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1. Introduction. Let K be an algebraic number field of degree n with ring of
integers Oy and unit group Ug. Many numbertheoretical problems lead to
equations of the types

(1) ax+by=c in x,yeUy
or more generally .
(2) ax+by=c in x, ye0,\{0} with max {|Ng,o(X)|, INx(»I} <N

where a, b and c are given non-zero elements of K and N > 1 is a given integer.
For surveys on equations (1) and (2) and their applications we refer to [15], [8],
{97, [10], [20], [11], (18], [6] and [12]. Equation (1) is called a unit equation.
For N = 1, equation (2) becomes equation (1). Further, for N > 1, equation (2)
can be reduced to finitely many unit equations. The number of solutions of (1)
can be estimated from above by a bound which depends only on n (cf. Evertse
[3]). Moreover, most of the unit equations have considerably fewer solutions
(cf. Gyory [7] and Evertse, Gyory, Stewart and Tijdeman [5]). These and other
related results will be referred to in more detail at the beginnings of Sections
2 and 3.

The main purpose of the present paper is to considerably refine the results
of [7] and [5] in the important special case when the coefficients a, b, ¢ in (1)
are rational numbers. Furthermore, we shall establish our results for the more
general equation (2) having rational coefficients a, b, c. In this situation (2)
cannot be reduced in general to equations of type (1) with rational coefficients.
It will be enough to deal with the case when, in (1) and (2), @, b and ¢ are
pairwise relatively prime positive integers (cf. Section 2). We shall show
(cf. Section 2, Theorem 1) that for all but finitely many triples (a, b, c)e N* with
coprime a, b, ¢, equation (2) has at most one, so-called trivial, solution.

* Research supported in part by Grant 273 from the Hungarian National Foundation for
Scientific Research.
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Further, for fixed coprime a, be N we shall obtain a more precise result (cf.
Section 2, Theorem 2). It will be proved that for all but finitely many positive
integers ¢ with (ab, c¢) = 1, equation (2) has a trivial solution (x, y) if and only if
a=b=1,c=x4+y and x, y are conjugate elements in some real quadratic
subfield of K.

Theorems 1 and 2 are ineffective in the sense that their proofs do not
enable one to determine the finitely many exceptional equations which have
a non-trivial solution or more than one trivial solutions. This is due to the fact
that in the proofs the Thue-Siegel-Roth-Schmidt method is involved. By using
an effective lower bound of Loxton [13] for simultaneous linear forms in
logarithms we shall also establish (cf. Section 3, Theorem 3) a weaker but
effective version of Theorem 2. Moreover, we shall give (cf. Section 3, Theorem
4) a quantitative version of Theorem 3 by deriving an effective upper bound for
the minima of the sizes of the components of solutions (x, y) of (2). This bound
has the property that it tends to zero as c tends to infinity, This implies that
under appropriate conditions, equation (2) has no solution.

The ineffective results are formulated in Section 2. Section 3 is devoted to
the effective results. Theorems 1 and 2 are proved in Section 4, Theorem 4 in
Section 5.

2. Ineffective results. We shall use the same notation as above. Consider
first equations (1) and (2) in the general case when a, b, ¢ are not necessarily
rational elements of K. Denote by v, (a, b, ¢) and vy(a, b, ¢) the number of
solutions of (1) and (2), respectively. Every solution of (1) is also a solution of
(2), hence v,(a, b, ¢) < vy(a,b, ¢). It was proved by Evertse [3] that

vila, b, o)L 3 x et

where r denotes the unit rank of K. Equation (2) can be reduced to y?(N)

equations of type (1) where ¥ (N) is the maximal number of pairwise
non-associate non-zero elements a in Oy with |Ng, ()] < N. Hence

vyla, b, c) gl 3Y2(N) x 7"+2+ D),
It follows from certain explicit estimates of Sunley [22] that
¥ (N) < €7Dy ) (log2Df N.

Here D, denotes the discriminant of K.
Two triples (a, b, ¢) and (a, &', ¢’) in (K*)* (*) (and the corresponding unit
equations) are called K-equivalent if

a=72a, b =2igb, =4

with some AeK* and &,,¢,, 656Uy It is easy to check that if (a, b, c)
and (a', b', ¢’) are K-equivalent then vy(a, b, ¢) = vy(a', b', ¢) for all N > 1.

(") K* denotes the set of non-zero elements of K.
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Obviously, the same holds for Q-equivalent triples from (Q*). Evertse, Gyory,
Stewart and Tijdeman [5] showed that v, (a, b, ¢) < 2 for all but finitely many
K-equivalence classes of triples (a, b, ¢)e(K*)*(*). Further, they pointed out
(see [6], § 1) that, for r > 0, the upper bound “two” cannot be improved,
because there are infinitely many K-equivalence classes of triples
(a, b, c)e(K*)® with v, (a, b, c¢) = 2. However, the method of proof used in [5]
and [6] does not provide any more information about the equations of type (1)
having at most two solutions. Our Theorem 1 below characterizes, with at
most finitely many exceptions, both the Q-equivalence classes of triples
(a, b, c)e(Q@*)* for which equation (2) is solvable and all the solutions of these
equations.

