ONE-SIDED APPROXIMATION BY TRIGONOMETRIC POLYNOMIALS IN L_p -NORM, 0

D. P. DRYANOV

Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Let T_n be the space of trigonometric polynomials of degree at most n, n = 1, 2, 3, ... We consider 2π -periodic functions.

Definition 1. The best one-sided approximation of a fixed function $f \in L_p(0, 2\pi)$ in $L_p(0, 2\pi)$ norm by T_n is given by

(1)
$$\tilde{E}_n^T(f)_p = \inf \left\{ \left(\int_0^{2\pi} |t_1(x) - t_2(x)|^p dx \right)^{1/p}; \ t_1(x) \ge f(x) \ge t_2(x); \ t_1, \ t_2 \in T_n \right\}.$$

Definition 2. Let f be a 2π -periodic bounded measurable function. The p-th mean modulus of smoothness of order k (k a positive integer) with parameter $\delta > 0$ for f is the expression

(2)
$$\tau_k(f,\delta)_p = \left(\int\limits_0^{2\pi} |\omega_k(f,x,\delta)|^p dx\right)^{1/p}$$

where

(3)
$$\omega_k(f, x, \delta) = \sup(|\Delta_h^k f(t)|; t, t + kh \in [x - k\delta/2, x + k\delta/2]).$$

For the properties of this modulus in the case $p \ge 1$ see [6]. For this modulus the following results connected with $\tilde{E}_n^T(f)_p$ have been obtained in the case $p \ge 1$:

- (a) Jackson type direct theorem see [7],
- (b) Stechkin type direct theorem see [4],
- (c) Salem-Stechkin type inverse theorem see [5].

The purpose of this paper is to obtain direct and inverse theorems for $\tilde{E}_n^T(f)_p$ in the case $0 , using the modulus <math>\tau_k(f, \delta)_p$.

First we prove a lemma concerning the one-sided approximation of the

 2π -periodic function

$$B(x) = (\pi - x)/2, \quad x \in [0, 2\pi).$$

B appears in the integral representation of a given function together with its derivatives. In this paper c(p), $c_1(p)$, $c_1(k, p)$, c'(k, p), ... are constants depending on p and k.

LEMMA 1. The following estimate holds:

$$\tilde{E}_n^T(B)_p \leqslant c(p)\tau_2(B, n^{-1})_p = c_1(p)n^{-1/p}.$$

Proof. We consider the function

(4)
$$\bar{B}(x) = (\pi - x)/2, \quad x \in [0, 2\pi]$$

and the following interpolation problems:

(a) Find a trigonometric polynomial t_1 with the following interpolation conditions $(x_k = 2k\pi/n, k = 0, 1, 2, ..., n-1)$:

Here we have $2\{1/p\}(n-1)+1$ conditions and t_1 is of degree $\{1/p\}(n-1)$ where $\{1/p\}=\min (z \text{ an integer}, z \ge 1/p)$.

(b) Find a trigonometric polynomial t_2 with the following interpolation conditions $(x_k = 2k\pi/n, k = 1, 2, ..., n)$:

Analogously with $2\{1/p\}(n-1)+1$ conditions t_2 is of degree $\{1/p\}(n-1)$. If we assume that t_1 crosses the graph of B then t_1-B will have $2\{1/p\}(n-1)+2$ zeros (counting multiplicities) in the interval $[0, 2\pi)$. Then the trigonometric polynomial

(5)
$$[t_1(x) - B(x)]' = t_1'(x) - \frac{1}{2}$$

is of degree $\{1/p\}(n-1)$ but has $2\{1/p\}(n-1)+1$ zeros in the interval $(0, 2\pi)$. This is a contradiction. It follows that $t_1(x) \ge B(x)$.

Analogously, $t_2(x) \leq B(x)$.

