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1. Definitions and notation

Consider a class C' vector field X on R" and the associated (autonomous)
system of ordinary differential equations

() % =X(x) (%=dx/dt).

According to the established theory of such equations (see €. g. [1], [7], [10],
[13], [15], or [23]) for each initial-condition vector

(2 x(0) =z eR",

there exists a unique maximal local solution (flow)

) x=0(,2) =@ (1) =¢'(2)

defined and satisfying (1),

(') ¢(t, 2) = X (o(t, 2)),

for all real t in a maximal open interval J(z) about ¢t = 0, and also satisfying
the initial-condition equation (2),

(2) ¢(0,2) =z.

The solution ¢, through z is called complete if J(z) = R, and the flow ¢ is
called complete (or global) if J(z) = R for each z in R"
But even local flows satisfy the group property

@) @(s, o(t, 2)) = p(s+t, 2)

locally; that is, for all s, t sufficiently near ¢t = 0. See [15].
For precision and clarity in our definitions and results stated below it is
helpful to consider the following additional sets determined by the system (1):

9]
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The (necessarily symmetric) system interval

5) I=1(X)=U{J(2): zeR"};
for each t €l, the domain of ¢,
(6) U, =dom¢' = {zeR™ teJ(2)},

which is an open subset of R"; and
) Q =dome = {(t,z)ERxR": teJ(2)},

which is an open subset of R x R".

We do not assume a priori that dom¢ =1 xR", nor even that Q
contains a subset of the form (—¢, ¢) x R".

The classical theorems about dependence on initial conditions and
parameters state that smoothness of the vector-field X entails the same
smoothness of the flow ¢(t, z) in both ¢t and z. In particular, C! X = C! ¢,
C*X=C ¢, and (see [10]) C* X = C® ¢.

A vector-field X is called polynomial if each of the n components of
X: R"—>R" is a polynomial in the components of x e R". Simple and well-
known examples, such as x = x? with x = ¢(t, z) = z/(1 —tz), show that the
flow ¢ of a polynomial vector field need be neither global nor polynomial in
the initial-condition vector z. We certainly do not expect ¢(t, z) to be
polynomial in t: eg., if x =1+x2, then x = ¢(t, z) = (zcost +sint)/(cost
—zsint).

DEeriNITION 1 (from [4]). A local flow ¢(t, z) is called a polynomial flow
(or a poly flow, for short) if @(t, z) is polynomial in z for each fixed t. More
precisely, ¢ is a polynomial flow if, for each multi-index r e N", there is a
function a,: I = R" such that, for each t in I, a,(t) = 0 for all but finitely
many r, and

8) o(t,z) = Z,a,()z for all zeU,,
where z" =z'z2 ... 2"

DeriNITION 2. A class C! vector-field X whose local flow ¢ is a
polynomial flow will be called a polynomial-flow-vector-field (or a PF-vector-
field, for short).

QuesTion 1. Which C? vector fields X have poly flows ¢? That is, which
C! vector fields are PF-vector fields?

Remark. 1t follows from (1’) and (2') that
9 X(z)=¢(0,z) for all zeR".

Thus it would seem to be almost obvious that a necessary condition for X to
be a PF-vector field is that X be a polynomial vector field. Indeed this is
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true (see Theorem 1 part (iii), below), but its proof does not follow immedi-
ately from (9) because there exist C® maps ¢@: R x R = R! such that ¢(t, 2)
is polynomial in z for each t, and yet ¢ (0, z) is not even analytic (let alone
polynomial). See Example 7.1 below and [33].

2. Polyomorphisms of R"

DEFINITION 3. By a polyomorphism y of R" we mean a diffecomorphism of
R" such that the components of both y and ¥ ~' are polynomials in the
components of their n-dimensional vector variables.

If ¢ is a global flow, then each ¢' is a difftomorphism of R". If ¢ is both
global and polynomial, then each ¢' is a polyomorphism because (¢f)~!
= ¢ '. It is shown in Theorem 1 below that polynomial flows are always
global.

