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1. Introduction

In the practical use of interpolation it is often required to preserve such
properties of the data as monotonicity or convexity. As is well known,
polynomial and even spline interpolants, in general, do not have this
property. There are data sets in convex position for which, e.g., the quadratic
or cubic interpolating splines are not convex (see Passow and Roulier [8]).
In the monotone case the situation is analogous; only for cubic C!-splines
the result is always positive (see Fritsch and Carlson [3]).

In this lecture, for some kinds of spline interpolation necessary and
sufficient conditions are given under which the shape is preserved. Further,
since convex or monotone spline interpolants, if existing at all, are not in
general uniquely determined, strategies for selecting one of these splines are
proposed. This is done for quadratic, cubic and related splines by using
earlier results of Schmidt and He8 [10], Burmeister, HeB and Schmidt [1],
Dietze and Schmidt [2], HeB and Schmidt [5] and Schmidt and HeB [11].
Now, a unified presentation is given. Also some new aspects are considered;
see especially Sections 3.2, 3.4, 4.2 and S.5.

2. Weakly coupled systems of inequalities
Let a;, B, 1; be given constants with
(2.1) >0, B>0, a+f=1 (i=1,...,n),
(2.2 1, €1, <...<T1,.
PrOBLEM 1. Are there numbers my, m,, ..., m,_, such that

oam_+Bm=1 (=1,....,n-1), m_, 21 (@(=1,...,n?

[377]
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ALGORITHM 1 [11]. CO = 1, dl = Tl’
q=Ppicii/Ju, diey=di+(=1)cti,—1) (21);
d, = max \d;: i even], d* =minld;: i odd].

ProrosiTioN 1 [11]. Under the assumptions (2.1) and (2.2), Problem 1 is
solvable if and only if

(2.3) d, <d*.

Further, one gets

(249 t—m_y =(—1f(me—d)fci.y (=1).
Next, let the constants «;, f;, t; satisfy (2.1) and

(2.5) 1,20, 1,20, ..., 1,20.

PROBLEM 2. Are there numbers my,, m,, ..., m, such that
am_+pm=1, (=1...,n, m=20 (i=0,...,n?
ALGORITHM 2 [11]. ¢ =0, ¢o =1,
e=e¢_+(—1V "' tfe, c=PiciJu (=)

e, = max l¢;: i even], e* =minle: i odd).
ProrosiTiON 2 [11]). Under the assumptions (2.1), (2.5), Problem 2 is
solvable if and only if

(2.6) e, < e*.

Further, one gets

(2.7) m; =(—1)(mo—e)/c; (i =0).
Now, suppose that the constants a;, f;, %, J;, 7; satisfy (2.2) and
(2.8) O<y <, O0<pi<é, o+pi=1, n+o=1

PrROBLEM 3. Are there numbers mgy, my, ..., m, such that
om_+pim<t, yim_+odmz=t (i=1,...,n?
ArcoritHm 3 [10]}. gy = — o0, by = + o0,
a = max \t, (t;—y:b;-1)/6;}, b =@—-wma_,)/B (21).

ProrosiTioNn 3 [10]). Under the assumptions (2.2), (2.8), Problem 3 is
solvable if and only if

(2.9) -, <17 (=1,...,n).

For the proofs of these propositions we refer to the cited papers.
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3. Shape preserving quadratic and related spline interpolants

Let 4 be a grid on the interval [0, 1],
3.1 4: xg=0<x, <...<x,=1.

A set of points (xg, Yo), (X15 V1)s +«+» (Xns yo) 15 said to be in convex or
monotone position if, for the slopes

(3-2), u=0i=yVi-)/h, h=x—x_,,
(2.2) or (2.5) is valid, respectively.

3.1. Quadratic splines

Let Sp,(1) be the set of quadratic C!-splines on 4. The quadratic spline s
given by

(3.3 s(X) =y +m_ hit+(t—m_)ht*, 0<t<lI,

with x = x;_,+ht (i =1, ..., n) satisfies the interpolation condition

34) s(x)=y; (@=0,...,n).

Further, s is continuously differentiable if and only if

(3.9 m_,+m=2t; (i=1,...,n-1)
where
(3.6) m=s(x) ((=0,...,n).