Let now

(6)
$$T(x) = t_1(x) - t_2(x).$$

This trigonometric polynomial is uniquely determined by the following interpolation conditions $(x_k = 2k\pi/n, k = 0, 1, 2, ..., n)$:

We can write it explicitly:

(7)
$$T(x) = \pi \left(\frac{\sin(nx/2)}{n\sin(x/2)} \right)^{2 \cdot 1/p}$$

On the other hand,

(8)
$$\int_{0}^{2\pi} |T(x)|^{p} dx = \pi^{p} \int_{0}^{2\pi} \left(\frac{\sin(nx/2)}{n\sin(x/2)} \right)^{2 + 1/p + p} dx$$

$$= 2\pi^{p} \int_{0}^{\pi} \left(\frac{\sin(nx/2)}{n\sin(x/2)} \right)^{2p + 1/p + p} dx$$

$$\leq 2\pi^{p} \left(\int_{0}^{\pi/n} dx + \int_{\pi/n}^{\pi} \frac{1}{(nx/\pi)^{2p + 1/p + p}} dx \right)$$

$$\leq \frac{4\pi^{p+1}}{n}$$

and this ends the proof.

THEOREM 1. Let $f^{(k-1)}$ be absolutely continuous and $f^{(k)}$ be bounded and measurable. Then the following estimate holds:

$$\tilde{E}_n^T(f)_p \leqslant [c(p)]^k \frac{\tilde{E}_n^T(f^{(k)})_p}{r^k}.$$

(If $f^{(k)}$ is unbounded then $\tilde{E}_n^T(f^{(k)})_n = \infty$.)

102 D. P. DRYANOV

Proof. If $k \ge 1$ then the following integral representation holds:

$$f(x) = \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt + \frac{1}{\pi} \int_{0}^{2\pi} B(x-t) f'(t) dt.$$

Let $Q_n(t) \ge f'(t) \ge q_n(t)$, $Q_n \in T_n$, $q_n \in T_n$,

$$\widetilde{E}_n^T(f')_p = \left(\int\limits_0^{2\pi} |Q_n(t) - q_n(t)|^p dt\right)^{1/p}.$$

On the other hand, $t_1(t) \ge B(t) \ge t_2(t)$, $t_1 \in T_n$, $t_2 \in T_n$

$$\widetilde{E}_n^T(B) \le \left(\int_0^{2\pi} |t_1(t) - t_2(t)|^p dt\right)^{1/p} \le c_1(p) n^{-1/p}$$
 (see Lemma 1).

First we prove the estimate for k = 1; then the estimate for all positive integers k follows easily.

The following inequality is true (see [3] for $r_n \in T_n$, $0 < p_2 \le p_1 \le \infty$):

(10)
$$\left(\int_{0}^{2\pi} |r_{n}(t)|^{p_{1}} dt \right)^{1/p_{1}} \leq c \left(p_{1}, p_{2} \right) n^{1/p_{2} - 1/p_{1}} \left(\int_{0}^{2\pi} |r_{n}(t)|^{p_{2}} dt \right)^{1/p_{2}}.$$

Let us define

$$P_{n}^{-}(x) = \frac{1}{\pi} \int_{0}^{2\pi} B(x-t) q_{n}(t) dt,$$

$$t_{n}^{-}(x) = \frac{1}{\pi} \int_{0}^{2\pi} t_{2}(x-t) [f'(t) - q_{n}(t)] dt + \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt;$$

$$P_{n}^{-} \in T_{n}, \ t_{n}^{-} \in T_{n},$$

(11)
$$P_{n}^{+}(x) = \frac{1}{\pi} \int_{0}^{2\pi} B(x-t) Q_{n}(t) dt,$$

$$t_{n}^{+}(x) = -\frac{1}{\pi} \int_{0}^{2\pi} t_{2}(x-t) \left[Q_{n}(t) - f'(t) \right] dt + \frac{1}{2\pi} \int_{0}^{2\pi} f(t) dt;$$

$$P_{n}^{+} \in T_{n}, \ t_{n}^{+} \in T_{n}.$$

Obviously $P_n^- \in T_n$; $t_n^- \in T_n$, $P_n^+ \in T_n$ and $t_n^+ \in T_n$. We have (see [1])

$$f(x) - [P_n^-(x) + t_n^-(x)] = \frac{1}{\pi} \int_0^{2\pi} [B(x - t) - t_2(x - t)] [f'(t) - q_n(t)] dt \ge 0,$$