In the remainder of this section we assume that in (1) and (2) the
coefficients a, b, ¢ are rational numbers. Before stating Theorem 1 we make
some remarks. If (x, y) is a solution of (2) then so is (x', y') for all those
conjugates x', y’ of x, y which belong to K. We shall not distinguish between
conjugate solutions.

A solution (x, y) of (1) or (2) will be called trivial if x and y belong to Q or
a real quadratic subfield of K. It is clear that there are infinitely many
Q-equivalence classes of triples (a, b, ¢)e(Q*)* for which equations (1) and (2)
have a trivial solution in Q. Further, if K contains a real quadratic subfield,
L say, with ring of integers O, then, for any non-zero x, yeQ, with
max {|Ngo(X)l, INg( I} <N for which x,y and 1 are pairwise linearly
independent over Q, (x, y) is a trivial solution of some equation of type (2) with
rational coefficients.

Equations (1) and (2) with rational coefficients can have relatively many
Solutions. Nagell [15] showed that for n > 5 there exists an algebraic number
field K of degree n such that v, (1, 1, 1) > 3(2n—3). Furthermore, equation (2)
can have many trivial solutions if N is sufficiently large. Indeed, let a, b and
¢ be positive rational integers with coprime a and b. Then all solutions of the
€quation ax+by =c in x, yeZ can be given in the form

X=Xxqo+at, y=y,—bt, t=0,+1, £2,...

where (xo, ¥o) is a particular solution with max (x|, | yol) < A: = max(a, b, c).
It is easy to see that if now N > 4" then at least N'/"/4 of the solutions in
Question satisfy (2), i.e. vy(a, b, ¢) = N'/"/A.

THEOREM 1. Apart from finitely many Q-equivalence classes of triples
(a, b, c)e(Q*)?, equation (2) with non-zero rational coefficients has at most one
solution (up to conjugacy) which is a trivial solution.

All those equations of type (2) with rational coefficients which have
solution in some real quadratic subfield L of K can be parametrized (provided
that the fundamental unit and a maximal set of pairwise non-associate integers

——

(*) Added in proof Recently, Evertse and Gyory proved (J. Reine Angew. Math. 399
(1989), 60-80) the same assertion for vy(a, b, c).
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@ in L with |[Ng(x) < N are given). For simplicity, let us consider the
particular case N = 1. Suppose that K has a real quadratic subfield L with unit
group U;. Then L= Q{\/d) for some squarefree rational integer d > 0.
Further, {1, w} is an integral basis for L with w=(1+./d)/2 or w=/d
according as d = 1 (mod 4) or d = 2, 3(mod 4). If (x, y) is a solution of (1) with
x, y belonging to L then

x=+¢, y=+¢& with some u,veZ
where & denotes the fundamental unit of L with ¢ > 1. We have

=g +ew, =¢+ew

"

with appropriate rational integers &, &, €, & where ¢ # 0 for u# 0 and
g, #0 for v#0. If x and y are rational (ie. x, ye{l, —1}) then

a(sign x)+b(sign y) = c.

For not rational x, y we have uv # 0 and u # v. Then it follows from (1) that up
to a proportional factor, the coefficients a, b and ¢ are determined by

a=(signy)e,, b= —(signx)e,, ¢ =(signx)(signy)(e,c, —&Le,).
These numbers a, b, ¢ are non-zero rational integers for all distinct non-zero
u, ve Z. Further, when u, v with u # v run through the rational integers these
triples provide all the equations of type (1) with rational coefficients which have
a solution in U \{1, —1}.

In the next theorem we deal with equations (1) and (2) for fixed coefficients
a and b. Every Q-equivalence class of (Q*)* contains a representative (a, b, ¢)
with relatively prime positive ‘integers a, b and ¢. Hence we may assume
without loss of generality that in (1) and (2) a, b and ¢ are positive integers, that
(a, b) = 1 and that, in case of (1), a, b and c are pairwise relatively prime. This
latter assumption may be made for equation (2), too. Indeed, if (x, y) is
a solution of (2) then the greatest common divisors (a, ¢) and (b, c) divide in Qg
y and x, respectively. After dividing in (2) a, ¢ and y by (a, ¢) and b, ¢ and x by
(b, ¢) the new coeflicients will be pairwise relatively prime.

It follows from Theorem 1 that for all but finitely many positive integers c,
the equation

(2) x+y=c in x, ye0,\{0} with max {|Ngp(x)|, INgkj (I} <N

has at most one, trivial solution (up to conjugacy). But if (x, y) is a solution of
(2') then so is (y, x). Hence either x = y (when x, ye Z) or x and y must be
conjugate real quadratic integers in K. On the other hand, if K has a real
quadratic subfield then there are infinitely many positive integers ¢ which can
be represented in the form (2') with conjugate integers x, y from the subfield
under consideration.
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THEOREM 2. Let a and b be relatively prime positive rational integers. There
exists a number C, (K, N), depending only on K and N, with the following
broperty. For all but at most C,(K, N) positive integers ¢ with (ab, ¢) =1,
equation (2) is solvable if and only if a = b =1 and ¢ can be represented in the
Jorm (2') with some conjugate real quadratic integers x, y in O. In this case
(x, y) is the only solution of (2).