The derivatives mq, m,, ..., m, are used here to control the shape. Obviously,
s€Sp,(1) is convex on [0, 1] if and only if

(3'7) ml'—lsti (i=11°'°9 n),

and monotone on [0, 1] if and only if

(3.8) m=20 (i=0,...,n).

Thus one is led to Problems 1 and 2 with a; = B; = 1/2. Propositions 1 and 2
yield necessary and sufficient conditions for the existence of convex and of
monotone Sp,(1)-splines, respectively.

The corresponding tests (2.3) and (2.6) may fail for n > 4. E.g. in the
convex case it follows that d, <d,, d, <d;, d, < d,, but there are slopes t,,
T,, T3, T4 With d, < d, <d, <d,. This implies d, > d*.

Next, three types of splines will be named by which the shape can be
preserved.
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3.2. Lacunary splines
Let k, 22 {i=1, ..., n) be given integers, and k = (k,, ..., k,). Set
(3.9 S() = Yoy +m_y bt +@—m_ )bt 0<1<1,

with x = x;_, +h;t (i = 1, ..., n). This interpolating spline is from C! [0, 1] if
and only if

(3.10) ki—Dm_+m=kt;, (=1,...,n-1);

the corresponding set of splines will be denoted by LSp,(1; k). Notice that
LSp,(1; 2) = Sp,(1). Further, se LSp,(1; k) is convex if (3.7) and monotone if
(3.8) holds. Thus, Problems 1 and 2 with a; = (k;—1)/k;, B; = 1/k; arise.

Now, for sufficiently large k,, ..., k, the necessary and sufficient condi-
tions (2.3) and (2.6) are met if (2.2) and (2.5) are sharpened to

(3.11) 1, <1,<...<T1,
and
(3.12) t,>0, 1,>0, .., 1,>0,

respectively. Indeed, let e.g. for even i the parameters k,, ..., k;_, be already
chosen such that

dy<d, <...<d;<d;_; <...<dy <d,.
Then, in view of a; =1, §; =0 as k; = + oo, the inequality
d; <dijyy <di_,

follows for sufficiently large k;. Hence, by induction one gets d,; <d,;_, (i
= 1) ensuring d, <d*, and thus the existence of convex spline interpolants
s€LSp,(1; k) follows. Analogously, the condition e, < e* which guarantees
the existence of monotone splines s €LSp,(1; k) can be verified for large k.

3.3. Exponential splines
Let 4, >0 (i =1,..., n) be given parameters, and 4 = (4,, ..., 4,). Introduce
a spline s by

coshpyt—1

, 0<t<,
cosh y; —1 S

(B13) s(x) =y +m_ bt +(t,—m_y) h

with x =x;_,+ht, g, = A h; (i =1, ..., n). This spline interpolates the data
set. Further, seC! [0, 1] is equivalent to

(3.14) agm_,+Bm=1 (@(=1,...,n-1)
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where «;, B; are defined by

(3.15) a=1-8, PBi= —l—tanh& €(0, 1).
Wi 2

In [11] this set of splines is called CSp(1; A), and the results just described
for LSp,(1; k) there are derived for CSp(1; 4). This is possible because of a;
-1, B =0 as 1, =+ 0.

3.4. Rational splines
Let , >0 (i=1,..., n) be given constants, and let r =(r,, ..., r,). Set

t(1—1)
14rt’

(3.16) S(x) =y +Tuhlt+(m_,—1)h 0<t<l,

with x = x;_;+ht (i=1, ..., n). This is an interpolating spline which be-

longs to C![0, 1] if and only if

(3.17) m_+(+r)m=2+r)r, (@(G=1,...,n-1).

The corresponding set of splines will be denoted by RSp,(1; r). Because of
, 1+ 1
Sx)=1+(m_,—1) (m r_‘>’

2(1+ry)
h(T+7,0?

the convexity and monotonicity of s e RSp,(1; r) are again controlled by (3.7)
and (3.8), respectively. Hence, Problems 1 and 2 with «; = 1/2+r), B;
= (14+r)/(2+r) are to be solved.