(12)
$$[P_n^+(x)+t_n^+(x)]-f(x)=\frac{1}{\pi}\int_0^{2\pi}[B(x-t)-t_2(x-t)][Q_n(t)-f'(t)]dt \geq 0.$$

From (10) and (12) it follows that

$$(13) \ \tilde{E}_{n}^{T}(f)_{p} \leq \Big(\int_{0}^{2\pi} \left[(P_{n}^{+} + t_{n}^{+})(t) - (P_{n}^{-} + t_{n}^{-})(t) \right]^{p} dt \Big)^{1/p}$$

$$= \frac{1}{\pi} \Big(\int_{0}^{2\pi} \int_{0}^{2\pi} \left[B(x-t) - t_{2}(x-t) \right] \left[Q_{n}(t) - q_{n}(t) \right] dt \Big|^{p} dx \Big)^{1/p}$$

$$\leq \frac{1}{\pi} \Big(\int_{0}^{2\pi} \int_{0}^{2\pi} \left[t_{1}(x-t) - t_{2}(x-t) \right] \left[Q_{n}(t) - q_{n}(t) \right] dt \Big|^{p} dx \Big)^{1/p}$$

$$\leq c_{1}(p) n^{1/p-1} \Big(\int_{0}^{2\pi} \int_{0}^{2\pi} \left[t_{1}(x-t) - t_{2}(x-t) \right] \left[Q_{n}(t) - q_{n}(t) \right]^{p} dt dx \Big)^{1/p}$$

$$\leq c(p) \frac{n^{1/p-1}}{n^{1/p}} \tilde{E}_{n}^{T}(f')_{p} = \frac{c(p)}{n} \tilde{E}_{n}^{T}(f')_{p}.$$

By induction,

$$(14) \quad \widetilde{E}_n^T(f)_p \leqslant \frac{c(p)}{n} \widetilde{E}_n^T(f')_p \leqslant \frac{\left[c(p)\right]^2}{n^2} \widetilde{E}_n^T(f'')_p \leqslant \ldots \leqslant \frac{\left[c(p)\right]^k}{n^k} \widetilde{E}_n^T(f^{(k)})_p,$$

which ends the proof.

Let us formulate a lemma which is used in the proof of a Jackson type theorem.

LEMMA 2. Let g be a piecewise linear function with points of breaking linearity $2\pi k/n$, k = 0, 1, 2, ..., n. If g is absolutely continuous then

$$\tilde{E}_n^T(g)_n \leqslant c(p)\,\tau_1(g,\,n^{-1})_n.$$

Proof. The proof is based on an integral representation for 2π -periodic functions (see [1]) and on the inequality

(15)
$$(\sum x_l^{p_1})^{1/p_1} \leqslant (\sum x_l^{p_2})^{1/p_2}, \quad 0 < p_2 \leqslant p_1, \ x_l \geqslant 0.$$
If $g'(x) = c_k, \ x \in (2\pi k/n, 2\pi (k+1)/n), \ k = 0, 1, ..., n-1, \text{ then}$

(16)
$$g(x) = \frac{1}{2\pi} \int_{0}^{2\pi} g(t) dt + \sum_{k=0}^{n-1} \frac{c_k}{\pi} \int_{2\pi k/n}^{2\pi(k+1)/n} B(x-t) dt.$$

On the other hand, we construct the polynomials (for the definition of t_1 and t_2 see Lemma 1)