The group 2(R") of all polyomorphisms of R" is denoted GA,(R) in [4]
and is sometimes called the affine Cremona, or ganze Cremona, group. The
group 2(R') of one-dimensional polyomorphisms is identical to the affine
group Af(R!): That is, Te 2(R') iff T(x) = ax+b. But for n > 2, the group
#(R") is much larger than the affine group Af(R") and contains nonlinear
polyomorphisms of every degree > 2. For n > 3, one does not even know
what constitutes a set of generators for Z(R"). But the structure of 2-
dimensional polyomorphisms is fairly well-understood by virtue of the

THEOREM OF VAN DER K ULK-JUNG (see [16], [21], [22], [30]). The group
P(R?) is the free product of its two subgroups, the affine group Af(R?) and the
triangular group I P(R?), amalgamated over their intersection, the group of
triangular linear maps. This is written P(R?) = Af(R*) *,T P(R?).

The elements T of the triangular group I P(R?) have the form

(10) T: u=ax+a, v=>by+f(x), ab#0,
where f(x) is a polynomial in one variable.

The content of the theorem of van-der-Kulk-Jung can be expressed
more concretely as follows: Each element T of #(R?) can be written as a
composition

(11) T =LoS(f;,vy)0...08(f;, v)

of one linear (triangular) map L: R> = R? and a finite number [ (called the
length of T) of special nonlinear shifts S(f, v) defined by

(12) S(f,)(x) = x+f(x-vHv, xeR?,

where f is a polynomial in one real variable, v = (v,, v,) is a unit vector in
R?, and v! = (—v,, v,). There is no analogous result known for #(R") when
n=3.
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The amalgamated product 2(R? = Afx*,7 P means that for every
group G and every pair of homomorphisms f: Af(R?) > G and g: 7 2(R?
— G which agree on 4(R?) = Af(R?* n 7 P(R>), there exists a unique homo-
morphism F: #(R? — G such that F agrees with f on Af(R? and F agrees
with g on I 2(R?).

For difffomorphisms S, T of R" it follows from the chain rule

(13) D(SoT)=(DS)(T)-DT, DS =S = Jacobian derivative of S,

with S = T~! that
(14) 1 = (det D(T™1))-(det DT).

If, in addition, S and T are polyomorphisms then both detDT and
det D(T~') are polynomials so that (14) implies that they must be nonzero
constants (reciprocals), and then (13) shows that the map T —detDT is a
group homomorphism of #(R") into the multiplicative group of nonzero real
numbers. We will later (in Theorem 1) make use of this fact, specifically that

(15) T € Z(R") implies det DT = const # 0.

The so-called Jacobian Conjecture states that, conversely, if T is a
polynomial transformation of R" and if det DT is a nonzero constant, then
T € 2(R"). ' '

Since volume (n-dimensional Lebesgue measure) of small regions U = R"
transforms by the formula
(16) vol(T(w)) = | du= [(DetDT)-dx,

v

T(U)
the Jacobian Conje&ure can be stated as follows:

Polynomial transformations T: R" — R" which are (locally) volume-
preserving (det DT = 1) are necessarily globally one-to-one and onto with

polynomial inverse.

That analytic volume-preserving transformations of R? need not be
globally one-to-one is shown by examples such as the following (shown to
me by Brian Coomes):

u= \/Ee"/zcos(ye"‘),
v = \/ie"’z sin(ye™%).
For further discussion and information on the Jacobian Conjecture see [3],

[11], [19], [25], and [31]. For further discussion of polyomorphisms see [2],
[4], [12], [16], [17], [19], [21], [22], [24], [30], and [32].
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The Hénon map- (see [9] and [14])

H u=y+1—ax?
v=bx

is an example of a 2-dimgnsional nonlinear polyomorphism.

3. The fundamental theorem for polynomial flows on R"

FUNDAMENTAL THEOREM (from [4]). If X: R" = R" is a PF-vector-field
with polynomial flow x = @(t, z), then

(i) @ is a complete flow. Hence {¢': t €R) is a one-parameter group of
polyomorphisms of R" so that (4) holds. for all s, t in R.
(i) ¢ has bounded degree. That is, there exists an integer d = 0 such that

(17) @, 2)= ) al(t)z for all teR, zeR".
|rl <d
(iii) The functions a,: R — R" which occur in (17) are real-analytic at each
teR. (In fact, it has been pointed out by Brian Coomes [8] that these
coefficient functions must be entire functions of the complex time-variable t.)
(iv) X is a polynomial vector-field on R".
(v) divX = constant.

