]= Y u(k)<X""—l—X)+0(y)

k<logax k=1 k

Z u(k) Z +0()')
a0 a0 #
; Z 7"'00’)

—ngz e )+O(y) H(x)+0(logx),

which is the second equation of Theorem 1. (The interchange of the
@ @
summations Y and ) was legal since the double series converges ab-

k=1 n=2
solutely.)

The third and fourth equations are essentially due to J. P. Gram and can
be shown as follows:

TdH() * 2 (ogty™> 2 (logx)"
et =1 Z o nieon® = 2, mimtomn+ 1)

(logx)™ & (k)
= Zl m'm kz gm+1 (by (3))

pk) & (logx'My™
Z ,,,Zl m'm
© k logx!/k o0 ym-— 1 © k Iogxl/"ez
k=1 0 m=1 k=1 o
(k) 'ove™ ¢ — 1

Il
Ms
1:

MO oy o
2

=
[}
[



148 J. MYCIELSKI

- i @ﬁx Z plk )loglogx & (by (7)
k=1

k=1
- R+ 3 LOREE oy )
k=1
—R@W-1  (by (7).

So the third equation of Theorem 1 is proved.

The fourth follows from the third by differentiation, multiplication by logx
and integration.

Now we will prove a very accurate asymptotic formula involving directly
Riemann’s function R.

THEOREM 2.
y __P = R(x)+O(loglogx),
P<x

where P runs over power-primes.
Proof. By Theorem 1, and since logx is a monotonic function, we have

1 TdP@) _P(x) % P)d ( )
logu

p<x1°gP s logu — logx s

ng‘)wu)— [ (H(w)+0(logu)d ( Lu)

_HE_ ¢ 1
AL IR )

= E dH(u)+0(j’ “ )= R(x)+ O(loglogx).
5

1.s logu 1.s ulogu

(Several other theorems about the sequence of power-primes are given in

[3] and [6]-[8])

Addendum. One may ask how Riemann invented the function R(x) (this is
not explained in his paper, see [2], p. 305). One possible “derivation” of R(x) is
the following. Let us recall Chebyshev’s functions

0(x)= ) logp and yY(x)= ) logp.
pP<x pr<x

Then ¥(x) = ) 0(x'’*) and, by Mdbius inversion,

k=1

0 = 3 ump (e
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Hence we have the identities
n) =10y

Now, if we substitute ¢ for 0(t) or for y(t), we get the approximations lix and
R(x), respectively. Such substitutions were natural after the work of Chebyshev
(which was known to Riemann).

The claim that R(x), or at least R(x)— 1, is a natural approximation to n(x)
can be also seen from the following identity:

146t _ Z #(m)"'jl"'dw(t)

ologt .2, m 4 logt’

o0

) j(n(x) RO)+1) 1) =0.
The convergence at 1 and at oo will be shown below. We will show also
® dx 2

as ¢|0, where y is Euler’s constant.
Proof of (10) and (9). Euler’s identity tells

(&) =T1 E‘, p*=[]1-p™ 9! for s> 1.

p k=0
Hence
T _ % m(x)dx
logl(s) = — { log(1—x"%)dn(x) = s jl' oo 1)
We have also
©(R(x)—1)dx _ __°° _
S ‘! w = .!‘ lOg(l —-X ’)dR(X)

_ ® @ 1 © (logx)n—l
B '[ kgl kxksngl ”!C(n"'l)xdx

® 1 uo(logx)n-l

= z Z n'C(n+1)k'£ ks+1 -dx

k=1n=1

X

e 1 s
_,,Z”Z,ns"C(n+l)k"“ L~ log Ty
Putting ¢ = s—1 we have
{(s)=1/e+y+0(e) as el0.
Then subtracting the previous equations we get

g(s l)C(S)

I (e(x)—R(®X)+1)——— = (y—1)e+0(e?),

(X‘ -
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which yields (10).

Finally, (9) follows easily from (10) and the theorem of de la Vallée Poussin
which implies that the integrals (9) and (10) converge absolutely. (The
convergence of (9) at the point x = 1 requires a little calculation. Namely,
computing as above we get

2R)—1dx 2 & 1 Z(logx)!
oo~ Z Ltk T x¥+C
gy log2r " )

,‘zl ,,Z n!{(n+1)k?

Remark. We do not know if P(x)—H(x) or ) 1/logP—R(x)

P<x

change sign for arbitrarily large x. (P 1375)
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