104

(17)
$$T_{g}(x) = \frac{1}{2\pi} \int_{0}^{2\pi} g(t) dt$$

$$+ \sum_{k=0}^{n-1} \frac{c_{k}}{2\pi} \int_{2\pi k/n}^{2\pi (k+1)/n} \left[\left(\operatorname{sign}(c_{k}) + 1 \right) t_{1}(x-t) \right] - \left(\operatorname{sign}(c_{k}) - 1 \right) t_{2}(x-t) dt$$

$$\geq g(x) \geq t_{g}(x)$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} g(t) dt$$

$$+ \sum_{k=0}^{n-1} \frac{c_{k}}{2\pi} \int_{2k\pi/n}^{2(k+1)\pi/n} \left[\left(\operatorname{sign}(c_{k}) + 1 \right) t_{2}(x-t) \right] - \left(\operatorname{sign}(c_{k}) - 1 \right) t_{1}(x-t) dt.$$

Using (15), (16), (17) one obtains

(18)
$$\widetilde{E}_{n}^{T}(g)_{p} \leq \left(\int_{0}^{2\pi} |T_{g}(x) - t_{g}(x)|^{p} dx\right)^{1/p}$$

$$= \int_{0}^{2\pi} \left|\sum_{k=0}^{n-1} \frac{|c_{k}|}{\pi} \int_{2k\pi/n}^{2(k+1)\pi/n} \left(t_{1}(x-t) - t_{2}(x-t)\right) dt\right|^{p} dx$$

$$\leq \left(\sum_{k=0}^{n-1} \frac{|c_{k}|^{p}}{\pi^{p}} \int_{0}^{2\pi} \left|\int_{2k\pi/n}^{2(k+1)\pi/n} \left(t_{1}(x-t) - t_{2}(x-t)\right) dt\right|^{p} dx\right)^{1/p}$$

On the other hand, using Taylor's expansion and Bernstein's inequality one gets

$$(19) \int_{2k\pi/n}^{2(k+1)\pi/n} |t_1(x-t)-t_2(x-t)| dt$$

$$= \int_{0}^{2\pi/n} \left| t_1 \left(x - t - \frac{2k\pi}{n} \right) - t_2 \left(x - t - \frac{2k\pi}{n} \right) \right| dt$$

$$= \int_{0}^{2\pi/n} \sum_{l=0}^{\infty} (t_1 - t_2)^{(l)} \left(x - \frac{2k\pi}{n} \right) \frac{(-t)^l}{l!} dt$$

$$\leq \sum_{l=0}^{\infty} \left(\frac{2\pi}{n} \right)^{l+1} \frac{1}{(l+1)!} \left| (t_1 - t_2)^{(l)} \left(x - \frac{2k\pi}{n} \right) \right|,$$

whence (see (15))

$$(20) \int_{0}^{2\pi} \int_{2\pi k/n}^{2\pi (k \pm 1)/n} (t_{1}(x-t) - t_{2}(x-t)) dt |^{p} dx$$

$$\leq \sum_{l=0}^{\infty} \left(\frac{2\pi}{n}\right)^{(l+1)p} \frac{1}{[(l+1)!]^{p}} \int_{0}^{2\pi} |(t_{1} - t_{2})^{(l)}(x)|^{p} dx$$

$$\leq \left(\sum_{l=0}^{\infty} \frac{(2\pi)^{(l+1)p}}{n^{(l+1)p}} n^{lp} \frac{1}{[(l+1)!]^{p}}\right) c_{1}(p) \int_{0}^{2\pi} |(t_{1} - t_{2})(x)|^{p} dx$$

$$= \frac{c'(p)}{n^{p}} \int_{0}^{2\pi} |(t_{1} - t_{2})(x)|^{p} dx.$$

Finally, by (18), (20) and Lemma 1, we get

(21)
$$\widetilde{E}_{n}^{T}(g)_{p} \leq c''(p) \left(\int_{0}^{2\pi} (t_{1}(x) - t_{2}(x))^{p} dx \right)^{1/p} \left(\sum_{k=0}^{n-1} |c_{k}|^{p} \frac{1}{n^{p}} \right)^{1/p}$$

$$\leq c'''(p) \left(\sum_{k=0}^{n-1} |c_{k}|^{p} \frac{1}{n^{p}} \frac{1}{n} \right)^{1/p} \leq c(p) \tau_{1}(g, n^{-1})_{p}$$

(for Bernstein's inequality in the case 0 , see [2]), and this ends the proof.

