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Let ¥ =d/dx and let
LD =T"+a,. 9" ' +...+a;, P+a,

be an arbitrary nth order linear differential operator with constant real
coefficients. Let p, denote the characteristic polynomial of .#,(%) and T,
={ty, ..., t,} the set of its zeros, with each zero repeated according to its
multiplicity. Let meN, h = n/m, and denote by 4, = {vh: veZ} the uniform
mesh on the whole real line with step h.

DeriNiTION. A function s, satisfying the conditions:

1) 5,eC""2(R),

2) Z.(D)sa(x) =0 for xe(jh, (j+1)h) (je2),
is called an #-spline corresponding to the operator ¥,(2) with knots at the
points of 4.

The set of all #-splines corresponding to .Z,(7) with knots at the
points of 4, will be denoted by S(,, 4,)-

Note that for &,(7) = «", .¥-splines are polynomial splines. Surveys of
results concerning polynomial splines can be found eg. in [6], [12], [17].

It is remarkable that an .#-spline corresponding to an arbitrary linear
differential operator .#,(%) with constant coefficients is not, in general, a
Chebyshev spline (for the definition see e.g. [4]), since the basis of the space
of solutions of the equation #,(2)f =0 is not a Chebyshev system on R.
However, for the operators whose characteristic polynomials have only real
roots, the corresponding .#-splines are in fact Chebyshev. Such splines were
studied in [8], [13] and in other papers.

We define

K (&) =1{f: fV locally absolutely continuous,
Ifllew < +0, 1La(?) fllL 0 < 1

[293]



294 S. 1. NOVIKOV

The present paper concerns the approximation of the class X ,(.%,) by
interpolatory .#-splines and by -splines of best approximation in the
uniform norm. We show that the interpolation knots may be chosen in such
a way that the interpolatory .#-splines approximate the class X (%, with
the order of best approximation, and we calculate exactly the least upper
bounds for the corresponding deviations.

Let ho = m(max,¢;<,Imz)~" and

Ly (7), r=mn,

7) =
(D) {(/Y,,(Q), r=n+l.

Denote by p, = p,(z) the characteristic polynomial of Z,(%) (r =n, n+1)
and write T, =T, for r=n, and T,=T,u {0} for r =n+1. Following
Micchelli [8], for 0 < h < h, we define

Xz

1
( A = [

Znii[mdz’ XE[O, h) (r =n, n+1),

where C is any rectifiable contour in C without selfinter-sections, bounding a
domain which contains the set T, of zeros of p,, but which contains no poles
of the meromorphic function e* (¢*"+ 1)~ !. The condition 0 < h < h, guaran-
tces the existence of such a contour.

Lemma 1 ([8], [15], [10)). The function .</; has the following properties:

) /Oh7)= —o/P(0%)+6;,-,(=0,1,...,r—1; 8, is the Kronecker
svimbol).

2) L.(2) A, (x) =0 for xe(0, h).

3) </, has a unique zero ¢, in [0, h); this zero is simple.

Let > 0. We define a class of sequences by
) = ()% p, = O(W) as v =t oo},
and a class of ¥-splines by
Yy y(Ag) = 1SES(YL,, 4): s(x) = O0(|x]") as x = +o0].
Let 2€[0, h) be arbitrary.

Tueorem 1. If 0 <h < hy, then for every sequence of real numbers
(v)Zx €Y, there is a unique -spline s,€ 'y ,(45) such that

sp(x+vh)=y,, VveZ,
if and only if o # ¢&,.

Remark. For polynomial splines Theorem 1 was proved by Yu. N.
Subbotin [18] and I. Schoenberg [12], and for ¥-splines under the assump-
tion that 7, < R" by 1. Schoenberg [13]. V. T. Shevaldin [15] proved it
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assuming that 0eT,, T, < C", but the proof is essentially the same if instead
of 0 €T, one assumes that T, contains at least one real number. Note that the
proof for the class of periodic sequences and for any linear differential
operator with constant real coefficients was given by V. T. Shevaldin [16].

The proof of Theorem 1 is based on Lemmas 1 and 2 of [15] and in fact
repeats word by word the considerations from Schoenberg [13]; therefore we
omit it.

Write Lo o(4do) = Lg,(45). This is the set of all L-splines bounded
on R, corresponding to the differential operator ¥,(%), with knots at the
points of 4,

Consider the function /,,, defined by (1) for x €[0, h), 0 <h < hy. By
Lemma 1 (assertion 1)), it can be extended to R by setting &, (x+h) =
—.o/,+,(x), x€R; then .«/,,, €eC" V(R). Moreover, from (1) by the residue
theorem we obtain

1, e e

(j;z(e"‘+1) 22 oz(eZh ) 1’ XE(O, h)

La(D) (2 41 (%) =

Consequently,
L7241 (x)) =signsinmx, xeR.

