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1. Preliminary definitions and results

Given h = 2, an h-uniform hypergraph H is a pair H=(X, &), where X is
a finite set of vertices and & is a set of h-subsets of X, ie. |[E| = h for all E€é.
For h = 2 such a pair is called a graph. The members of & are called the edges
of H. The order of the hypergraph H is equal to |X].

An independent set of H is a subset S of vertices, S < X, which does not
contain any edge of H. An r-coloring of H is a partition of the vertex-set X into
r independent subsets. The minimum number of classes in a partition of the
vertex-set X into independent sets is called the chromatic number of H, and it
will be denoted by x(H). The number of r-colorings of H will be denoted by
Col,(H).

A path P of length k > 1 in H is a sequence of vertices and edges of H of
the form

P: xl, El,xZ, Ez,;.-,xk, Ek’ x,‘+l
such that:

1) The vertices x,,..., X, 4+, are pairwise distinct;
2) The edges E,, ..., E, are pairwise distinct;
3) x,€E,; x,+,€E, and x,€eE,_,nE, for every p=2,..., k.

A hypergraph H is connected if, for any two distinct vertices x, y of H, there is
a path connecting them.

In [2] it is shown that the maximal number of k-colorings of a graph G of
order n with y(G) = k is equal to k"% and the corresponding extremal graph is
unique and is the union of a k-clique and n— k isolated vertices. This graph also
realizes the minimal number of edges and the maximal number of
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(k +7)-colorings in the class of k-chromatic graphs of order n for every
O0<r<n—k—1 and it is unique having these properties.

When h > 3 the minimal number of edges that a k-chromatic h-hyper-
graph H of order n can contain is not known; a similar situation occurs
for the maximal number of (k+r)-colorings of H. Note that Col,_,.,(H)
= S(n, n—h+1)—m(H), where m(H) is the number of edges of H and
S(n. n—h+ 1} is the Stirling number of the second kind. Thus the two problems
are connected. However, the following asymptotic result was obtained in [6):

Let C(n, h, k) (and C*(n, h, k), respectively) be the maximum number of
k-colorings in the class of h-hypergraphs H of order n (which are con-
nected, respectively), having chromatic number y(H)= k. Also let C(n, h)
= max, C(n, h, k) and C*(n, h) = max, C*(n, h, k).

THEOREM 1. For every h = 2 the following relations hold:

C(n, B)!/n ~ C*(n, )" ~ ——

elnn

as n— .

2. Minimum number of hypergraph colorings

The problem of determining the minimum number of s-colorings of a hyper-
graph was completely solved in [5]. In order to present the solution here we
need some definitions.

Let H(n, k, h) be the class of h-hypergraphs H having the vertex-set
X with | X| = n and such that, for each H, there exists a k-equipartition of X:

X=A4,0..04, (—1<|4j-l4)<1 for any 1 <i,j<k),

such that the edge-set of H is composed of all h-subsets of X that are not
contained in any class A,.

The hypergraphs from H(n, k, h) are generated by various k-equipar-
titions of X and are all pajrwise isomorphic.

It is easy to show that for any n> (k—1)(h—1)+1 and k > h > 2 the
maximum number of edges of an h-hypergraph H of order n and chromatic
number y(H) = k is attained if and only if He H(n, k, h).

Let ¢(n, k, h, s) be the minimum number of s-colorings of an h-hyper-
graph H having n > (k—1)(h—1)+1 vertices and chromatic number x(H)
=kz=2

THEOREM 2. For any k+1<s<n—h+1, Col(H)=c(n, k, h,s) in the
class of h-hypergraphs H of order n and chromatic number k > 2 if and only if
HeH(n, k, h).

For s = k we distinguish two cases:
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(@) (k=Dh-=-1D+1<n<k(h=1)+1. In this case the class of extremal
hypergraphs is H(n, k, h).

(b) n = k(h—1)+2. In this case the class of extremal hypergraphs strictly
contains H(n, k, h).