Let us note that L_p , 0 , is a metric space with the metric

$$\varrho(f, g) = \int_{0}^{2\pi} |f(x) - g(x)|^{p} dx.$$

Let us formulate a direct theorem of Jackson's type for $\tilde{E}_n^T(f)_p$:

THEOREM 2. If $f \in L_p[0, 2\pi]$ then the following estimate holds:

$$\tilde{E}_n^T(f)_p \leqslant c(p)\tau_1(f, n^{-1})_p.$$

Proof is based on Lemma 2 and a method developed in [7]. One can construct functions $g_n^+(x)$ and $g_n^-(x)$ (analogously to [7]) such that

$$g_{n}^{+}(x) \geq f(x) \geq g_{n}^{-}(x),$$

$$|f(x) - g_{n}^{+}(x)| \leq \omega_{1}(f, x, 8\pi/n),$$

$$|f(x) - g_{n}^{-}(x)| \leq \omega_{1}(f, x, 8\pi/n),$$

$$\omega_{1}(g_{n}^{+}, x, 2\pi/n) \leq \omega_{1}(f, x, 12\pi/n),$$

$$\omega_{1}(g_{n}^{-}, x, 2\pi/n) \leq \omega_{1}(f, x, 12\pi/n),$$

and g_n^+ , g_n^- are absolutely continuous piecewise linear functions with points of breaking linearity $2k\pi/n$, k=0, 1, 2, ..., n (see [7]).

According to Lemma 2 we have trigonometric polynomials

$$T_{g_n^+}(x) \ge g_n^+(x) \ge f(x) \ge g_n^-(x) \ge t_{g_n^-}(x)$$

such that

(23)
$$\tilde{E}_{n}^{T}(f)_{p}^{p} \leqslant \int_{0}^{2\pi} (T_{g_{n}^{+}}(x) - t_{g_{n}^{-}}(x))^{p} dx$$

$$\leq \int_{0}^{2\pi} (T_{g_{n}^{+}}(x) - g_{n}^{+}(x))^{p} dx + \int_{0}^{2\pi} (g_{n}^{+}(x) - f(x))^{p} dx$$

$$+ \int_{0}^{2\pi} (f(x) - g_{n}^{-}(x))^{p} dx + \int_{0}^{2\pi} (g_{n}^{-}(x) - t_{g_{n}^{-}}(x))^{p} dx$$

$$\leq c_{1}(p) \left[\tau_{1}^{p} (g_{n}^{+}, n^{-1})_{p} + \tau_{1}^{p} (f, n^{-1})_{p} + \tau_{1}^{p} (g_{n}^{-}, n^{-1})_{p} \right]$$

$$\leq c(p) \tau_{1}^{p} (f, n^{-1})_{p},$$

where we have used the trivial inequality $\tau_1(f, \lambda \delta)_p \le c(\lambda, p)\tau_1(f, \delta)_p$ for $\lambda > 0$, $\delta > 0$. This ends the proof.

We now prove the following theorem of Stechkin type:

THEOREM 3. If $f \in L_n[0, 2\pi]$, then

$$\tilde{E}_n^T(f)_p \leqslant c(k, p) \tau_k(f, n^{-1})_p.$$

Proof. Consider the modified Steklov functions

(24)
$$f_{k,h}(x) = h^{-k} \int_{0}^{h} \dots \int_{0}^{h} \left[\Delta_{(t_1 + \dots + t_k)/k}^{k} f(x) + f(x) \right] dt_1 dt_2 \dots dt_k.$$

The following properties hold:

(a)
$$|f_{k,h}(x) - f(x)| \le \omega_k(f, x, h)$$
,

(b)
$$\tilde{E}_{n}^{T}(f_{k,h})_{p} \leq c(k, p) \frac{\tilde{E}_{n}^{T}(f_{k,h}^{(k)})_{p}}{n^{k}}$$

