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Let T, be the space of trigonometric polynomials of degree at most n, n
=1, 2,3,... We consider 2rn-periodic functions.

DEerFiniTiON 1. The best one-sided approximation of a fixed function
f€L,(0, 2n) in L,(0, 2r) norm by T, is given by

2n
(1) E:(f)p =inf {( { |, () =1, ()P dx)'P; t,(x) = f(x) = t2(x); 1y, t, €T}
0

DEeFINITION 2. Let f be a 2n-periodic bounded measurable function. The
p-th mean modulus of smoothness of order k (k a positive integer) with
parameter 6 > 0 for f is the expression

2n

) o (f, 8), = ([l (f, x, 8)[P dx)\/?
0
where
3) oy (f, x, 8) = sup(|4% £ (); ¢, t +kh e[x—kd/2, x+ké/2]).

For the properties of this modulus in the case p > 1 see [6]. For this
modulus the following results connected with ET(f ), have been obtained in
the case p > 1:

(a) Jackson type direct theorem — see [7],

(b) Stechkin type direct theorem — see [4],

(c) Salem-Stechkin type inverse theorem — see [5].

The purpose of this paper is to obtain direct and inverse theorems for
ET(f), in the case 0 <p <1, using the modulus 7,(f, 9),.

First we prove a lemma concerning the one-sided approximation of the

[99]
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2r-periodic function
B(x) = (r—x)/2, x€[0, 2n).

B appears in the integral representation of a given function together with its
derivatives. In this paper c(p), ¢, (p), ¢, (k, p), ¢'(k, p), ... are constants de-
pending on p and k. ‘

LEmMMA 1. The following estimate holds:
E7(B), < c(p)12(B, n™Y), = ¢, (p)n™ /2.
Proof. We consider the function
4) B(x) =(n—x)/2, xe€[0,2n]

and the following interpolation problems:
(a) Find a trigonometric polynomial ¢, with the following interpoiation
conditions (x, = 2kn/n, k =0,1,2, ..., n—1):

ty (xo) = B(xo),
ty (x1) = B(xy), t1(xy) = B'(xy), ..., 1P~V (x,) = BRI~ D (x),
tl (xn— 2) = E(xn-—z)’ tll (xn—Z) = B’ (xn—Z)s sevy t(12{l/p}— v (xn-Z)
= BN (x, )
tl (xn— 1) = E(xn— l)’ t'l (xn— l) = El(xn— l)’ LXK} t(lzulp}— l)(xn- 1)
= BAUR-D(x .

Here we have 2{1/p}(n—1)+1 conditions and ¢, is of degree {1/p}(n—1)
where {1/p} = min (z an integer, z > 1/p).

(b) Find a trigonometric polynomial ¢, with the following interpolation
conditions (x, = 2kn/n, k=1,2,..., n):

t2(x1) = B(xy), t3(xy) = B'(xy), ..., t§1P 7D (x,) = BRP=D(x,),

1;(x3) = B(x,), th(x3) = B'(xy), ..., t§ /P~ VD(x,) = B@ip- D(x,),
tZ(xn—l) = B-(xu—l)’ t’Z(xn—l) = B-I(xn— 1)7 ceey t(Zzulp}—l)(xn— l)

— §(2:1/p}-1)(xn_l),
t,(x,) = B(x,).

Analogously with 2{1/p}(n—1)+1 conditions t,-is of degree {1/p}(n—1).
If we assume that ¢, crosses the graph of B then ¢, —B will have
2{1/p} (n—1)+2 zeros (counting multiplicities) in the interval [0, 2n). Then
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the trigonometric polynomial

5) [t: (x)=B(x)] =t1(x)—%

is of degree {1/p}(n—1) but has 2 {1/p] (n—1)+1 zeros in the interval (0, 2n).
This is a contradiction. It follows that ¢, (x) = B(x).

Analogously, t,(x) < B(x).
Let now

(6) T(x) =ty (x)—t;(x).
This trigonometric polynomial is uniquely determined by the following
interpolation conditions (x, = 2kn/n, k =0, 1, 2, ..., n):

T(xo) = m,

T(x)) =0, T(x;)=0,..., T#UP=D(x) =0,

T(Xy-1) =0, T'(x,_1) =0, ..., T&UPR"D(x }=0.

We can write it explicitly:

__(sin(nx/2) \}'1/P
@ T =n (nsin(x/Z))
On the other hand,
2= 2 2:!1/p'p
®) JITCordx =1 | (%) dx
sin(nx/2) \271/7:
v j. (n sin (x/2)> dx

’ 1
<21t"(jdx+ IWd )

4r?*!

~

n

and this ends the proof.

