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On the frequency of Titchmarsh’s phenomenon for ((s), VI
by

R. BALASUBRAMANIAN (Madras) and K. RAMACHANDRA (Bombay)

To the memory of V. G. SprindZuk

L Introduction. This is the continuation of the paper V [2] with the same
title. In paper V the following theorem was proved.

THEOREM 1. Let o be a fixed constant satisfying 1/2 <a <1 and E > 1 an
DlogH
H < T/100 and K = Exp P -l , where C is
loglog H
a large positive constant and D an arbitrary positive constant. Then there are
= TK~F disjoint integrals I of length K each contained in [T, 2T] such that
(logK)' ™ i s o ORI

Rt 3 1 <€ ———m——.
loglog K < maxlloglle+inl < e Ky

arbitrary constant. Let C <

Remarks. Here log{(s) (s = o +it) is the analytic continuation along lines
Parallel to the g-axis (we choose only those lines which do not contain a zero
or a pole of {(s)) of log { (s) in ¢ = 2. We had also remarked about extensions of
this result,

In this paper we concentrate on [log{ (1 +it)] and |{ (] +it)] and prove some
upper and lower bounds for the maximum of these functions as t varies over
some t-intervals J described below. Our remarks made in paper V about
extensions of Theorem 1 hold good with little or no modifications though we
do not state them explicitly here.

2. Upper bounds. We begin with

THEOREM 2. Let I be the interval for t referred to in Theorem 1. Let J be the

f’-fmervai obtained by removing intervals of length (log H)* from both the ends of
. Then

logloglog K 1
max|l 1+it logK +;
:.EXIng"( +it)l < logloglogK +7+ loglog K loglog K

Where vy is the Euler’s constant.
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Proof. Let s, =1+it where t is in J. Define A, (n) by

logl(s) = 3 A

n=1 n'

where Res > 1.

The function log {(s) can be continued analytically in ¢ > 1/2+6 for t in
I (where-é > 0 is an arbitrary constant) and in ¢ > 1/2+ 246 it is O (log H) (this
is proved in [2]). We start with

*gl%@e‘"“ = ﬁh!, 1 log{(so+w) I' (w)x*dw
where x = logklog log K. We deform the contour as follows:
L, ={Rew =1, [mw| > (log H)*},
L, = {{Imw| = (logH)?>, 1 > Rew>a—1},
L;={Rew=ua—1, [Imw| < (log H)?}.

Here it is assumed that o > 1/2+ 26. We come across the residue at w = 0 from
which the contribution is log{(s,). From the asymptotics of the gamma
function and from the fact that on L;, log{ (s, +w) = O ((log K)' ~*(loglog K) %)
we obtain

2 Aj, (ﬂ) —nlx ;
Ilc-gC(sn)1~~*f--."§l n o +0(1oglogx)'

We now observe

Ay(n) _. A (n) 1
® g g A0 o(iin)
Al(n) —-nfx _ — _1_ —_ _._l
@ g APee-n-off £ 4m)- (i)
since for n < x, 1—e™"* = O (n/x).
Ay(n) _L
(3) ”);x - —loglogx+y+ql(logx)

by the result on page 58 of [6] (it is not hard to improve the error term o(1)
given there). See also Theorem 5.3, Chapter III of the book Primzahlverteilung
by K. Prachar.

Now

loglog x = loglog(log K log log K)

= log (loglog K +logloglog K)

logloglog K 1
loglog K loglog K

and this completes the proof of Theorem 2.

= logloglog K+
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The following theorem is a simple corollary to Theorem 2.
THEOREM 3. Let J be as in Theorem 2. Then

max |l (1+it)] < e’ (loglog K +log loglog K+ 0 (1)).
tinJ

Proof. Follows by log|{ (1 +if)| < |log{(1+it)|, and taking exponentials.
This completes the proof of Theorem 3.

