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We give conditions on the number of arcs sufficient for bipartite digraphs to
have either directed or antidirected hamiltonian cycles and paths.

Let D be a balanced bipartite digraph on n vertices. First, in Theorem 2,
we give a minimum function f () such that if D has f(n) or more arcs, then it is
hamiltonian. Next, in Theorem 6, we obtain another minimum function f (n)
such that if D has a factor and at least f(n) arcs, then it.is, once more,
hamiltonian. Finally, we give conditions, on the number of arcs or dealing with
half-degrees, sufficient for bipartite digraphs to have antidirected cycles and
paths of various lengths. For analogous results concerning digraphs the reader
is encouraged to consult [4], [5].

Formally, throughout this paper, D = (X, Y, E) denotes a bipartite
digraph of order n with bipartition (X,-Y), where we suppose that |X| < |Y].
Then V(D) (= X uUY) denotes the set of vertices and E(D) denotes the set of
arcs of D. If x and y are vertices of D, then we say that x dominates y if the arc
(x, y) is present. For 4, B € V(D), we define E(4 —+B) = {(x, y): x€e A, yeB,
(x, yye E(D)} and E(A, B) = E(A - B)u E(B— A). The outdegree, indegree and
degree of a vertex x are defined as |E(x — V(D))|, |[E(V (D) - x)| and |E(x, V(D))|
respectively and are denote by d*(x), d(x) and d(x) respectively. We say that
D is balanced if |X| = |Y| and almost balanced if |Y| = |X|+1. We define an
antidirected cycle, or shortly ADC, to be a cycle such that no two consecutive
arcs form a directed path. Analogously we define antidirected hamiltonian
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cycles (ADHC), antidirected paths (ADP) and antidirected hamiltonian paths
(ADHP). The opposite of D is the graph obtained from D by reversing the
orientation of each arc of D.

We begin with the following easy proposition, which we need for the proof
of Theorem 2.

PROPOSITION 1. Let D be a bipartite digraph on 6 vertices. If for each vertex
x of D we have d(x) = 5, then D is hamiltonian.

Proof. Since D is bipartite and since any vertex x satisfies d(x) = 5, D is
balanced. In addition, the condition d(x) > 5 implies that d*(x) > 2 and
d™(x) = 2 and therefore D has a cycle C of length four [2]. Now, if x and
y denote the vertices of D —C, then it suffices to consider arcs between {x, y}
and C in order to complete the proof.

This proposition is best possible because of the graph with bipartition
(X, Y), where X = {x,, x,,x;} and Y ={y,, y,, ¥}, and arc-set E(D)
= {(xl’ yl)’ (yl’ x2)9 (xzs Yz), (.Vz, xl)’ (xly y:’.)s ()’3’ xl)’ (xzs ya)s (y:l’ xz)’
(x3, y1ib 015 Xa), (2, x3), (x3, ¥2)}-

In Theorem 2, we shall consider the digraph B, (n) defined as follows (see
also Fig. 1): Let 4 (resp. B) be an independent set on k—1 vertices (resp. on
k vertices) such that n = 2k. B,(n) is the bipartite digraph obtained from the
disjoint union of A, B by adding a new vertex x and all the arcs between A and

Sk -1 X Sk-1 X
Su Sk Yy
8,(2k) B(2k+1)
Sk L Su x
Sk Sk ’ .y
Byl2k+1) B,12k+2)

Fig. 1. The graph B,(2k) has no hamiltonian cycle; B,{2k+1) has no hamiltonian path with
terminus y; B,(2k + 1) has no path with terminus x; B,(2k + 2) has no hamiltonian path with origin
y and terminus x
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B, and all the arcs from x to B. The resulting bipartite digraph has no cycle
through x.

In Fig. 1, §, denotes an independent set on k vertices.

THEOREM 2. Let D = (X, Y, E) be a balanced bipartite digraph with
n vertices such that |E(D)| > (n>—n)/2. Then D is hamiltonian unless |E(D)|

= (n* —n)/2 and moreover D is isomorphic either to B,(n) or to its opposite or
else to R, or to R, of Fig. 2.

N

Proof. First, for any vertex x of D we have d(x) > n/2, since

Fig. 2

d(x) = |E(D)| - |[E(D—x)] > "’2‘"_2(3_ 1)2 _n

We now distinguish two cases depending upon the degree of x.