Let X = B;u...uB, be a partition of X, where |X|=n-1, |B| = n, for
g =1, ..., k, and suppose that there exist two indices i, je{!, ..., k} such that
n,>n; and n;, > h—1. For x¢ X consider the following partitions of X U {x}:

B,u...u(B;u{x})u...uB,,
which generates, as above, an h-hypergraph denoted by H,, and
B,u...u(Bju{x})u...uB,,

which produces H;.
The key of the proof of Theorem 2 is the following result:

PROPOSITION 3. For any k+1<s<n—h+1, Col(H) > Col(H).

Proof. Let H be the h-hypergraph of order n—1 generated by
X =B,u...uB,. For an s-coloring n of H, denote by ¢,_;(x, B) and
®x-1(w, B)) the number of classes of = having at least h—1 elements that are
contained in B; and B;, respectively, and by ¥,_,(n) the number of classes of
7 containing at most h—2 elements. One obtains

Col,(H,) = Col,—(H)+ Y. @u—1(n, B)+Y W¥p-2(7)

for t =i, j. Since s<n—h+1 and n, > h—1 one obtains Z,,cp,,_l(n, B)>0.
We must show that

(1) Z%—l(ﬂa B) > Z(Ph—l(n’ B).

If ny<h—2 then Z«‘Ph—l(“’ B) =0 and (1) is proved. Otherwise n,
>n; 2 h—1. Let C c B; be such that |C| = n; and let f: C— B, be a bijection.
Let n be an s-coloring of H satisfying a = ¢, (%, B)) < ¢~ (%, B) = b. If the
classes of = which are included in B, and in B, are C,, ..., C, and D,, ..., D,
respectively, suppose that | J?-, C; = C. In this case if we replace each vertex
xeC by f(x)eB, and each vertex ye B, by f~!(y)eC <= B, we find another
coloring n' of H such that ¢,—,(n', B)=>b and ¢,-,(7, B)) =a and this
correspondence between colorings is injective.

Otherwise | J{-;C, ¢ Cand let E,, ..., E, (d < a) be the nonempty sets of
the family {C\C: 1 < p<a, C,nC # @}. Letalso C}, ..., C;, (@' < a) be the
nonempty classes obtained from C,, ..., C, by deleting elements of B\C.

In this case we define a coloring =’ as follows: The classes among
C,,...,C, having a nonempty intersection with C will be replaced by
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f(CY), ..., f(C,) and for the other classes of m every vertex xeC will be
replaced by f(x)e B; and every vertex ye B, by S '(»eC c B,.

By this procedure the b classes of = included in B; and containing each at
least h—1 elements have been transformed into b classes included in B; and
containing at least h—1 elements, namely f~'(D,),...,f '(D,). The sets
E,,..., E;c B\C will be adjoined to these subsets of B, in the following
manner:

Let g: {E,, ..., Ej}={f"}(D,), ...,f ~'(D,)} be an injection (there exists
one since d < a < b). In this case every class g(E,) will be transformed into
g(E))UE, for p=1,..., d. In this way we have obtained an s-coloring n’ of
H such that

Op-1 (W, B) =2 b, @y (7, Bj) s 4.

We shall prove that for every s-coloring n of H such that ¢,_,(n, B)
< @n-1(m, B) we can choose an injection g such that the correspondence
between the colorings = and #' be injective.

Indeed. ¢ mav be defined in (b}, = b(h—T)...(h—d + 1) ways. On the other
hand, if all classes of n having an empty intersection with C are fixed,
there are (a'); = a'(a’'—1)...(a’—d + 1) partitions generating the same splitting

©s . Cos Ey, ..., E; of the family of those classes having a nonempty
intersection with C.

Hence the inequalities (a'); < (@); < (b), imply that we can define for
every s-coloring n of H such that a = ¢,_(n, B) < ¢—,(n, Bj) = b another
s--coloring =’ of H such that ¢,_,(n', B) > b and ¢,-,(n', B) < a and this
correspondence between partitions is injective but not surjective, and (1) is
proved.