In Section 2 of paper V the following result was proved. Let § be an
arbitrary constant satisfying 1/2 < f < 1. Let 8 = §/2, where 0 is a positive
constant depending only on . Put H, = H® Then there are > T/H, intervals
each of length H, + 20 (log H)* which are disjoint and all contained in [T, 2T7]
such that if we denote a typical interval I, by [T,—10(logH)?%
Ty+H, +10(logH)?], then in {¢ > B, ¢ in I,} log{(s) is analytic and further
log ¢ (s) = O(log H). Hence for t in [T, T,+ H,], we have, arguing as in the
proof of Theorem 2 and choosing B close to 1/2, the following theorem.

THEOREM 4. For t belonging to [Ty, Ty+H,], we have
log (1 +it)] < logloglog H+7y+log2+o(1).
COROLLARY. We have, for t as in the Theorem,
' I (1 +it)] < 2¢'loglog H + o (loglog H).

3. Lower bounds for |{(1+it)| for some values of ¢. It follows from our
Mmethod given above, that for ¢ in J, we have
max |{(og+it)] = O(loglog K).
oz 1,tinJ
'_The length of the interval J is K—2(log H)? = M, say. The following theorem

1s a simple corollary to a theorem essentially due to K. Ramachandra [4] (see
also [3]).

~ THEOREM 5. Let C, be a large constant and Cy < M < T. Let k be a positive
integer not exceeding log M and let J be an interval (contained in [T, 2T]) of
length M, and

max |{(o+it)|** < Exp Exp {M/804},

e=1,tinJ
Where A is a large constant. Then
d 2
L parmpas S 5 @GOF
- M, loglog M , < ij200 1
Where C, is a positive constant depending only on A.

Remark. We wish to apply this theorem to the special case. The upper

ound on max (... is certainly satisfied.
ez 1,tinJ
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tin

From this theorem we try to get a lower bound for max |{(1+it)l
J

For this purpose we observe the following facts.
(1) dy(n)/n is multiplicative and

(") k(k+1)...(k+m—1)
™ m!p” '

dy (") _ (dt(p“))( k+m ) B (§)(d&(p“’))
U \m+0p) S\&)\UTp )

provided 4k+4m < 3mp+3p, ie. m > (4k—3p)/(3p—4) = m, say.
(2) m, may not be an integer, but

i e 0k
_ PT T 3p—4 p’
1\ "k ® m my m
3) (l——) = 4 (p )<(mp+l} max dL(g—-l+3 max d"(ﬁ ),
p m=0 PM msmp p m=mp p

since 3+(3)*+3)P+...=3.

(4) Thus if m denotes the integer (to avoid complicated notations) not
exceeding m, for which the maximum of d, (p™)/p™ is attained, we have .

(dk(Pm))2>( 1 2 1_1 -2k
) () ()

(5) We choose k (as large as possible) to satisfy

M . M 4klogp . 1 logM
g ge e s ~4klogk, ie ko8l
,1,1" 200 200 E,‘ P L T

(6) Hence

48 ( c, )mm 1_1 1\ I_[ ; 1\t
max +it)| = =
tinJ l loglog M (y&tmp+4) psk( P)

_ loglog M logloglog M 1
= (l+ O( log M ))(1+0(710glogM))Y

where Y= e’(loglog M —logloglog M + O(1)). Since M ~ K we obtain the
following theorem. '

THEOREM 6. We have

max [{ (1+it)] > e’ (loglog K —logloglog K + O (1)).
tinJ 3

We record a corollary to Theorems 3 and 6:
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THEOREM 7. We have

¢’ (loglog K —logloglog K + 0 (1)) < max [{ (1 +it)|
tinJ

< e'(loglog K +logloglog K +0(1)).

Remark. In proving Theorem 6, we have followed the method of proof of
Theorem 5 of [5]. It should be mentioned that the method of [1] also works
(see the last result in Remark 3 on p. 342 and its proof sketched in § 3).

4. Two theorems. We state two theorems and indicate their proof. Our
Notation in this section will be independent of the previous sections.