(a) There exists a vertex x in D such that d(x) =n/2. By a simple
calculation we obtain
nP—n n_(n—1y-1

2 2 2

|E(D—x)| =

It follows that D—x is the almost balanced complete bipartite digraph
K}2.n2-1 and therefore any two vertices of Y are connected by a hamiltonian
path in D —x. Consequently, if D is not hamiltonian, then either n = 4 and D is
isomorphic to R, or to B,(4), or else n = 6 and then D is isomorphic to B, (n)
or to its opposite.

(b) For any vertex x of D we have d(x) = n/2+ 1. The proof of this case is
by induction on n. It is easy to see that any bipartite digraph on 4 vertices and
no less than 6 arcs is hamiltonian unless it has exactly 6 arcs and moreover it is
isomorphic to R, of Fig. 2. In what follows, assume that n > 6 and that the
theorem is true for any bipartite digraph with no more than n—2 vertices.

Assume first that there exists a vertex x such that d(x) < n—2. Since
d(x) = n/2+ 1, there exist two vertices y,, y, such that both the arcs (y,, x) and
(x, y,) are present. Now, let D’ denote the bipartite digraph obtained from
D—{x, y,, y,} by adding a new vertex s and the set of arcs

{(z, 5): ze V(D'), (z, y,)e ED)} (s, 2): zeV (D), (y,, z2)€ E(D)}.
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Clearly D’ has n—2 vertices and moreover it satisfies

L n(n—1) n _(n=2)(n-3)
|E(D")} 2 2 —(n—2+2(§—1))——————2 +1.

It follows that D’ is hamiltonian by induction, and therefore D is also
hamiltonian, as required.

Assume next that for any vertex we have d(x) > n—1. This hypothesis
implies that d*(x) > n/2—1 and d™~ (x) = n/2—1. Now, if n = 6, then we can
easily verify that the graph is hamiltonian, using Proposition 1. If, on the other
hand, n > 6, then, since in this case we have d*(x) > n/2—1 > (n+3)/4 and
d”(x) 2 n/2—1 = (n+3)/4, it follows from a theorem of [1] that the graph is,
once more, hamiltonian, This completes the proof of Theorem 2.

In order to formulate Theorem 3, we define the following bipartite
digraphs B,(n), B,(n) and B,(n) (see also Fig. 1).

B, (n) is obtained as follows: Let A4 (resp. B) be an independent set on k—1
(resp. on k) vertices, n = 2k + 1. B,(n) is the almost balanced bipartite digraph
obtained from the complete bipartite graph with bipartition (4, B), by adding
two vertices x and y and all the arcs between y and A, between x and y and
from x to B. This graph has no hamiltonian path with terminus y.

B,(n) is obtained from B,(n) by putting |[4| = |B| =k, n=2k+1. The
graph B,(n) has no path with terminus x.

B,(n) is obtained from B, (n) by putting |4] = |B| = k, n = 2k+ 2. Clearly,
the graph B,(n) has no hamiltonian path with origin y and terminus x.

THEOREM 3. Let D = (X, Y, E) be a bipartite digraph on n vertices such
that |[E(D)| = (n*—n)/2+¢, €=0, 1. Then:

(i) If D is almost balanced and if € = 0, then any two vertices of Y are
connected by a hamiltonian path unless |E(D)| = (n>—n)/2 and D is isomorphic
either to B,(n) or to B,(n) or to their opposites or else, for n = 5, to one of the
graphs A,, i= 1,2, 3, presented in Fig. 3.

(ii) If D is balanced and if ¢ = 1, then any two vertices which are not in the
same class of D are connected by a hamiltonian path unless D has exactly
(n*—n)/2+1 arcs and moreover D is isomorphic to B,(n) or to its opposite.

A, A; Ay
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Proof of (i). In what follows assume n > 5, since the only graph with
3 vertices and 3 arcs which does not satisfy the conclusion of (i) is the graph
B,(3).

Let now y,, y, be two vertices of ¥ and then let D’ be the graph
obtained from D—{y,, y,} by adding a new vertex x and the arcs {(y,, z): (x, z)
in E(D)}u{{z, y,): (z, x) in E(D)}. Clearly D’ satisfies

2

, n‘—n n—1\ (n—1)(n—2)
|E(D)| 2 3 -—2( > )— > .

