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Partial colorings of the nodes of a graph are considered; a criterion of
optimality is derived by simple network flow techniques for the line-graphs of
bipartite multigraphs. More generally such a derivation is possible for graphs
whose clique-node incidence matrix is totally unimodular. A similar problem is
mentioned for constructing a collection of k disjoint transversal sets with the
smallest total number of nodes.

1. Introduction

In this note we examine variations on coloring problems in graphs. We will try
to color as many nodes as possible using k colors in a graph. C. Berge has
studied this question and developed some optimality criteria [2]. These do not
always hold and several classes of graphs for which they hold have been
exhibited.

Here we will show that such optimality criteria can be derived by
network flow techniques or by linear programming arguments for some classes
of graphs. We will examine the special case of line-perfect graphs which
generalize bipartite graphs. Also we will develop an analogous optimality
criterion for the minimality of a set of nodes which is the union of k disjoint
transversal sets,

The reader is referred to [1], [3] for all concepts related to graphs or to
hypergraphs which are not defined here.

2. Partial k-colorings

Let G =(V, E) be a simple graph with chromatic number x%(G) and let k
be an integer with 1 < k < %(G). A partial k-coloring of G is a collection
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S =(§,.....§,) of k disjoint independent sets. The k-coloring " is maximum if
IS, u...uS,| is maximum. Let %,(G) = max|S,u...uS§,|.

Such colorings have been studied by Berge [2]. Related questions for
line-graphs of bipartite graphs are discussed in [9].

A family € = (C,, ..., C,) of cliques is called an associated family of & if
the following holds:

(1) s,nsj= @ (i #j), CinC; =B (i #)).

(2) (Uisi U(U}CI) =V
(3) IS;nCjl =1 for all i and j.

ProOPERTY 2.1 [2]. If a partial k-coloring & has an associated family of
cliques, then & is maximum.

If K, denotes the complete graph on k nodes, the cartesian sum G + K, is
a graph constructed from G = (¥, E) as follows: Its node set is the cartesian
product ¥x {1, ..., k}; (x, i) and (y, j) are linked if either x = y and i # j or if
[x, y]JeE and i = j. There is a one-to-one correspondence between the partial
k-colorings of G and the independent sets of G+ K,. Furthermore,
#,(G) = a(G+ K,) where a(G)=,(G) is the maximum cardinality of an
independent set in G.

Let 6(G) be the minimum number of cliques covering the nodes of G.
Berge has shown that for a graph G, a(G+K,) = 6(G+ K,) if and only if every
maximum k-coloring has an associated family of cliques [2].

The converse of Property 2.1 is generally not true. Berge has exhibited
some classes of graphs for which a k-coloring is optimum if and only if it has an
associated family of cliques. Among those are the comparability graphs, their
complements. For line-graphs of trees the associated family of cliques is derived
in a straightforward way; this derivation is also valid for the line-graphs of
a special class of bipartite graphs.

We shall now establish the existence of an associated family of cliques for
a more general class of graphs by a linear programming argument.

A graph G is unimodular if its clique-node incidence matrix A is totally
unimodular (a;; = 1 if the inclusionwise maximal clique C; contains node j and
a,; = 0 otherwise).

Clearly the characteristic vector x of a partial k-coloring & of G (x; = 1 if
node i is colored) statisfies

(2.1) Ax <k, 0<x<1,

where k = (k, ..., k) and A is the clique-node incidence matrix of the graph G.

For an arbitrary graph, any integral solution of (2.1) does not necessanly
correspond to a partial k-coloring (take for instance G equal to the chordless
cycle on five nodes, k =2 and x =(1, 1, 1, 1, 1)). However, for unimodular
graphs G we can formulate
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ProPERTY 2.2. If G is unimodular, there is a one-to-one correspondence

between the characteristic vectors of partial k-colorings of G and the integral
feasible solutions of (2.1).

Proof. It suffices to observe that any integrul vector x satisfying (2.1) can
be decomposed into a sum x!'+...+x* where each x' is a (0, 1)-vector

satisfying Ax’ <1 (see [10]). Each x' is the characteristic vector of an
independent set S;.

Hence for finding a maximum k-coloring we have to find an integral
optimum solution of

(2.2) Max 1x st Ax <k, 0<x<1.

Since A is totally unimodular and since all vectors are integral, the problem has
an optimum solution which is integral.
The dual problem of (2.2) is

(2.3) Min ki+lg st Ad+u=1, 23>0, p>0.

Since both LP’s have feasible solutions, finite optima exist. Observe first that
(2.3) has an optimum solution with ;€ {0, 1} for each node j and 4;€ {0, 1} for
each maximal clique C,.