THEOREM 1. Let f*~V be absolutely continuous and f® be bounded and
measurable. Then the following estimate holds:

(k)
ET(f), < e 2V e "‘f U3

(If f® is unbounded then EI(f®), = )
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Proof. If k > 1 then the following integral representation holds:
1 2n 1 2n .
f(x) =2 [ f@®)dt+— | B(x—t) f'(t)dt.
o T o
Let Q,(1) 2 f'(t) 2 q.(1), @n€T,, 4,€T,,
2n
EZ (/) = ([ 1Qa(t)—ga(®)Pdt)".
.0
On the other hand, t,(t) > B(t) > t,(¢), t, €T, t,€T,,
2n
ETBy<([lty @)=t dt)""? < ¢y (p)n~ " (see Lemma 1).
0
First we prove the estimate for k = 1; then the estimate for all positive

integers k follows easily.
The following inequality is true (see [3] for r,e€T,, 0 <p, < p; < ):

n 2n
(10) (25 @171 dt)""t < c(py, po) 072 P ( I ()72 dt) 72
0 0
Let us define
2n
P; (9 =~ [ B(x—0)g,()dt,
T o
_ 1 2n 1 2n/
ty () == E[tz(x—t)[f’(t)—q,,(r)]dt+—2; (j)f(t)dt;
P, €T, t, €T,
(ll) 1 2n
P (x) =— [ B(x—1)Q,(t)dt,
.o
. l 2n ) 1 2n
tn (%) = —;gtz(x—t)[Qn(t)—f (t)]dt+—2; gf(t)dt,

PreT, t} eT,.

Obviously P, €T, t, €T,, P} €T, and t,; €T,. We have (see [1])

2n

S O=[P; 9+t (9] == | [BG=0~t2 (=011 O ~a, 0]t >0,
0

1 2n
(12) [Py () +t7 (9] f(x) = . g [B(x—t)—t;(x=1)][Q.(1)—Sf"(1)]dt > 0.
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From (10) and (12) it follows that

2n

(13) ET(f), < (j [Py +1t7)(t)—(Py +1t,) (1)) dr)'/?

1 2x 2x

= 1] [BG=0=t2(e=0][Qu() ~ qu (O] el dx) "

2r 2rx

—(I | [ [t (=)= 12 (x = D] [Qa() - qu (0] def d)"7

2x 2n

< (pn'P ([ [l (x=0)—t2(x—1)]1[Qa (1) — . ()17 dt dx)'/P
00

1/p-1 -
<e@™ o E1(, = "2 E1(1),
By induction,
2
00 B0, < Ly, <L b, < <L r g,

which ends the proof.
Let us formulate a lemma which is used in the proof of a Jackson type
theorem.

LEMMA 2. Let g be a piecewise linear function with points of breaking
linearity 2nk/n, k =0, 1, 2, ..., n. If g is absolutely continuous then

El@,<cn g, n "Dy

Proof. The proof is based on an integral representation for 2rn-periodic
functions (see [1]) and on the inequality

(15) ExM)" <@ )", 0<p<py, %20,
If ¢'(x) = c,, x€(2mk/n, 2n(k+1)/n) k=0,1,..., n—1, then
1 2n n—1 . 2n(k + 1)/n
(16) g(x) =5 fg@wde+ Y = [ B(x—vadr.
0

k=0T  2nk/n

On the other hand, weé construct the polynomials (for the definition of ¢,
and ¢, see Lemma 1)
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1 2=
(17) T,(x) = o fg@adt
0

n—1 C 2n(k + 1)/n

+X 50 1 [iente+1)n (x—1

2xk/n
—(sign(c;) —1)2;(x—1)] dt

= g(x) = ty(x)
2x

1
=£6[g(t)dt

n—1 Cx 2(k+1)%/n .
+ o { [(sign(c)+ 1), (x—1)
k=0 <N 2kx/n

—(sign(c)—1)t, (x—1)] dt.

Using (15), (16), (17) one obtains

2n
(18) ET (@), < ([1T,(x) =ty (x)|P dx)*/?
0

2x 14

dx

n—1 IC I 2(k+ 1)n/n

TR (=0 —ta(x—0)dt

k=0 T 2kn/n

"0

|c P 2n 2(k+ 1)n/n \p
( M | (tl(x—t)—tz(x—t))dtlpdx>

k=0 0 2ks/n

On the other hand, using Taylor’s expansion and Bernstein’s inequality
one gets

2(k+ 1)n/n

19) [ Iti(x=t)—ty(x~1t) dt

2kn/n
( 2k1t) ( 2k1t)
ty[x—t—"— )t [ x—t——
n n

(tl —_ t2)a) <x - 2’(—7[)!—_”1_ dt
n I

dt
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whence (see (15))
2r 2n(k £1)/n

20 | | ((x—0—ty(x—1)de|dx
)

2nrk/n

2 (I1+1)p 1
2x

@mior 1
(/Z n(H. 1)p [(’+ 1)']p) Cy (P) (_! I(tl —tZ) (x)|pdx

(p)

—t2)(x)|P dx.