Now, because of a; =0, B; 1 as r; = + 0o, under (3.11) and (3.12)

§(x) = —(m—, —7)

dy; <...<dy <d, <d; <dy <...<dy_,

and an analogous relation for e,, ..., e, can be attained if r,..., r, are
sufficiently large. Hence, d, <d* and e, < e* follow ensuring the existence of
convex or monotone interpolants s €RSp,(1; r), respectively.

4. Minimal quadratic and related splines

For d, < d* or e, < e* there exist an infinite number of spline interpolants.
For selecting one of them a choice function is introduced. In view of
Holladay’s theorem (for cubic splines) it suggests itself to minimize

1
fs"(x)*dx.
0
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But it seems more appropriate to use the geometric curvature
1 1 2
s (x
Feswpvivs i 7y dx.
o(1+5'(x)?)

Thus, with the approximation s'(x) > 7; for x;_; < x < x;, one is led to the
objective function

Xi

4.1 fo(5) = i w; | s”(x)*dx > min!

Xi~1

with w; =1 or w; = 1/(1+1?)? (see [1], [11], [15]). There are also other
acceptable choice functions, e.g.

4.2) fols)= max (‘w; max |s"(x) > min!

i=1,...,n x,-_l$x$x,-
In the spaces CSp(1; A) and RSp,(1; r) these functions should be somewhat
modified in order to avoid piecewise linear splines which occur for large
parameter vectors A or r (see e.g. [11]).
4.1. The objective function f,

In all cases treated up to now the function (4.1) reads
fi(9) = Y Wilt;i—m;_y)?
i=1

where the W,’s depend on the chosen spline space. E.g. in LSp, (1; k) one gets
W, = ki (ki— 1)*/(h; (2k; - 3).
Upon using relations (2.4) and (2.7) the following one-dimensional optimiza-

tion problems appear [11]: In the convex case

4.3) Y. W(mo—d)?/ci, > min! st. d, < mg < d*,

i=1

and in the monotone case
- i 2,2 ) *
@44 > Wimo—e_y+(—1fc_y7)/ck = min! st. e, < my <e*.

Both (4.3) and (4.4) are easily solved by comparing the unconstrained
minimizers with the boundary values.

4.2. The objective function f_

In the treated cases the function (4.2) is of the form

fo(s) = max Vt,—m;_,|

i=1,...n
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where the V’s, eg. in LSp,(1; k), are
Vi= /Wi ki (k= 1)/hy.
Thus in the convex case one has to solve

4.5) max V;|my—di|/c;-y »min! st. d, < my < d¥,

and in the monotone case

(4.6) max Vlmy—e;_+(—1)c;_yt|/c;—; = min! st. e, < my < e*.

i=1,...n
The one-dimensional problems

. max U;m—u| »min! st. u, <m<u
4.7 U !'st. u, <m<u*

i=1,...,n

can be solved in a simple way. Assume that u; <u, <...<u, and
U,>0,...,U,>0. Let (x;, yy) be the intersection point of the two lines

y= Uj(x_uj)’ y==Ui(x—u),

1.e.

U;+U, Y= U;+ U,

Then the unconstrained minimizer m of (4.7) is given by

(48) xjk =ujUj+ukU,, (u,‘—uj)UjU,‘.

4.9) m=x,, where y,, = maxy;
j<k

and the constrained minimizer m of (4.7) is

m for u;, < m < u¥,
4.10) m=<u* for m> u*,

u, form<u,.

However, it is possible to compute m more effectively: At the beginning, set
Jo=Po=1, ko=qo=n, zo=y1, Ao=ljo)» Bo= ko)

and then for /=1, 2, ... do:
if Jy=1{j: U;j>Uj_,, u; <x
Ki={j: Uj>U,_,, u;>x
set M =X, _,q_,, StOp;
if Jy#O set jy=minJ;, 4, =AU )} else jy=ji-,, 4, =A_;
if K,#Q set k,=maxK;, Bj=B,_,ulk)} else k,=k,_,, B,=B,_,;
set z; = max {z,_, Yip VEB, v<qi-y), Y, (WEA,L, p 2 pi- 0}
ifzy=2z_,set p=p-1, ¢4 =q-1;
if zy=y,, set p=pu q=v.