(25)
$$\leq c_1(k, p)(hn)^{-k} \sum_{i=1}^k \tau_1(\Delta_{ih/k}^k f, n^{-1})_p$$

$$\leq c_2(k, p)\tau_k(f, n^{-1})_p \text{ if } h = n^{-1},$$

(c)
$$\left[\tilde{E}_n^T(f)_p\right]^p \leq \left[\tilde{E}_n^T(\omega_k(f, \bullet, h))_p\right]^p + 2\left[\tilde{E}_n^T(f_{k,h})_p\right]^p + 2\left[\tau_k(f, h)_p\right]^p.$$

- (a) trivial.
- (b) follows from Theorem 1 and the fact that

(26)
$$\omega_{1} \left(\Delta_{ih/k}^{k} f, x, 1/n \right) = \sup_{t_{1}, t_{2} \in \{x-1/2n, x+1/2n\}} |\Delta_{ih/k}^{k} f(t_{1}) - \Delta_{ih/k}^{k} f(t_{2})|$$

$$\leq 2 \sup_{z, z+ky \in \{x-1/2n-ih, x+1/2n+ih\}} |\Delta_{y}^{k} f(z)|$$

$$\leq 2\omega_{k} (f, x, 1/kn + 2ih/k).$$

On the other hand,

(27)
$$\tau_{k}(f, lh)_{p} \leq c(k, l, p)\tau_{k}(f, h)_{p}, \quad l > 0, h > 0,$$

and the proof is analogous to that in the case $p \ge 1$ (see [6]).

(c) follows as in the case $p \ge 1$, using the fact that $L_p[0, 2\pi]$ is a metric space.

Substituting $h = n^{-1}$, we now obtain from (25)–(27)

(28)
$$[\tilde{E}_{n}^{T}(f)_{p}]^{p} \leq c_{1}^{p}(k, p) [\tau_{1}(\omega_{k}(f, \bullet, 1/n), 1/n)_{p}]^{p} + [\tau_{k}(f, 1/n)_{p}]^{p},$$

$$\tilde{E}_{n}^{T}(f)_{p} \leq c(k, p) [\tau_{1}(\omega_{k}(f, \bullet, 1/n), 1/n)_{p} + \tau_{k}(f, 1/n)_{p}].$$

But we have

(29)
$$\tau_1(\omega_k(f, \bullet, 1/n), 1/n)_p \le c(k, p)\tau_k(f, 1/n)_p$$

as in the case $p \ge 1$ (see [4]), and this ends the proof.

Now we shall consider the inverse theorem. It is based on Bernstein's inequality (see [2]) and the following lemma:

LEMMA 3. Let t_n be a trigonometric polynomial of degree n and suppose $0 < n\delta \le 1$. Then the following estimate holds:

$$\tau_k(t_n, \delta)_p \leqslant c(p) \delta^k ||t_n^{(k)}||_p.$$

Proof. We have

(30)
$$\Delta_h^k t_n(t) = \int_0^h \int_0^h \dots \int_0^h t_n^{(k)} (t + v_1 + \dots + v_k) dv_1 \dots dv_k,$$

whence

(31)
$$\omega_{k}(t_{n}, x, \delta) \leq \int_{0}^{\delta} \int_{0}^{\delta} \dots \int_{0}^{\delta} \int_{-k\delta/2}^{k\delta/2} |t_{n}^{(k)}(x+v_{1}+v_{2}+\dots+v_{k})| dv_{1} dv_{2} \dots dv_{k}$$

$$\leq \int_{0}^{\delta} \dots \int_{0}^{\delta} \int_{-k\delta/2}^{\delta} \sum_{l_{1}=0}^{\infty} \sum_{l_{2}=0}^{\infty} \dots \sum_{l_{k}=0}^{\infty} |t_{n}^{(k+l_{1}+\dots+l_{k})}(x)|$$

$$\times \frac{v_{1}^{l_{1}} v_{2}^{l_{2}} \dots v_{k-1}^{l_{k}-1} |v_{k}|^{l_{k}}}{l_{1}! l_{2}! \dots l_{k-1}! l_{k}!} dv_{1} \dots dv_{k}$$

$$\leq \sum_{l_1=0}^{\infty} \dots \sum_{l_k=0}^{\infty} |t_n^{(k+l_1+\dots+l_k)}(x)| \left(\frac{k}{2}\right)^{l_k+1} \\ \times \frac{\delta^{l_1+1} \delta^{l_2+1} \dots \delta^{l_k+1}}{(l_1+1)! (l_2+1)! \dots (l_k+1)!}.$$