We have

lim c(n, k, b, s)!" = max (s,...5)'"*

n— o s1+...+5x=8

and, as in the case of the maximum number of s-colorings, this quantity does
not depend on h > 2 [5].
3. Maximum number of colorings of connected graphs

Let G be a graph of order n and P(G, 4) = A"+a,- A" ' +...4+4a,4 be its
chromatic polynomial. It is well known that P(G, 1) can be expressed in terms
of the number of k-colorings as follows:

P(G, A} = Z (4), Col (G),
k=1
hence

Col,(G) = %P(G, k) if k= x(G).
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The n-vertex cycle will be denoted by C, and the graph consisting of C,
and another vertex which is joined by an edge to a single vertex of C, by C;.
A numbering of the vertices of a graph G of order n is a bijection f:
V(G)—{1,...,n}.

It is natural to ask what the maximum number of colorings is for some
restricted classes of graphs which do not contain the graph composed of

a k-clique and n—k isolated vertices, e.g. for connected graphs. The following
theorem was proved in [4]:

THEOREM 4. The maximum number of 3-colorings of a connected graph
G having n vertices and chromatic number x(G) = 3 is (2"~ ' —1) for odd n and
22"~ 2—1) for even n.

If n is odd, the unique connected graph for which this maximum is reached is
C,, while if n is even, the unique graph is C_,.

Let K(n, k) denote the class of connected graphs G of order n containing
a unique k-clique such that the graph obtained from G by the contraction of
the k-clique to a unique vertex is a tree.

The number of labeled graphs in K(n, k) is equal to (J-})n"* for
4<k<n[3])

In [3] it is also proved that the minimum number of edges of a connected
graph G of order n with y(G) =k is equal to (})+n—k.

Extremal graphs relative to this property are precisely the graphs from
K(n, k) for x(G) =k > 4. The following conjecture was proposed in [3]:

CoNJECTURE 1. The maximum number of k-colorings of a connected
graph G of order n having x(G) = k = 4 is equal to (k—1)""* and the extremal
graphs all belong to K(n, k).

Gs
Fig. 1

In [7] this conjecture is proved for connected planar graphs G having
¥(G) = 4 as follows. |

We denote by G, (n) the class of connected graphs G of order n containing
exactly four triangles such that the graph obtained from G by deleting any edge
from E(G) is not connected or contains at most three triangles. It can be easily
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shown that if Ge G4(n) then by contracting, in an arbitrary order, all triangles
in G, the resulting graph is a tree.

In [7] it is shown that for every connected planar graph G of order
n containing at least four triangles there exists a spanning subgraph H of
G such that He G (n).

PROPOSITION 5. For every Ge K(n, k) the chromatic polynomial satisfies

P(G. ) = (A)(A— 11"

Note that all graphs in K(n, k) are planar for 1 <k < 4.

THEOREM 6. If G is a connected planar 4-chromatic graph of order n then
P(G, A) € (A),(A—=1)""*% for every integer A, A > 4, and for every A > 4 equality
holds if and only if Ge K(n, 4).

Proof. Let G be a connected planar 4-chromatic graph of order n. By
Griinbaum’s theorem [1), G has at least four triangles. By deleting some edges
from E(G), one can obtain a graph H of order n containing exactly four
triangles and such that He G, (n). It follows that y(H) = 3 or y(H) = 4. Also
P(G, ) < P(H, 4) for every 4 > 0.

In [7] it was proved that if Ge G,(n) is a graph containing as subgraph
none of the following graphs: the complete graph K,, the wheel W, and the

graph G, represented in Fig. 1, then there exists a numbering f of the vertices
of G satisfying:

(i) Every vertex x such that f(x) > 1 i1s adjacent to a vertex y such that
fO) < f(x).

(i) There exists no vertex x which belongs to two triangles T, = {x, a, b}
and T, = {x, u, v} (T; and T, may contain one or two vertices in common) and

f(x) > max(f(a), f(b), f (u), f (v)).

We shall show that if our H does not contain any of the graphs K,, W,
Gg then P(H, 1) < (A),(A—1)""* for every integer 4, 4= 4.