=@ and

Pi1-14]- 1}
= (@ then

1
P-191-1/
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This procedure for computing i terminates after at most n—1 steps. More-
over, some refinements are possible if the boundary values u, and u* are
taken into account. E.g., in the case u* < u; the procedure can be stopped
with m = u*, and so on.

5. Shape preserving cubic and related splines
5.1. Cubic splines

Let Spy(I) be the set of cubic C'-splines on the grid 4. The spline s defined
by

1) s() =y +m_ ht+Gr—2m_ —m)ht?
+(m_ +m—=2t) ke, 0<t<I,

with x = x;,_,+ht(i=1, ..., n)is from Sp,(1) and satisfies the interpolation
condition (3.4). Moreover, m; =s'(x;) (i =0, ..., n). Now, the spline (5.1) is
convex on [0, 1] if and only if

5.2 2m;_+m; <31, m_,+2m =3, (i=1,...,n)

(see [7]), and monotone on [0, 1] if and only if

(3.3) "li—l_\/"li—l"li+"li<3‘l’ia m_, 20, m=20 (@(=1,...,n);

this is an equivalent form, due to W. Burmeister, of the condition given in
[3]. Since (5.3) is valid eg. for my=m;, =...=m, =0, the problem of
monotone interpolation is always solvable in Sp;(1). The convex interpola-
tion in Sp,(1) leads to Problem 3 with a; =6, = 2/3 and B, =y, = 1/3, and
Proposition 3 gives the necessary and sufficient existence criterion developed
in [10].

For characterizing the shape preserving interpolation in Sp;(2) the
equalities

\

(54 Bivymi_ +2(h+hy )m+hmy, =3(ht 1 +he )
i=1,...,n=-1)

ensuring s’ (x; +0) = s”(x; —0) have to be added to (5.2) or (5.3). The arising

problems (5.2), (54) and (5.3), (54) are not always solvable. Sufficient

solvability conditions are given in [6] while conditions which are both
necessary and sufficient are derived in paper [18].

5.2. Minimal cubic splines

If there are any at all, then in general there exist an infinite number of
convex or monotone cubic spline interpolants. For selecting one of them the
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objective functions (4.1) and (4.2) are of interest. In Sp;(/), [ > 1, they read

(5.5) L= Fimi_y, m)
i=1
with
4w, 2 2
(5.6) Fi(x, y) =-hT{(x—1-’a) +(x—)(y—1)+(—1)*},
and

(5.7) foo(s)" max 2\/ w; max {|3t,—2m;_, —my, |m;_, +2m; — 3|}

Among the problems now arising only the problems in Sp, (1) with regard to
the objective function f, are treated in details (see [ 1], [2]). For solving the
problem

(5.8) f2(s) > min! s.t. (5.2)
in [1] it is proposed to consider the corresponding dual problem

(5.9) - 'il H*(pi_,, —p;) >max! with po=p,=0
where |
@+ @) for £< 0,130,
_ t(é+rr)+i(§—n)2 for 0<¢<2n,
(5.10) H¥*(&, n) = < 12w, \2
t(€+n)+1—;l'—<é——)2 for 2 < <0,
| T(E+n) for {=>2n,20 219

In contrast to (5.8), the problem (5.9) is unconstrained and, moreover, the
Hessian of the objective function is tridiagonal. These properties are very
convenient for applying e.g. Newton’s method. Further, if a solution of the
dual problem (5.9) is known then the solution (mgy, m,, ..., m,) of (5.8) is
explicitly given by means of the partial derivatives of H¥,

G11) m_y =06 H¥pi-1, —p), m=0H¥(pioy, —p) (i=1,...,n).
In [1] these duality results are derived by using the Kuhn-Tucker theory
while in [2] this is done by applying Fenchel’s duality theory.

In numerical tests this procedure for solving (5.8), i.e. for determining

optimal convex Sp;(1)-interpolants, turns out to be very effective (cf. [1] and
also [5], [11]). To the problem

25 — Banach Center t. 22
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(5.12) f,() >min! st (5.3)

occurring in monotone interpolation there also corresponds a dual problem
of the form (5.9). For the corresponding functions H} we refer to [2].