Taking the L_p norm in (31) and (15) and using Bernstein's inequality (see [2]) in the case 0 we get

$$[\tau_{k}(t_{n}, \delta)_{p}]^{p} \leq \sum_{l_{1}=0}^{\infty} \dots \sum_{l_{k}=0}^{\infty} \int_{0}^{2\pi} |t_{n}^{(k+l_{1}+\dots+l_{k})}(x)|^{p} dx$$

$$\times \left(\frac{k}{2}\right)^{(l_{k}+1)p} \frac{\delta^{(l_{1}+1)p} \delta^{(l_{2}+1)p} \dots \delta^{(l_{k}+1)p}}{[(l_{1}+1)!(l_{2}+1)!\dots(l_{k}+1)!]^{p}}$$

$$\leq c^{p}(k, p) \delta^{kp} \int_{0}^{2\pi} |t_{n}^{(k)}(x)|^{p} dx.$$

Using a method developed by V. Popov we obtain the following inverse theorem:

THEOREM 4. For $f \in L_p[0, 2\pi]$ we have the following estimate:

$$\tau_{k}(f, n^{-1})_{p} \leq \frac{c(k, p)}{n^{k}} \left(\sum_{s=0}^{n} (s+1)^{kp-1} \left[\widetilde{E}_{s}^{T}(f)_{p} \right]^{p} \right)^{1/p}.$$

Proof. Just as in the case $p \ge 1$ we get for $n = 2^{s_0}$ $(\delta > 0)$

(33)
$$\tau_{k}(f, \delta)_{p}^{p} \leq 4^{p} \delta^{kp} \sum_{i=1}^{s_{0}} 2^{ikp} \left[\tilde{E}_{2^{i-1}}^{T}(f)_{p} \right]^{p} + \left[E_{0}^{T}(f)_{p} \right]^{p} + c(k, p) \left[(\delta n)^{p} + 1 \right] \left[E_{n}^{T}(f)_{p} \right]^{p}.$$

On the other hand, there exists a constant c(k, p) such that

(34)
$$2^{ikp} \le c(k, p) \sum_{s=2^{i-1}+1}^{2^i} (s+1)^{kp-1}, \quad i=1, 2, ..., s_0.$$

Now as in the case $p \ge 1$ (see [5]), substituting $\delta = n^{-1}$ in (33) and using (34) we get the assertion of Theorem 4.

From Theorem 3 and Theorem 4 the following characterization of $\tilde{E}_n^T(f)_p$ by the average modulus of smoothness $\tau_k(f, \delta)_p$ is obtained:

THEOREM 5. Let
$$f \in L_p[0, 2\pi]$$
. Then

$$\tilde{E}_n^T(f)_p = O(n^{-\alpha}) \Leftrightarrow \tau_k(f, \delta)_p = O(\delta^{\alpha}), \quad k > \alpha.$$

Proof. Let $\tilde{E}_n^T(f)_p = O(n^{-\alpha})$. Then from Theorem 4 it follows that

(35)
$$\tau_{k}(f, n^{-1})_{p} \leq \frac{c(k, p)}{n^{k}} \left(\sum_{s=1}^{n} (s+1)^{kp-1} s^{-\alpha p} \right)^{1/p} + O(n^{-k})$$
$$\leq \frac{c_{1}(k, p)}{n^{k}} \left(\int_{0}^{n+1} v^{(k-\alpha)p-1} dv \right)^{1/p} + O(n^{-k})$$
$$= \frac{c_{2}(k, p)}{n^{k}} n^{k-\alpha} + O(n^{-k}) = O(n^{-\alpha}).$$

Now let $\tau_k(f, \delta)_p = O(\delta^a)$. Then from Theorem 3 it follows that

(36)
$$\tilde{E}_n^T(f)_p = O(n^{-\alpha}), \quad n \to \infty.$$

Note. After this paper was written the author received a preprint of R. Taberski's paper [9], where independently of the present paper and using another method Theorem 4 in the case k = 1 and Theorem 2 are proved, but Taberski's method is inapplicable in the case k > 1.