Thus the function 2./,,,, is an Euler #-spline corresponding to the operator
L. (7).

Let &,,, be the unique zero of ./, ., in [0, h), 0 < h < hy; it exists by
Lemma 1 (assertion 3)). Then

Ay = lpiy+jh: jEZ)

is the set of all zeros of .«/,,, in R. Since ¢,,, is a simple zero and -/, (x)
= .o/,(x), x€R, as can be easily verified, it follows from Theorem 1 that for
0 < h < hy and for every bounded sequence (y;)*,, there is a unique ¥’-spline
S. €Y'y (45) such that s,(Sp++jh) =y, jEZ.
We define the quantities

(2) U(lw(yn)s Aoos A’w)ao = sup ”f—(snfmC(R,H

JeX (£
where (s, f) is the interpolatory ¢’-spline of class ', (4,) interpolating f on
4, and

(3) E(Xm(gn)’ g)_?"(A w))w = sup inf ”f—sll“C(m'

TeX (L) spe 2 (40

(2) is the accuracy of approximation of the class X (%, by interpo-
lating #-splines with our choice of the interpolation knots, and (3) is the
error of the #-spline best approximation on X ,(%,).

The main result of this paper is the following:
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THEOREM 2. Let k be the number of pairs of complex roots of the
polynomial p, with nonzero imaginary part. Then for 0 <h <3 &~V p,

E(lw(y"), '(//.S(’"(A ao))m = U(/w(.?,,), Aco, A::o)uo = 2"-0/"“”(‘(10-

Remark. For the operator Z,(%) = ¥", Theorem 2 in the periodic case
was proved by V. M. Tikhomirov [19]. In the nonperiodic case the value of
U(H (Z); 44, 4') was found by Schoenberg [14] for n even and by de
Boor and Schoenberg [2] for n odd (see also [11]). For a formally selfadjoint
operator with T, = R" and n even, U (X (%,); 4, 4'x) Was computed by
Micchelli [8], and under the same assumptions but for n odd, Theorem 2
was proved by the present author [9]. Finally, in the periodic case with
T, = C", Theorem 2 was established by the author ([10], Theorem 3.1).

Before proving Theorem 2, we formulate some auxiliary statements.

Let N be an arbitrary positive integer and K any real number. We set

KW (%, N) = | f€Con: f"V €AC o, | 8u(D) fllL o0 < K},
where the subscript 2nN indicates that we consider 2nN-periodic functions.
Denote by (s,f) the 2rnN-periodic .#-spline corresponding to %,(%)
with knots at the points of 4, which interpolates the 2nN-periodic function f

on A'y. The existence and uniqueness of such an #-spline follows from
Theorem 1 (see also [16]). .

Lemma 2 ([10]). If 0 < h < 3~*~V k. then for f eKW, (Z,; N) and x €R
£ ()= (50.)" (9N < 2Ky ().
Equality holds for f(x) = 2K.<1,,+1'(x),f EKW (¥,; N).

LemMA 3 ([3]). For any function ¢ with a locally absolutely continuous
(n—1)-th derivative and for k <n

10®llcim < Aell@lici +Bell Lal(2) 0llL s

where A,, B, are positive numbers depending on the operator ¥,(7) and on k.

LemMma 4. If 0 <h <3 % "D, then for fe N ,(&,) and xeR
|f ()= (sn )X < 2|14 (%),

with equality holding for f(x) = 2.4, (X) €.X (L.

The proof of Lemma 4 will be based on the corresponding result in the
periodic case (Lemma 2); we will apply Bang’s idea [1] (see also [7]) used by
him to carry over the proof of Kolmogorov's inequality for norms of
derivatives from the periodic case to the whole real line.



ON £-SPLINE INTERPOLATION 297

Proof of Lemma 4. 1t is not difficult to check (see e.g. [7]) that for every
0 > 0 there is a positive integer N = N(d) and a function v; whose (n— 1)th
derivative is locally absolutely continuous on R, such that:

1) vs(x) =1 for |x|] < .

2) v5(x) =0 for |x| > N.

3) We have the estimate .

4) WP (x) <6, k=1,...,n—1, xeR.

Let feX (%) and define F;(x) = f(x) vs(x). It is clear that F; also
has a locally absolutely continuous (n—1)th derivative and, by 1)-3):

a) Fs(x) = f(x) for |x| < m.

b) Fs;(x) =0 for |x] > nN.