Finally, by (18), (20) and Lemma 1, we get
2x

n—1 1 1/p
21 El @, < C"(p)(j(1(X)-tz(X))”dx)"" Zolckl"n—,,)

1 1\ -1
< c'"(p) < Z Icklp_p_) < c(p)rl (g’ n )P
x=0 nn

(for Bernstein’s inequality in the case 0 < p <1, see [2]), and this ends the

proof.
Let us note that L,, 0 <p <1, is a metric space with the metric

2=
e(f,9) = [1f(x)—g(x)Pdx.
0

Let us formulate a direct theorem of Jackson’s type for EI(f )p:
THeOREM 2. If f€L,[0, 2n] then the following estimate holds:
ET(f)p C(p)tl(f n l p'

Proof is based on Lemma 2 and a method developed in [7]. One can
construct functions g, (x) and g, (x) (analogously to [7]) such that

g. (0) = f(x) 2 g, (%),
|f () =gz (I < @, (f, x, 8/n),
(22) |f (¥)—g. () < @ (f; x, 8n/n),
w1 (gn » X, 2n/n) < w, (f, x, 127/n),
o, (f, x, 12n/n),

and g, , g, are absolutely continuous piecewise linear functions with points
of breaking linearity 2kn/n, k =0, 1, 2, ..., n (see [7]).

<
w; (g, , x, 2n/n) <
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According to Lemma 2 we have trigonometric polynomials

Ty (X) 290 (x) 2 (%) 2 ga (x) 2 t,- (%)

such that
2x

(23) ET(f)r < V(T ()=t~ (X)) dx
0
2n

2x
< [(Tr (9=07 (I dx+ [ (g7 (9= f () dx

o

2n
+ I(f () —ga ()P dx+ [ (g (X)—t,~ (x))Pdx
V] (4]

< (PIthgn, n™ D+ (f, n7 )+, , n7),]
< e, n™ ),

where we have used the trivial inequality t,(f, 46), < c(4, p)t,(f, ), for
A >0, 6 >0. This ends the proof.
We now prove the following theorem of Stechkin type:

Theorem 3. If f€L,[0, 2n], then
ET(f), < ek, Pre(f, n71),.

Proof. Consider the modified Steklov functions
h

h
(24) Sfin(x)=h7* J‘---_f[451+...+:k)/kf(x)+f(x)]dt1 dt;...dt.
0

0

The fc;llowing properties hold:

@) [fiw(X)—f () < @ (f, x, h),

® ET (), < clk, py 2 UiRe m’"

k

(25) < ¢ (k, P)(h")_k Z T (A?h/kfs n_l)p

i=1
<cytk, Pr(f,n ), if h=n"",
© [ET(N,)? <[EF(wn(f, @, B),]?
+2[ET (fun, ) +2[n (f, B),17.

(a) trivial.
(b) follows from Theorem 1 and the fact that



ONE-SIDED APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS 107

(26) w, (Ag‘h/kfo x, 1/n)
= sup !A?h/k f(tl)_A:‘h/kf(tz)l

ty.tg€lx—1/2n, x+1/2n)

<2 sup 4% f (2)]

z,z+kye[x—1/2n—ih, x+ 1/2n+ih]
< 2w, (f, x, 1/kn+ 2ih/k).
On the other hand,
(27 w(f, I, <ck, I, pu(f,h, >0, h>0,

and the proof is analogous to that in the case p > 1 (see [6]).

(c) follows as in the case p > 1, using the fact that L,[0, 2n] is a metric
space.