For example, from Theorem 5 one may deduce that the optimal order of one-sided approximation of B is $O(n^{-1/p})$.

Now we will only sketch how the one-sided approximation can be applied in the classical case. We give another proof of the following theorem:

THEOREM (see [1]). If $f \in L_p$ then the following estimate holds:

$$E_n^T(f)_p \leq c(p)\omega_1(f, n^{-1})_p$$

Proof. Using Whitney's theorem we can find a piecewise constant function with points of breaking polynomiality $2k\pi/n$, $k=0,1,\ldots,n-1$, such that

$$\left(\int_{0}^{2\pi} |f(x) - S_{n}(x)|^{p} dx\right)^{1/p} \leq c(p) \omega_{1}(f, n^{-1})_{p}.$$

By Theorem 2 we can find $S_n^+(x) \ge S_n(x)$, $S_n^+ \in T_n$ and $S_n^-(x) \le S_n(x)$, $S_n^- \in T_n$ such that

$$\left(\int_{0}^{2\pi} (S_{n}^{+}(x) - S_{n}(x))^{p} dx\right)^{1/p} \leq c_{1}(p) \tau_{1}(S_{n}, n^{-1})_{p}
\leq c(p) \omega_{1}(S_{n}, n^{-1})_{p};
\left(\int_{0}^{2\pi} (S_{n}(x) - S_{n}^{-}(x))^{p} dx\right)^{1/p} \leq \omega_{1}(S_{n}, n^{-1})_{p}.$$

On the other hand,

$$\omega_{1}^{p}(S_{n}, n^{-1})_{p} \leq \omega_{1}^{p}(f, n^{-1})_{p} + 2 \int_{0}^{2\pi} |S_{n}(x) - f(x)|^{p} dx$$

$$\leq c(p) \omega_{1}^{p}(f, n^{-1})_{p},$$

$$\int_{0}^{2\pi} |f(x) - S_{n}^{+}(x)|^{p} dx \leq \int_{0}^{2\pi} |f(x) - S_{n}(x)|^{p} dx + \int_{0}^{2\pi} |S_{n}(x) - S_{n}^{+}(x)|^{p} dx$$

$$\leq c^{p}(p) \omega_{1}^{p}(f, n^{-1})_{p}.$$

It is obvious that this method can be used for obtaining the classical Stechkin type theorem for approximation by trigonometric polynomials in the case 0 . Another proof of this theorem can be found in [8].

References

- [1] V. Ivanov, Mat. Zametki 18 (5) (1975), 641-658.
- [2] P. Oswald, Izv. Wyssh. Uchebn. Zaved. Matematika 170 (1976), 65-75 (in Russian).
- [3] J. Peetre, Compt. Rend. Acad. Sci. Paris 277 (1973), 947-949.
- [4] V. Popov and A. Andreev, Compt. Rend. Acad. Bulgare, Sci., 31 (2) (1978), 151.
- [5] V. Popov, Compt. Rend. Acad. Bulgare, Sci., 30 (11) (1978), 1529.
- [6] Bl. Sendov and V. Popov, Bulgar. Math. Monographs, vol. 4, Sofia 1983.
- [7] Bl. Sendov, V. Popov and A. Andreev, Compt. Rend. Acad. Bulgare, Sci., 30 (11) (1978), 1533
- [8] E. Storozhenko, P. Oswald, Sibirsk. Mat. Zh. 19 (4), (1978).
- [9] R. Taberski, Math. Nachr. 123 (1985), 39-46.

Presented to the Semester Approximation and Function Spaces February 27-May 27, 1986