We now prove that

c¢) We have the estimate

(5) 1La(2) FllL i < 1+6M,

where M is a positive constant independent of 4.
Indeed, (4) yields
n—1
(6) 1L (D Fille om < Wsllccm 1L (D) flle g +0 X 3511 e,
j=0
where f@ = f, and y; > 0 is independent of 6.

We assume for simplicity that || f|lcpm < B < + 0, where B is a constant
independent of f (from what follows it is not difficult to deduce that this
restriction is inessential). Applying Lemma 3 to the right-hand side of (6) and
taking into account that ||vllcy = 1 and ||.Z,(2) fll. m < 1, We obtain (5).

Let 0 <h<3 ®"Dp N, =N+1. Consider the restriction of F; to
[—-nN,, nN,] and extend it periodically (with period 2nN) to R. The resulting
function will be denoted by ;. By (5), t;e KW (¥,; N,) with K =1+4+0M.
Since 0 <h <3 ®*~Dh, Lemma 2 yields for xeR

[t5(x) = (52 7s) () < 2(1+OM)|-/ sy ().
Letting _5 —0 and using the equalities
IimN@) = +00, limtz(x)=f(x)limus(x) = f(x),

-0 60 60

lim(s,t5) (x) = (s, /) (x),
4-0
we obtain the inequality of Lemma 4. Applying Theorem 1, it is not difficult
to check that equality holds for f(x) =2/,,(x)€.#* ,(¥,). The proof of
Lemma 4 is complete.
Write 1 W, (%,; 1) = W (%,) and let $(&,; 4,) be the subset of 2n-
periodic functions from S(%,; 4.).
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Lemma 5 ([10], Theorem 3.1). Let 0 <h <3 *~Dp, Then
E(WL(2):8(L0: 4,0)) 5 = 2117 sl

and the extremal function is 2./,,, €W (<L,).

Proof of Theorem 2. Lemma 4 shows that
(N E(X (L) Lo,(da))a < U(H o(LD); s An)w = 21| &+ tlleim-

Let us estimate E(.# o(¥); Y4 (44))o from below.

The set /, (44) is closed and locally compact, and therefore it is a set
of existence (see [5], p. 21). Let o, be a function realizing the best approxi-
mation of 24,,; by Fg (4,). Since 2o,,, is 2mn-periodic, the function
o.(x+2mj), for any jeZ, also realizes its best approximation.

Consider the sequence of functions

r

T j;_ra,,(x+2nj), r=0,1,...

o (x) =

It can easily be seen that ¢, is an ¥’-spline of best approximation for 2./, .
Since the value of the best approximation is finite and ||2./,, (llccm < + 00,
the set of elements realizing the best approximation of 2.7/, is uniformly
bounded. By the local compactness and closedness of /4 (4,) there is
Py €y (4s) such that ‘

im ¢, (x) = @,(x), x€R.

ry—~+ao

The function ¢, is 2n-periodic, since for x eR

Py (X +21)— @ (x)
= lim [¢, (x+21)—¢, (x)]

r,*to
1 ry+1 1 ry
- ] : 2 _ ) : 2
rv-lva [2rv+ 1 Jj= —er+l 7 (x+ Jn) 2rv+ 1 j=Z—rva (x+ Jn):l
1
= rvlir?w 2rv+ 1 a,,(x+21t(rv+ 1))_ ’vl_i.Tw 2rv+ 1 Gn(x—znrv)

by the uniform boundedness of the set of elements realizing the best
approximation of 2./, ,.

It is not difficult to see that ¢, realizes the best approximation of 2., ;.
Thus the 2n-periodic function 24,,, has in ¥¢ (4,) a 2n-periodic element
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realizing the best approximation, and so Lemma 5 shows that
®) E(X (L) Lo, (A0))w > inf |28, —Sillom

’ne'(/.?”("w)
=12 4, —(oancm = 2"~91u+ 1||cuo-

(7) and (8) yield the conclusion of Theorem 2.

Let A= {a: a€[0, h), a # &}, f€H (L), 0 <h <hy. By Theorem 1,
for every a2 € A there is a unique ¥’-spline (s,, f) €/ #,(4) interpolating f on
4% = \a+jh: jeZ). From Theorem 2 we obtain

COROLLARY 1. For 0 <h <3 *-Dp,

inf  sup '“f—(sn.af)"qn = 2||-‘Vn+1”C(m

acA feX o7y

and the interpolation mesh4', = {£,+,+jh: j€Z} we have chosen earlier is
optimal as regards the accuracy of approximation.
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