Furthermore, from complementary slackness it follows that if 4, = 1 then
the clique C, satisfies a,x = k (a, is the ith row of A4), ie. |C;n§,| =1 for each
I (1<I<h)

Consider the family F =(C;: iel) of cliques C; with A, = 1. If some node
u belongs to more than one clique in F, we remove u from all but one of these
cliques. Observe that if ue C;nC; (i # j), in an optimum solution of (2.3) we
have y, = 0; by complementary slackness we can have x, = 1 only if u, = 1. So
here x, =0 and u is not colored.

We have now obtained a family of cliques C, which are pairwise disjoint
and satisfy |C;nS,| = 1 for all i, l. Finally, each node u not covered by any of
these cliques has p, = 1 from the constraints of (2.3) and hence x, = 1. Such
a node u is colored, so that (| ),S)u(| J;C,) covers all nodes of G and we have
an associated family of cliques. We have established:

PROPOSITION 2.3. Let G be a unimodular graph. Then a k-coloring of G is
maximum if and only if it has an associated family of cliques.

COROLLARY 24. For the line-graph L(G) of a bipartite multigraph G
a k-coloring is maximum if and only if it has an associated family of cliques.

This follows from the fact that the clique-node incidence matrix of L(G) is
the node-edge incidence matrix of G.

Notice that a maximum k-coloring can be found in L(G) by applying
standard network flow techniques in G. The max flow-min cut theorem gives
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directly the associated family of cliques. Such a construction will be illustrated
in a similar situation: the construction of minimum k-tranversals.

COROLLARY 2.5. If G is unimodular, then for any k
«(G+K,) = 8(G+K,).

It should be observed that G+ K, is not necessarily perfect when G is
unimodular.

Remark 2.6. Since constructing a maximum k-coloring in G reduces to
finding a maximum independent set in G + K, there exists a polynomial time
algorithm for a maximum k-coloring when G + K, is perfect. This is the case for
any k < 3 if and only if G is a graph where every 2-connected component is
a clique; if k = 2, G+ K, is perfect if and only if G is a parity graph (every odd
cycle has at least two crossing chords) [7].

3. Line-perfect graphs

A graph G is line-perfect if its line-graph L(G) is perfect. Trotter has shown that
G is line-perfect if and only if G does not contain any elementary odd cycle of
length five or more [8].

Notice that if G is line-perfect, L(G) is perfect but generally not
unimodular (the graph in Fig. 1 is not unimodular; it is the line-graph of the
line-perfect graph in Fig. 2). The example in Fig. 1 shows that for the line-graph
G* of a line-perfect graph G we do not generally have a(G* + K,) = 0(G* + K,).
However, for G we can state

Fig. 1. Black nodes indicate a transversal

PROPOSITION 3.1. If G is a line-perfect graph with chromatic number x(G),
then for any k < x(G), we have a(G+K,) = 8(G+K,).

Proof. It will be sufficient to show that if G is line-perfect, then its clique
hypergraph (its edges are the maximal cliques of G) is unimodular. Proposition
3.1 will then follow from Proposition 2.3.

Let H = (V, &) be the clique hypergraph of a line-perfect graph G = (V, E).
We claim that H has no odd cycles.

It should be noted that all edges e of H satisfy 2 < e < 4. Furthermore, the
following properties hold:
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Fig. 2. A line-perfect graph

(1) For any two edges e, f of H we have |enf| <1 except when
lel = |f| = 3; in this case lenf] < 2.

(2) The partial hypergraph spanned by all edges e with |e| = 2 is bipartite.

(3) Given any two nodes u, v in an edge e with |e| > 3, there is no
elementary chain of length at least three joining u and v in H.

So suppose there is an odd cycle O in H.

From (2), O must use at least one edge e, with |e,| = 3. From (3) we cannot
have a cycle O with length at least 5. So O is a triangle. Let a, e,, b, e,, ¢, e, be
the nodes and the edges of O. Since O is a cycle of H all nodes and all edges are
distinct. We cannot have |e,| =2 or |e;| =2 (because these would not be
maximal cliques of G: they would be included in {e,, e,, e5}). So we have
le;} 2 3, ley] = 3. Notice that we may assume that c¢e,, a¢e, (if two edges e,
e; contain the nodes a, b, c we have two edges with 3 common nodes and this
contradicts (1)). Then e, must contain a third node d # a. If d # f, G contains
an odd cycle on nodes a, b, ¢, d, f, this is impossible. So we have d = f. Now a,
b, c, d form a 4-clique in G and hence an edge e # ¢,, e,. Then the pair e, e,
contradicts (1). So we cannot have any odd cycle in H; hence H is
unimodular [3]. =

4. An associated problem

InG=(V,E)aset T < Visa transversal if T n K # @ for every (inclusionwise)
maximal clique K. (T is in fact a transversal of the hypergraph of maximal
cliques of G). A k-transversal is the disjoint union of k transversals. Let r(G) be
the maximum value of k for which a k-transversal can be found in G. Clearly
r(G) < min{|K|: K is a maximal clique}. For any k (1 < k < r(G)) let 7,(G) be
defined as follows:

7,(G) = min{lTl‘: T is a k-transversal}.