Remarks on the proof. For the proof of (i), (ii), and (iii) see [4] and [8].
Statement (iv) follows directly from (ii) and (9). Statement (v) follows from the
classical formula

d .
(18) Edetngo(t, z) =divX (p(t, 2))-det D, ¢ (¢, 2)
at t = 0, because of (15) and the fact that each ¢‘ € #(R") as established in (i).
This theorem provides the first steps toward an answer to our Question
1 above since it gives

Some nevessary conditions for PF-vector-fields:

N.CI. X must be a polynomial vector field.

N.C.II. divX must be identically constant.

N.CIII. X must be complete (i.e., its flow must be a global flow defined
for all real 1).

ProsLEM 1.1. Find further necessary conditions for PF-vector-fields.

N.C.IV (B. Coomes [8]). The flow ¢(t, z) must be (extendable to) an
entire function of complex time t.

Remark 1. The Lorenz Equations [28] satisfy the first three necessary
conditions, but not the fourth. See Example 7.2 below.
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Remark 2. There exist vector-fields on R? which satisfy all four of these
necessary conditions, but which are, nevertheless, not PF-vector-fields: Their
flows are not polynomial in the initial conditions Xx,, y,. See Example 7.3
below.

4. Classification of polynomial flows in dimensions 1 and 2

CLASSIFICATION THEOREM (from [4]).

Dimension 1. Every polynomial flow ¢(t, z) on R' has the form ¢(t, z)
=ze"+(b/a)(e”—1) if a# 0, or @(t,z) =z+bt if a=0, and has the vector-
field X (x) = ax+b.

Dimension 2. Every polynomial flow ¢(t,z) on R? after a change-of-
coordinates by means of a polyomorphism of R?, has one of the following
(inequivalent) forms:

Flow ¢. Vector-field X.
.. u=e"(uycos bt +vysin bt), u=au+bv, b>0,
o . .
v = e" (v, cos bt —ugsin bt), b=av—bu,
(ll) u=1ug eat’ ab :Ié 09 a = au,
v =v,€e”, U = bv,
e U =Up, u=20,
(1) v = vy, v = by,
(.)u=uo+t, u=1,
iv
v =vge”, v = bv,
W) u=uge”, a#0, u = au,
v=e"(vo+uft), b = amv+u™,
m=1,2,3,4,...
. U =1Ug, u=0,
(vi) .
u =vo+pupt, v=p(u).
degp>1,

A polynomial change-of-coordinates
(19) x=Pu), PeP(R"
transforms the polynomial autonomous system
(20) x=X(x), x(0)=x
with solution

(21) x=0(t x) @0, xo) = Xo
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into the polynomial autonomous system

(22) i=Xw), u(0)=uo=p '(x)
with solution

(23) u=@(t, uo)

where

(24) Xw)=P@w ' X(Pw),

and where

(25) @ (¢, uo) = P~ {o(t, P(uo)))-
Thus ¢' and @' are conjugates in 2#(R"):

(26) @ =P 'og'oP.

Thus we will say that two flows ¢ and @' are polyomorphic flows if they are
conjugate one-parameter subgroups in Z2(R").

Remark. Flows which are merely difffomorphic to polynomial flows
need not be polynomial flows, even if their vector fields satisfy the four
necessary conditions of § 3. See Example 7.4 below.

QuestioN 2. If a vector-field X is polynomial with constant divergence
and its flow ¢ (¢, z) is complete and (extends to) an entire function of complex
time ¢ (that is, if it satisfies all four of the necessary conditions of § 3), must it
then be diffeomorphic (or at least homeomorphic) to a polynomial-flow
vector-field?

QuestioN 3. Which (polynomial) vector-fields are diffeomorphic (or
homeomorphic) to polynomial-flow vector fields?

Remark. The divergence of a vector-field transforms under diffeomor-
phisms T: R" — R" according to the following equations: Given a vector-field
X (x) we write y = T(x) and x = T~ !(y) = G(y). Then the new (transformed)
vector-field is

Y() =T (G() X(G()
or Y =(0T/0x)X, (summation on k)
and
2T,
ox, 0x, Oy;

Evidently, the statement “div X = constant” is invariant under polyomor-
phisms of polyflows.

divY=divX+X,- (summation on i, k, and ).
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5. Outline of the proof of the classification theorem for
polynomial flows on R?

A. It follows from the Fundamental Theorem of Bass and Meisters [4]
which was stated in § 3 above that a polynomial flow ¢ defines a one-
parameter subgroup {¢': t€R! of 2(R") and this subgroup has bounded
degree.