THEOREM 8. (a) Let I be any interval for t contained in [T, 2T]. Then
max |{(c+it)| > e’ (loglog K —logloglog K+ 0(1))
I

a2 1,tin
Where K = |I|+ 10000.
(b) Let I be any interval for t contained in [T, 2T] and K (as defined just
now) exceed Clogloglog T where C is a large constant. Then provided T = C,

max |{ (1+it)] = e (loglog K —logloglog K + 0 (1)).
tinl

Proof. To prove (a) we observe that we may assume that

max |{(c+if) < 10loglog K
az1,tinl
(for otherwise there is nothing to prove). K is essentially (M in the notation of
Theorem 5) the length of I and we choose (as in the proof of Theorem 6) k to
be ~ 108K
4loglog K
and we obtain

The condition for the applicability of Theorem 5 is satisfied

) C ) (d (") 2% 1/(2k)
P e gl
rrr:::; R (108108 K, <k200 n

Thus we obtain part (a) as in the proof of Theorem 6.
To prove (b) we recall the well-known result that
max [{(e+it) = O(log T).
a2 1,0in[T,2T] )
So the conditions of Theorem 5 are satisfied provided the length of I (M of
Theorem 5) namely K exceeds Clogloglog T The part (b) follows as before. o

THEOREM 9. Let C be any large positive constant and C < H <
Cloglog log T, T > C. Let the interval [T, 2T] be divided into disjoint intervals
I each of length H (ignoring an interval of length < H at one end).
Put x = Exp Exp Exp(«H), where « is a small positive absolute constant. Then
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with the possible exception of at most O(TX ~?) intervals I, we have

max |{ (1 +it)] > ¢’ (loglog H —logloglog H + 0 (1)).
tinl]

Proof Letd =(logX) ', s=0+itwhere T<t<2Tand2>0 > 1—0.
We start with

1
2mi g,

f g(s+w)waxp(w2)‘%”= ii,,j({)

w=2 n=11 n

where for u > 0,

A(u) = [ u”Exp [wz)d:w.

E-_l Rew=2

We note that 4(u) = O(u*) for 0 <u < 1 and that A(u) = 14+0(u"%) foru > 1.
By moving the line of integration to Re w = 3 — ¢ and integrating we obtain the
following lemma.

LEMMA 1. Let
© 1 X
(=Y —,4(_)+E(S,X)_
N=1" n
Then
i§  |E(s, X)|*dodt = O(TX ~'/2).
1-d<e<2
T=t<2T

We next record another lemma.

LEMMA 2. For 1-6<0<2 and T <t <2T, we have uniformly

=1 /X 1
—A|l—)= —+0(1)=0(logX).
HZ:I n (") »:gx""Jr Ll EagE

Proof. Follows from the properties of A(u) stated above.
Theorem 9 follows from Theorem 5 on using Lemmas 1 and 2.

5. Concluding remarks. 1. Nearly all the bounds (both upper and lower)
have their analogues for [{(1 +it)|~*. The constant ¢’ will have to be replaced
by (6/n?)e’ for this purpose.

2. Theorem 5 can be used to prove that both |{(s)| and [{(s)|~! are
unbounded ino > l,e.g. ono =1+ @, t = 10. Precise theorems similar to
those of this paper can also be proved.

6. An announcement. Recently K. Ramachandra has proved the following
two results.
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THeorReM 10. (a) In Theorem 8(b) let logloglog T be replaced by
loglogloglog T. Then the conclusion of Theorem 8(b) still holds where
K = |I|+10000.

(b) In Theorem 9 let logloglog T be replaced by loglogloglog T and
X = Exp Exp Exp Exp(«H). Then the conclusion of Theorem 9 still holds.

THEOREM 11. (a) In Theorem 8(b) let logloglog T be replaced by
logloglogloglog T. Then the conclusion of Theorem 8(b) still holds where
K= |I|+ 10000 provided we assume that the least upper bound of the real parts
of the zeros of ((s) is less than 1.

(b) In Theorem 9 let logloglog T be replaced by logloglogloglogT and
X = Exp Exp Exp Exp Exp (¢H). Then the conclusion of Theorem 9 still holds.

These will be published as the next paper with the same title.*

Acknowledgement. The authors are thankful to the referee for pointing out
an oversight.
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