As stated before, with cubic C'-splines monotonicity can always be
preserved, but convexity in general not. Therefore it is of interest to have
some types of extended cubic splines for which convex interpolation is
successful.

53. Lacunary splines

For given integers k, = 3, ..., k, > 3 the spline seLSp;(1; k) defined by

(513) S(X) =Yi-1 +m,-_1 h,~t+(k,-‘t,-—(k,-—1)m,-_1 —’n.')h,'tki—l

+(ki—=2m_ +m— (k=D )ht, 0<r<1,

with x =x;_,+ht (i=1,..., n) is continuously differentiable and satisfies
the interpolation condition (3.4). According to [10], s is convex on [0, 1] if
and only if

(5.14) (ki=Dm_ +m; < kjt;,,  (ki—2)m;_ +2m; = k; 1

and under the assumption (3.11) these inequalities are solvable if k, ..., k,
are sufficiently large.

5.4. Exponential splines

For given parameters 4, >0, ..., 4, >0 denote by ESp(l; A) the set of
exponential C'-splines s which are defined by

(5.15) sespan {1, x, exp(4; x), exp(— 4 %)}, X—; X< X

In [5] necessary and sufficient conditions of type (5.2) are derived under
which se€ESp(1;4) is convex, and they are shown to be satisfied for
sufficiently large 4,, ..., 4, if (3.11) holds. For conditions which ensure the
convexity of seESp(2; 4) see [12], [9].

5.5. Rational splines

Let the spline seRSp;(1; r) be given by
(ti—m)t+(m;_,—7)(1—-1)
L+rt(1—t)

0<t<,

?

(5.16)  s(X) =y, +Tht+ht(l—1)
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with x=x;_,+Mht (i=1,...,n), where r, >0, ...,r, >0 are parameters.
Indeed, s is from C![0, 1], and the interpolation condition (3.4) is valid.
Further, s is convex on [0, 1] if and only if

(517 Q+rom_y+m <G+r)n,  m_ +Q+r)m > G+r)y
i=1,...,n).
For the proof notice that for x;_; < x < x;
(5.18) h(L+rt(1=0) 5" (x) = o) (t—m) + o (1 — 1) (m;_  —1;)
with g(t) = 2—6t—2r;t3. Now,
his"(x;-1) = @(O)(t; —m)+o()(m;_; —1) 2 0
his"(x) =e()(ri—m)+eO)(m_,—-7) 20 (i=1,...,n)

is equivalent to (5.17). Further, (5.19) implies s”(x) >0 for x;_; < x < x;

(i=1,...,n). Indeed, from (5.19) it follows that 7,—m; <0, m;_, —1; <O.
Using ¢(1—1) <0 for 0 <t < 1/2 one gets

(5.19)

e@®(mi—m)+e(l-t)(m_,—7) > {Q(t)—%e(l—t)}
since (1) o(t)—0(0)o(1—¢) = 0. Thus 5" (x) = 0 for 0 <t < 1/2. Analogously
this inequality can be proved for 1/2 <t < 1.

Therefore, the convexity of s eRSp;(1;r) leads to Problem 3 with g«
=6 =02+r)/(3+r) and B; =7y =1/3+r). It is easily shown that the
solvability test (2.9) is fulfilled for sufficiently large parameters r,, ..., r, if
(3.11) is assumed.

The convexity and monotonicity of splines from RSp,;(2;r) are treated
in [4], where sufficient conditions for these properties are given.

5.6. Quintic splines

As seen before, it is essential to have a finite set of conditions formulated in
terms of m; =s'(x;) (i =0, ..., n) which ensure convexity or monotonicity.
For quintic twice differentiable splines s€eSps(2) such conditions, now in
terms of m; =s'(x;) and M; =5"(x;) (i =0, ..., n), become highly nonlinear
(see [20)).

6. Choice of the weights
An example is given to point out the significance of the weights w,, ..., w, in

the objective function (4.1). The broken line (see Fig. 1) represents the
optimal monotone Sp,(1)-spline interpolant belonging to the weights w; =1
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while the solid line gives the one with respect to the weights w; = (1+1?)3. It
is obvious that the latter spline should be preferred (see Fig. 1). In other
examples the same situation has been observed.

Fig. 1
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