B. By the Theorem of van der Kulk and Jung (discussed in § 2 above)
we know that #(R?) is the free product of its two subgroups Af(R?) and
7 #(R? amalgamated over their intersection 4(R?):

27) #(R?) = Af(R) +,. 7 P(R).

C. Elements P of such amalgamated products have unique lengths | as
words (11), or words

(28) P=LoT, 0A4,0...0T,04,,

where LeA and the T; and the A, are representatives of the nontrivial 4-
cosets of .7 2(R?) and Af(R?), respectively. See [16], [18], [21], [22], [27],
[30].

D. It follows from A, B, C above that, for a two-dimensional polynomial
flow ¢, the lengths of the elements of

(0': teR! < Af(R?) %, T ?(RY)

are bounded. See [4] and [32].

E. Theorem 8 in § 4.3 on page 36 of Jean-Pierre Serre’s book [27] states
that: Every bounded subgroup of an amalgamated product G, *,G, is
contained in a conjugate of either G, or G,. Serre defines a subset X of an
amalgamated product to be “bounded” if there is a bound on the lengths of
the reduced decompositions (words) of the elgments of X.

F. It now follows from D and E that to each polynomial flow ¢ on R?
there exists a polyomorphism P e 2(R? such that

either Pog'oP™'eAf(R* for all teR?

or Pog'oP 'e T 2(R? for all teR?.

In either case it is possible, by means of further polyomorphisms if necessary,
to conjugate ¢’ into one of the six types listed in the classification theorem
stated in § 4 above.

For further details see [4].
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6. Vector fields with constant divergence

THEOREM 6.1. div X = constant o implies

(n=1) X(x) =ax+p for some constant P.
(n=2) X(x) =Ax+(0H(x))", xeR",

where A is any n xn constant matrix whose trace equals div X, and where H
can be chosen (but depends on the choice of A) to be a skew-symmetric (H+ =
—H) nxn matrix function of x€e€R". Here (0H)T denotes the column vector
whose k-th component is

29) S, (3Ha/d%).
i=1

The notation OH is intended to suggest the matrix product of the row

a_<i o 9
“\ox," ox,” 7 ox,

times the n xn matrix function H to produce the row vector whose components
are given in (29) above.

Proof of Theorem 6.1. Let A be any constant n x n matrix (or linear map
of R" into R") such that

traced =a =divX = ) (0X,/0x).
i=1

Define Y: R" = R" by Y(x) = X(x)—Ax. Then
divY =divX —trace4 = 0.

Define the (n—1)-form

(30 o= (=)' Y(dx; A... Ad% AL Adx,)
k=1

where dx, means “omit the factor dx,”. Then dw = (divY)-dx; A ... Adx,
=0, since divY = 0. That is, the (n—1)-form w is a closed differential form
on (the simply connected set) R". If n = 1, then Y (x) = constant (say f). If n
= 2, then by the Poincaré Lemma there is an (n—2)-form

9= Z Gijdxl/\.../\dfi/\.../\dfj/\.../\dx,,

1<i<jsn

2 — Banach Center t. 23
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so that w =d6f. That is, w is exact. But then

=Z Z dek Adxy Ao AdR AL ANdR AL A dX)
—Z[( 1yt ”dxl o AR AL A dX,
i<j

+(— 1)J Sdx, A...NdZ A ... /\dx,,].

J

So
(31
a)—z Y (-1~ lax =Y (-1! "'(dxl Ao ANdR AL AdX);

k=11<k i>k

comparing (30) and (31) we see that

Z( 1):+ka Z( 1)1+k

i<k i i>k Xi
So if we define a skew-symmetric matrix H = —HT by the equations
Hik = (— l)i+kGik fOl‘ i < k,

H Hii = 0
Hik = _Hki = —(—])i+kai for l > k

then Y, = ) 0H,/0x; for k=1,2,...,n, so the column vector Y = (0H)".
i=1

Therefore,

X(x) =Ax+Y(x)
or = Ax+(0H)T. u

Special cases of Theorem 6.1 when n=1, 2, 3:

n=1, x=X(x)=ax+b,
ne? X1 =A11x1+412x2—5G2,/6x2,
’ Xy = Ay X1+ Az, %X, +0G,,/0x,.
¥= Linear + Hamiltonian,
n=3, x = Ax+curl G,

G = (Gza, Gl3a G12)°
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Remark. The converse of Theorem 6.2 is also true: Vector fields of the

form ]
X (x) = Ax+(0H)T with HT = —H

automatically satisfy div X = const. = (tr A).