Now, if D' is hamiltonian, then there exists a hamiltonian path from y, to y, in
D, so, in what follows, assume that this is not the case. Consequently, it follows
from Theorem 2 that |E(D')] = (n—1)(n—2)/2, ie, d” (x,) =d " (x,) = (n—1)/2
and, moreover, D’ is isomorphic to B, (n—1) or to its opposite for n > 5 or, for
n =35, to one of the graphs R, or R, of Fig. 2.

Now, if D' is isomorphic to B, (n— 1), then there exists a vertex z in D’ such
that either E(z - D') = @ or E(D' - z) = . Consequently, if z is in Y, then D is
isomorphic to B,(n) or to its opposite, otherwise, if z is in X, then D is
isomorphic to B4(n) or to its opposite. On the other hand, if D’ is isomorphic to
one of the graphs R, (i =1, 2) of Fig. 2, then D is isomorphic to one of the
graphs A4;, i=1,2, 3, of Fig. 3.

Proof of (i1). Let x, y be two vertices of D such that xisin X and yisin Y.
- We shall prove that there exists a hamiltonian path from x to y. The graph
D—y satisfies

n*—n (n—1)(n-2)

|[E(D—y)| 2 +1—-n2 )

Observe now that if any two vertices of X are connected by a hamiltonian path
in D —y, then there exists a hamiltonian path from y to x in D (in fact, it suffices
to consider a vertex z of X which is dominated by y and then to take
a hamiltonian path from z to x in D — y). Consequently, it follows from (i) that
|[E(D—y)| = (n—1){(n—2)/2, i.e, d(y) = n and moreover D—y is isomorphic to
one of B,(n—1), B,(n—1), B,(n—1) or to one of the graphs 4,,i=1, 2, 3, of
Fig. 3. Now, if D—y is isomorphic either to B,(n—1) or to B,(n—1), then D is
isomorphic to B,(n). On the other hand, if D —y is isomorphic to one of the
graphs A,, i =1, 2, 3, then it is easy to find a hamiltonian path from y to x in
D. This completes the proof.

The corollary below follows directly from Theorems 2 and 3.

COROLLARY 4. Let D be a bipartite digraph. Then D has a hamiltonian
path if

(1) it is balanced and has at least n?/2—n+1 arcs, or
(i) it is almost balanced and has at least (n*—n)/2 arcs.
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Proof of (i). Assume first that there exists a vertex x in X (or in Y) such
that either E(x — D) = @ or E(D — x} = . Suppose without loss of generality
that E(x —» D) = . Now, let D' denote the bipartite digraph obtained from
D by adding all the arcs from x to Y. Clearly D’ has at least (n*—n)/2+1 arcs
and therefore it is hamiltonian by Theorem 2. It follows that D has
a hamiltonian path, as required.

Assume next that for any vertex x of D we have E(x > D) # J and
E(D —x) # 9. Then we can complete the proof by using arguments similar to
those of case (b) in the proof of Theorem 2.

Proof of (ii). This follows directly from part (i) of Theorem 3.

Note that Corollary 4 is best possible. To see that consider a) for (i), the
bipartite digraph obtained from B, (n) by deleting all arcs incident to x, and b)
for (ii), the graph obtained from B,(n) by deleting the arc (y, x).

For the proof of Theorem 6, we need the following lemma.

LEMMA 5. Let D be a bipartite digraph. Moreover, assume that there are
two pairwise vertex-disjoint cycles C, and C, in D, covering all the vertices of D.
If |[E(Cy, C I 2 3V(CIIV(C)l+1, then D is hamiltonian.

Proof. The proof is by contradiction. Put C;: ¢, =»¢c,=... 2y, and C,:
§, =S5, —...— Sy, where 2(m+k) = n. Take a vertex ¢;, 1 <i<2m, on C,.
Since D is not hamiltonian, we have

|E{c; » s +1E(s;-y = Civ N+ IE(c; =55 N HIE(s; )l <1, 1<) <2k,
where i (resp. j) is taken modulo 2m (resp. modulo 2k). Consequently, we obtain

2m
IE(CU C)l = Z (|E(C,-—*C2)|+|E(C2—+C,-+1)|)

2m
. .Zl . 2 Zk(lE(ci_’sj)l‘l“’E(sj—l =i N+IE(c; =85+ ) +E(s; = ¢i44)])
i=11<js

2m
< ¥ k=2mk =4V (CHIV(C,),

a contradiction. This completes the proof.