Substituting h = n~!, we now obtain from (25)27)

LET (), < &k, P11 (oS, @, 1n), 1n) P+ (f, 1/n),P,
ET(f), < ctk, p[ri (@ (S, @, 1n), 1n),+1,(f, 1/n),].
But we have
(29) 1 (@ (S, @, Un), 1/n), < clk, prc(f, 1/n),

as in the case p> 1 (see [4]), and this ends the proof. |
Now we shall consider the inverse theorem. It is based on Bernstein’s
inequality (see [2]) and the following lemma:

(28)

LemMMA 3. Let t, be a trigonometric polynomial of degree n and suppose 0
<nd < 1. Then the following estimate holds:

T (tm 6)p S C(p) 5k|lt£|k)||p'
Proof. We have

hh h
(30) Aﬁtn(t) = jj...jtf,")(t+vl+ oo +vk)dU1 ...dv,‘,
00 0
whence
k—1.
—~A—
36 8 k§2 )
B1) @l X, )< ([ [ PG+, +0,+ ... +0)ldv,do, ... do,
0 0 —kd/2

)
S}-.-I [ f’: i f 'tik+il+...+lk)(x)'
0 =0

0 —k§/21;=01,=0

Iy 12 k-1, &
Uy U3 ... U=y W]

SRR

dv, ...dy,
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it = k+ly+...+1l) k k1
<Y .Y e "(x)l(§>
I1=0 k=0

6ll+1612+1 5lk+l

LA+ G+ )

Taking the L, norm in (31) and (15) and using Bernstein’s inequality (see [2])
in the case 0 <p <1 we get

-] @ 2r
(32) [0t 0,17 < Y . 3 [l VTR (P dx

Lh=0 =00 )
(I + 1) (g +1)p oI5+ 1) (I + 1)
(k)“ PootT P TR g P

“\2 [+ DML+ D! b+ DI

2x
< P (k, p) & [ |tP (x)Pdx.
0

Using a method developed by V. Popov we obtain the following inverse
theorem:

THeorReM 4. For feL,[0, 2n] we have the following estimate:

c(k, i o=
w(fin™Y), < (,,ap)(Z (s+ 1)~ 1 [E] (f),1°)".
s=0 ,
Proof. Just as in the tase p =1 we get for n =2 (6 > 0)
50

(33) T (f, )L < 4P Y 2 [ET_ ()]
i=1

+LE5 (f),0°+c(k, p) [(6n)?+ 11 [ET (), 1°.

On the other hand, there exists a constant c(k, p) such that
2i
(34) 2*<ctk,p) Y  (s+DTL i=1,2,..., 5.
s=21"144

Now as in the case p>1 (see [5]), substituting 6 =n~! in (33) and
using (34) we get the assertion of Theorem 4.
_ From Theorem 3 and Theorem 4 the following characterization of
ET(f), by the average modulus of smoothness 7,(f, d), is obtained:

THeOREM 5. Let f €L,[0, 2n]. Then
EX(f)y =00 =n(f,8),=009, k>a.
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Proof. Let ET(f), = O(n™®. Then from Theorem 4 it follows that

(35) wW(f,nY), < c(’;; PL(S (54 1)1 s~=8)1p 4 O (n")
s=1
¢1 (k, p) "t (k-ayp—1 3.\1/ o ;
< n,‘(b[v Pldp)'’P+0(n7"
=%’—”—)nk-“+0(n"*) = 0(n%.
Now let 7,(f, 4), = 0(6%). Then from Theorem 3 it follows that
(36) ET(f),=0(m™9), n-o.

Nortk. After this paper was written the author received a preprint of R.
Taberski’s paper [9], where independently of the present paper and using
another method Theorem 4 in the case k = 1 and Theorem 2 are proved, but
Taberski’s method is inapplicable in the case k > 1.

For example, from Theorem 5 one may deduce that the optimal order of
one-sided approximation of B is O(n~ /7).

Now we will only sketch how the one-sided approximation can be
applied in the classical case. We give another proof of the following theorem:

THeoreM (see [1]). If f €L, then the following estimate holds:
E7 (), S c(Poy(f, n7Y),.

Proof. Using Whitney’s theorem we can find a piecewise constant
function with points of breaking polynomiality 2kn/n, k =0,1,...,n—-1,
such that

2n
(f 1S ) =S, (0P dx)!"? < c(pyo, (f, n™1),.
0

By Theorem 2 we can find S, (x) > S,(x), S, €T, and S, (x) < S,(x),
S, €T, such that '

2z
([ (Sx =S, ()P dx)'? < ¢y (p)T1(Smn ™Y,
o

< C(p)wl (sm n- l)p;

2x
( I (Sn (x)_sn— (x))p dx)llp < Wy (Sm n- l)p'

0

On the other hand,
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¢ 2n
@} (S, 171, S @F(f, 171,42 [1S,()— f (0|Pdx

0
<c(pof(f,n™ ),
2n 2n 2n
FIf()=87 (Pdx < [1f (x)=Sa()|Pdx+ [|S,(x)—Sy (x)|Pdx
0 V] 0

< cP(pof(f, n™1),.

It is obvious that this method can be used for obtaining the classical
Stechkin type theorem for approximation by trigonometric polynomials in
the case 0 < p < 1. Another proof of this theorem can be found in [8].
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