If T is a k-transversal, we define an associated family of T as a family ¥ of
cliques C, ..., C, such that

@ ICAT| =k, i=1,...,p.
(b) T2 C,nC; (i #J).
© UC=2T
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One can easily establish the following:

PROPERTY 4.1, Let T be a k-transversal of a graph G. If T has an
associated family then |T| = 1,(G).

The converse of the property is generally not true (see the graph in Fig.
1 with k = 1: we cannot find a family € satisfying (a)(c) for the transversal of
minimum cardinality).

We can, however, formulate

PROPOSITION 4.2. Let G* = (V, E*) be the line-graph of a bipartite multi-
graph G = (X, Y, V) and let T be a k-transversal of G*. Then |T| = 7,(G*) if and
only if T has an associated family.

Proof. We only have to show that for a T with minimum cardinality we
can construct an associated family. There is a one-to-one correspondence
between the transversals 7 in G* and the partial graphs H in G such that for
any node zin X UY we have d,(z) > 1. It is known that T is a k-transversal in
G* if and only if the corresponding partial graph H in G satisfies dg(z) > k for
any z in XuY [6].

A k-transversal T with minimum cardinality in G = (X, Y, E) can be
constructed by network flow techniques. For this we construct a network
N from G by introducing a source s and arcs (s, x) for each x in X, Similarly we
introduce a sink t and each y in Y is linked to ¢ by an arc (y, t). Capacities
¢(x, y) and lower bounds I(x, y) are given for each arc (x, y) in Table 1.

Table 1
The network N

Arc Lower bound  Capacity

(x, y) Ii(x, y) c(x, y)
(s, x) k oo
(x, y) 0 1
(}’, t) k e o]

Clearly a k-transversal T with |T| = 7,(G) can be obtained by finding an
integral feasible flow from s to ¢t in N with minimum value v. The value of such
a flow satisfies

v = 1,(G) = max (l(4, A)—c(A4, A))
7

=klANX|+k|[ANY|—m(AnX, ANY)

for some A with XUY o A and te A, s¢ A. Here m(W, Z) is the number of arcs
(w, z) with weW and zeZ.
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For each node e X U'Y let B(z) denote the bundle of z, i.e. the set of edges
of G which are adjacent to z. B(z) corresponds to a maximal clique, say C,,
in G*.

Let H be defined by the edges [x, y] of G for which the flow f(x, y) = 1.
T consists of the nodes of G* corresponding to the edges of H as before.

The associated family € of T is obtained by taking all maximal cliques C,
of G* corresponding to the bundles B(z) of G with me(4An X)u(4nY).

For xe AnX we have f(s, x) = l{s, x) = k {if f(s, x) > k, s would be in
A and we could decrease the value of the flow). Similarly for ye AnY we have
Sy, t) = k. Hence the cliques C_ in % satisfy |C.nT| = k. For C,, C, in 7. we
have C,nC, # @ only if ve X. re Y. Now for any arc (v. ) with e 1~ X,
veAnY we have f(u, ) = ¢(u, ¢) = . Hence the nodes in C,nC, are in T.

Finally, consider a node w* in G* such that w*¢| )(C,;: C.e%). It
corresponds to an edge [u, v] of G and to an arc (u, v) of N with ue AnX,
veAnY. For such an arc we have f(u, v) = l{u, v) = 0 (otherwise we would
have ue A). So w* is not in T and | J(C,: C,e%¥) = T We now have a family
% which satisfies conditions (a)-(c); it is an associated family of T

Remark 4.3. If G is a line-perfect graph, then Proposition 4.2 does not
hold for the line-graph of G (see example in Fig. 1).

If G is bipartite, then r(G) = 2 and Proposition 4.2 holds for k = 1: to any
transversal T with minimum cardinality there corresponds a (maximum)
matching M with |M| = |T|. Each edge ee M is a maximal clique and it has
exactly one endpoint in T. For k = 2, it holds trivially.

More generally, for unimodular graphs we can derive the above result by
linear programming arguments as in the previous section.

PROPOSITION 4.4. For a unimodular graph G, a k-transversal is minimum if
and only if it has an associated family of cliques.

As previously, the proposition holds for line-perfect graphs (in such graphs
G we have r(G) = min{|K|: K is a maximal clique} with 2 <r(G)<4. It is
known that this equality also holds if the clique hypergraph is balanced [4].

Remark 4.5. There is apparently no reduction of the problem of finding
a minimum k-transversal in G to determining a subset with a simple
characterization in an auxiliary graph like G+K,.
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