THEOREM 6. Let D be a bipartite digraph which contains a factor, in other
words, a spanning reqular subgraph with half-degrees one. If D has n%/2—n+2 or
more arcs, then it is hamiltonian unless it is isomorphic to the digraph obtained
from B,(n) by deleting either all the arcs from x to B or all the arcs from A to y.

Proof. Choose a factor of D, consisting of cycles C,, ..., C,, such that m is
the least possible. Clearly, if m = 1, then there is nothing to prove, so, in what



HAMILTONIAN CYCLES IN BIPARTITE GRAPHS 45

follows, assume m = 2. Observe now that the bipartite digraph induced by
V(C)uV(C),i= , m, is not hamiltonian, by the minimality property of
m, and therefore we have |E(C,, C)l < 3|V(C)IV(C)|, by Lemma 5. Con-
sequently, we obtain

n—
ZIEC“C)I 2|V(C)|Z|V(c POZP) - where p = 1V(Cy).
It follows that
p* (n—p)* pin—p) n* p(n—p)
E(D) <= _n_ '
EDI S5 +=——+— 7 2

Put f(p) = p(n—p)/2, where 2 < p < n—2. Now, by studying the function f (p)
we can see that the minimum of f (p) is attained either forp =2 orforp = n—-2.
Then, by a simple calculation, we get f(2) = f(n—2) = n—2. It follows that all
the above inequalities are equalities. In particular, the length of C, is two and
moreover, the graph induced by | Ji-, V(C)) is the complete blpartlte digraph
K} _1.n2-1.- Now, it is very easy to verify the conclusion of the theorem and
this completes the proof.

It was proved in [6] that any hamiltonian bipartite digraph with n%/4 +n
or more arcs has two distinct cycles of each even length m, 2 < m < n. It is clear
that, using this result, we can extend the conclusion of Theorem 2, for n = 6,
and of Theorem 6, for n = 8. Note also that, by using arguments similar to
those of the proof of Theorem 6, we may prove that any digraph which
contains a factor and has n?—3n+5 or more arcs is hamiltonian.

We shall conclude this paper with some results on antidirected cycles and
paths. For that we need some additional definitions. Let D be any bipartite
digraph. Then G1 (resp. G2) is the nondirected bipartite graph obtained from
D by replacing any arc (x, y)(resp. any arc (v, x)), xin X and y in ¥, by an edge.

THEOREM 7. A bipartite digraph D has an ADC (resp. an ADP) of length k if
and only if either G1 or G2 defined above has a cycle (resp. a path) of length k.

Proof. Trivial.
From this theorem we obtain a series of corollaries.

CoroLLARY 8. Any balanced bipartite digraph with n vertices and
n?/2—n+3 or more arcs has an ADC of each even length m, 4 < m < n.

Proof. 1t follows from |E(D)| = n*/2—n+3 that either |[E(X - Y)| > n?/4
—n/2+2 or |[E(Y— X)| > n?/4—n/2+2 holds. Now, in order to complete the
proof, it suffices to use these inequalities together with Theorem 6 and a result
given in [3], p. 207.
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COROLLARY 9. A bipartite digraph has an ADHP if

(i) it is balanced and has n*/2—n+1 or more arcs, or
(ii) it is almost balanced and has (n*+3)/2—n or more arcs.

Proof. It is similar to that of Corollary 8.

CoOROLLARY 10. Any balanced bipartite digraph with n vertices and
half-degrees at least n/A+ 1 has two pairwise arc-disjoint ADC of each even
length m, 4<m<n.

Proof. Observe that the minimum degree of G1 (resp. of G2) is (n+ 2)/4. It
follows from a result of [1] that G1 (resp. G2) is bipancyclic, so it suffices to use
Theorem 7 in order to complete the proof.

COROLLARY 11. Let D be a bipartite digraph with half-degrees at least r.
Let x and y be two vertices of D. Then:

(i) If D is balanced, if n < 4r—8 and if x and y are not in the same class of
D, then x and y are connected by two pairwise arc-disjoint ADP of each odd
length m, 3<m<n.

(1) If D is almost balanced, if n < 4r—9 and if both the vertices x and y are
in Y, then x and y are connected by two pairwise arc-disjoint ADP of each even
length m, 2 <m<n.

Proof. It is very similar to that of Corollary 10.

Note that Corollaries 8-11 are best possible, since so are the correspond-
ing results for G1 or G2.
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