Let f be a numbering of the vertices of H satisfying (i) and (ii). Let us color
the vertices from V(H) = V(G) sequentially with A colors in the order given by
the function f. Vertex z having f(z) = 1 can be colored with A colors. By (i) any
other vertex x # z can be colored with at most A—1 colors. If T = {u, v, w} is
a triangle of H and f(w) > max(f (u), f (v)) it follows that w can be colored with
at most A—2 colors since adjacent vertices u and v have been previously
colored. By (ii) there exist at least four vertices which can be colored with at
most A—2 colors.

It follows that P(H, A) < AA-=2*(A—1)""% < (A)(A-1)""* for 1>4
since the last inequality is equivalent to A2— 54+ 5 > 0, which holds for 4 > 4.
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By Tutte’s formula for P(W,, 4) in [8], we have
P(W,, ) = A[A=2""1+(=1y" 1 (1-2)]

whence P(W;, A) = (A),(A2—51+7).
One deduces that if H € G,(n) contains W as an induced subgraph then

P(H, }) =(A);A=1)""3(A2=51+7).

Hence (A),(A—1)""*—P(H, ) = A(A—-1)""*(A—2)(A—4) > 0 for every 4> 5.
Equality holds for A = 4 but in this case we have y(H) = 3. Hence G is obtained
from H by joining by an edge at least two nonadjacent vertices x and y.

Let H, be the graph obtained from H by joining x and y, and let H, be the
graph obtained from H by identifying x and y. It follows that P(H, 4)
= P(H,, A)+P(H,, ) and P(G, A) < P(H,, 4); x(H,) =3 or 4 Hence

P(H,4)=PH,,49+PH,,4 =2 P(G,4+P(H,, 4> PG,4)

since P(H,, 4) > 0. It follows that
P(G, ) < (A, (a-1"*

holds for every i = 4.
By a straightforward calculation one deduces that

P(Gg, A) = (A);(A* —T74i% +18i—16).

Hence if He G,(n) contains G, as an induced subgraph one can write
P(H, ) = (A),(A3 =722 +18A—16)(A—1)"" ¢ < (A),(A—1)""*

for A > 4 since the last inequality is equivalent to 24> —114+13 > 0, which is
true for 4 = 4.

It remains to consider the case that HeG,(n) contains an induced
subgraph isomorphic to K,. But in this case HeK(n,4) and P(H, 4)
= (1)4(A—1)""*. Since we have only P(G, 1) < P(H, 4) we must show that if
G is a connected planar 4-chromatic graph of order n containing K, then for
every integer A >4, P(G, 4) = (A),(A—1)""* holds if and only if Ge K(n, 4).

If G¢K(n, 4) then there exists a graph He K(n, 4) which is obtained
from G by deletihg some edges from E(G). Let x and y be two vertices
which are adjacent in G but nonadjacent in H. It follows that P(H, A)
= P(H,, )+P(H,, /) where H, and H, are defined as above. Since H
€ K(n, 4) it follows that y(H,) = 4, hence P(H,, 2} > 0 for every A > 4. Because
P(H,, ) = P(G, 1) we conclude that P(H, 1) > P(G, A) for every A > 4 and the
proof is complete.

13 — Banach Center t.25
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CoRroOLLARY. For every connected planar 4-chromatic graph o order n the
Jollowing inequality holds:

Col,(G) £ 3774,
We have equality if and only if GeK(n, 4).
This result is a support for the following conjecture:

CONJECTURE 2. The maximum number of p-colorings in the class of
connected planar 4-chromatic graphs of order n is reached for a graph G if and
only if GeK(n, 4), for every 4 <p <n-—1.

Another conjecture which extends both Conjectures 1 and 2 is the
following:

CoNJECTURE 3. The maximum number of p-colorings of a connected
graph G of order n with x(G) = k > 4 is reached only for graphs in K(n, k), for
every 4<p<n-—1.

Note that Conjectures 2 and 3 are true for p =n—1 since Col,-(G)
= (3)—|E(G)| and |E(G)| is minimum only for Ge K(n, k).
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