THEOREM 6.2. If div X = constant a, then the determinant of the Jacobian
of the flow x = ¢@(t, z), ¢(0, z) = z, satisfies

(32) det D, ¢(t, z) = exp {(div X) t}.
Proof. 1t follows from (18) that

(33) det D, ¢ (t, z) = exp {]‘(div X)(o(s, 2))ds}
0

from which (32) is an immediate consequence when div X = constant.
CoroLLARY. If div X = constant a, then vol (¢ (u)) = vol(U)-exp(«t), t €R.
Proof. 1t follows directly from (16) and (32).

Remark. 1f divX =constant a <0, then the flow ¢(t, 2) is volume-
crunching. If div X = constant a > 0, then the flow ¢(t, z) is volume-expand-
ing. If divX =0, then the flow o¢(t, z) is volume-preserving.

7. Examples

ExaMpLE 7.1. There exist C! function ¢: R, xR, — R, such that ¢(t, z) is
polynomial in z for each fixed t, but ¢(0, z) is not analytic.

Proof (personal communication from Robert M. McLeod).

(1) Let feC*®(R) but not analytic. For each n there is a polynomial
Q.(z) such that |Q,(z)—f(z)] <27 " for |z] < n. Set P,(z) = Q,(z) and P,(2)
=Q,(2)—Q,-:(2) for n> 2. Then

f(z) = i P,(z), for all z in R.

(Convergence is uniform and absolute on compact sets.)

(2) Let g: R — R be an odd, infinitely differentiable function with g'(0)
=1 and g(t) =0 for |t] = h. Set A,(t) =g(2"t)/2". Then A,(t) =0 for |¢|
> h/2" and A, (t) = g'(2"t). Hence A4, (0) =1 for all n. Also there is a constant
G such that |A4,(t) < G for all t.

(3) Let o(t,z) = ), A,(t) P,(z). Now every term is O when ¢t = 0 since
. n=1
g(0) = 0; and when t # 0 all terms are zero for n satisfying 2"|t| = h. Thus
@(t, z) is a polynomial in z for each fixed t.
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(4) Now we want to show that ¢(0, z) = f(z). First,
|Y A, P,(2)| < Y 14,() P.(2) < Y. G+|P,(2)].
n=1 n=1 n=1

Thus the series converges uniformly in t. Let

he, D= 3 AL Pa).
n=1

Then

}h(s, z)ds = i _‘[A:,(s)P,,(z)ds
0 0

n=1

= Z (44(t)— A,(0) P, (2)
=Y A4,()P,(2) = o(t, 2).
n=1

Differentiate both sides and set t = 0. The result is
h(0, z) = ¢(0, 2).
But

h(0,2) = } AL(Q)Py(2) = Y Pu(2) = f(2).
n=1 n=1

Thus ¢(0,2) = f(2). =
ExampLE 7.2. The Lorenz equations (see [28])
X =0(x—y) o = pos. const.,
(L) y=rx—y—xz r=pos. const.,
z=xy—bz b = pos. const.
satisfy the first three necessary conditions (given above in § 3) for a polynom-
1al-flow vector-field, but they do not satisfy the fourth necessary condition

N.CI1. (L) is a polynomial vector field. Obvious.
N.CIIl. divL = —o—1-b = negative constant.
N.C.IIL (L) is complete.

(a) It is proved in Appendix C of Sparrow’s book [28] that the solutions
of (L) remain bounded as t = + oco. Hence they must exist for all positive
time.
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(b) To see that solutions exist for all negative time, replace (L) by (— L)
and consider the Liapunov function

v=rx’+oy*+a(z—2r)?

as t = + 00. It can then be easily verified that along solutions curves of (— L)
for t >0

V< BV+C

where B = 2+ 20 +2b and ¢ > 20b?r?/(1+ ). It follows that ¢t tends to + oo
with x2+y2+2z2 so solutions of (—L) must exist for all positive time, and
hence solutions of (L) must exist for all negative time. But N.C.IV. fails to
hold true for (L) because evidently (see [8] and [29]) the Lorenz flow
o(t, x, y, z) has singularities in the complex t-plane, off the real ¢ line.

ExampLe 7.3. There exist vector fields on R? which satisfy all four
necessary conditions (given in § 3 above) for a polynomial-flow vector-field,
but which are, nevertheless, not PF-vector fields: That is, the components
o(t, X0, Vo) ¥ (t, X9, yo) are not polynomials in x,, y,.

Let P(u) be a real polynomial in one real variable u, and let a and b be
any two real numbers. Consider the two-dimensional system

% = ax— 0P (xy)/dy,
y = by+ 0P(xy)/0x.

N.CI. Clearly X is a polynomial vector-field.

N.CII. divX = a+b = constant.

N.C.III. That X is complete can be seen by direct examination of the
sclution which can be expressed explicitly as follows:

/

X

t
x = xoexp {at — [ P'(xo yo €“* ) ds},
0

t
y = yoexp {bt+ [ P'(xo yo e ds}.
0
N.C.IV. is also seen to hold by direct examination of the explicitly given
solution ¢.

ExampLE 74. The following vector-field X satisfies all four necessary
conditions for a PF-vector-field and, in addition, it is difffomorphic to a PF-
vector-field; but, nevertheless, it itself is not a PF-vector-field.

U =u—2vW*+v? =u—0H/ov.
b =v+2u(w?+v?) = v+ 0H/ou.
H(u, v) = u*+vH)?%)2.

X
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But its flow is not a polynomial-flow:
u = ugy e cos [(ud +v3) (1 —e?)] + v, €' sin [(uz + v3) (1 — e2)].

@
v = —ugeésin [(uZ+v3) (1 —e?)]+ v, € cos [(u3 + v3) (1 —e?)].

However, the difffomorphism

u=xcosr:—ysinr?, r* = x2+y?,
T
v=xsinr’+ycosr?, =u?+0?

with inverse
x = ucosr’+vsinr?,
T—l
y = —usinr’+vcosr?
transforms X into the system X: %X =x, y =y with the polynomial flow
@: x=Xxp€', y=yo€.

8. The dynamics of polynomial flows

It follows easily from the Classification Theorem in dimensions 1 and 2 that

A. In dimension 1. A polynomial flow can have either one isolated
stationary point (at—b/a) which is stable when a <0 and unstable when
a > 0; or no stationary point (when a =0 and b # 0); or else all points are
stationary points (when a =b = 0).

B. In dimension 2. The stationary points are either none, one, or
infinitely many (consisting of a finite number of lines each point of which is a
stationary point). The periodic orbits are either none or all points (center).
There can be no isolated limit cycles in a two-dimensional polynomial flow.

QuEesTioN 4. How many isolated stationary points can a three-dimen-
sional polynomial flow have? Same Question in each dimension n > 3.
Exactly what is the nature of the stationary points in dimensions n > 3 for
polynomial flows?

QuesTioN 5. How many periodic orbits can a polynomial flow have in
dimensions n > 3? Can there be isolated periodic orbits? See [5].

QuesTioN 6. Exactly which two-dimensional polynomial vector-fields of
the form
X = ax— 0H/dy,
y = by+ 0H/0x

are complete? (Here H = H(x, y) is a polynomial in x and y.) That is, which
two-dimensional polynomial vector-fields with constant divergence are com-
plete? See [6].
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QuesTioN 7. What type of attractors can a polynomial flow have? See
[20].

QuesTioN 8. How is the degree of a polynomial flow ¢(t, z) related to
the degree of its vector-field ¢ (0, z)? See [4].

QuesTiON 9. (Question 1 re-phrased): the recognition problem. Given a
polynomial vector field X on R", how can one decide whether or not its flow
@(t,z) is a polynomial flow? Note that, in spite of the Classification
Theorem, this question is unanswered even in dimension 2. '

A flow ¢(t, z) is said to have sensitive dependence on initial conditions if
there exists a 6 > 0 such that for each x,€R" and each neighborhood N of
Xo, there exists a ye N and a real number t > 0 such that

II(P(t, xO)—(p(t’ y)” > 9.

QuestioN 10. Can a polynomial flow exhibit sensitive dependence on
initial conditions?

A flow ¢(t, z) is said to be topologically transitive if for every pair of open
sets U, V < R" there exists a t > 0 such that

e, U)nV 0.
QuesTioN 11. Can a polynomial flow be topologically transitive?

QuesTioN 12. What kind of sets Q — R" can be nonwandering sets for
polynomial flows?

. Added in proof. One can construct a C® function ¢ such as one in Example 7.1. The proof
will be published elsewhere.
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