Clearly, Theorems 1 and 2 yield the same assertions for equations of type
(1) by choosing N = 1. An interesting consequence of Theorem 2 is that if @ and
b are coprime positive integers with ab > 1 then ax+ by can assume at most
2C1 (K, 1) rational integer values whenever x, y run through the units of K.

In Theorems 1 and 2 the situation becomes much simpler when K
Contains no real quadratic subfield. Then we have as immediate conse-
Quences the following corollaries.

COROLLARY 1. Assume that K has no real quadratic subfield. Then apart
Jrom finitely many Q-equivalence classes of triples (a, b, ¢)e(Q*)?, equation (2)
With non-zero rational coefficients has at most one solution (x, y) in which x, y
are rational integers.

COROLLARY 2. Let a, b be coprime positive integers and assume that K has
"o real quadratic subfield. Then apart from at most C, (K, 1) positive integers c,
equation (1) with positive integer coefficient ¢ has no solution.

The proofs of Theorems 1 and 2 can be found in Section 4. They are based
on a combination of the above-mentioned result of [5] with a recent theorem
of Evertse and Gyory [4] on unit equations in more than two unknowns. The
Tesults utilized from [5] and [4] are ineffective, hence our above theorems are
also ineffective. Our method of proof does not make it possible to determine
the finitely many equivalence classes of equations having a non-trivial solution
Or more than one trivial solutions.

3. Effective results. We keep the notation of Sections 1 and 2. First
Consider again equations (1) and (2) in the general case when a, b and ¢ are
arbitrary elements of K*. For an algebraic integer o we denote by [a] the size of
% that is the maximum of the absolute values of the conjugates of «. By means
of Baker’s method effective upper bounds can be derived for the sizes of x and
Y where (x,y) is an arbitrary solution of (1) or (2). Assuming that
4, b, ce 04\ {0} (which is no restriction), the best known bound (cf. [8]) for the
Solutions (x, y) of (2) is of the form

() max (1, [7]) < exp {(5(n+1)2°"* VD32 (log [2D|)>" log AN}

Where A: = max([al, [B], [€], 3).

As was mentioned in the preceding section, v,(a, b, ¢) <2 for all but
finite]y many K-equivalence classes of triples (a, b, ¢)e(K*)®. This result is,
hOWever, ineffective, its proof does not enable one to determine all triples
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(a, b, ¢) for which v, (a, b, ¢) > 2. Some weaker but effective results have also
been established in this direction by using Baker’s method. Gyory [7] showed
in 1979 that v, (a, b, ¢) < r+1 for infinitely many and effectively determinable
K-equivalence classes of (a, b, ¢)e(K*)*. More precisely, it was proved in [7]
that this bound is valid for every triple (a, b, ¢)e(04\{0})*® which satisfies for
some g > 0 the inequality

|Nx,r('3 (c)] > max {Cz (K, 0}, (min (|Nx,r9(a)|; |Nx,rq(b)|))l +o}

where C,(K, ) is an effectively computable number (which was given
explicitly in [7]). There are, however, infinitely many K-equivalence classes
which have no such a representative (a, b, c). Later, Evertse, Gyory, Stewart
and Tijdeman [5] showed that v, (a, b, ¢) < r+2 for all but finitely many
K-equivalence classes of triples (a, b, ¢)e(K*)®> which can be effectively
determined (*).

In the remaining part of this section we shall deal with equations (1) and
(2) in the case when the coefficients a, b and ¢ are rational numbers. As we have
shown in Section 2, in this case we may suppose without loss of generality that
a, b and c are pairwise relatively prime positive rational integers. Further, we
assume that max(a, b, ¢) = ¢. In case of equation (1) this is no restriction,
because this situation can be achieved by multiplying (1) by x~! or y~ ' if
necessary.

If K is a normal extension of Q then any solution of (1) yields further
solutions by taking conjugates. Then, subject to appropriate conditions
concerning a, b, ¢ and K, the above-quoted upper bounds for v, (a, b, c) lead
to a contradiction. The following theorem gives, however, a much more precise
result.

THeEOREM 3. There exists an effectively computable positive number
Cy = Cy(n, |Dg|) with the following property. If

¢ > exp {max ((2N), (log 3a)* (log 3b))}

then (2) has at most one solution (up to comjugacy). Further, if ab>1 or
n=[K:Q] is odd then (2) has no solution,

Theorem 3 is a weaker but effective version of Theorem 2. Theorem
3 should also be compared with the above-quoted result of [7]. For triples
(a, b, ¢)e N3, Theorem 3 provides a more precise result on equation (1). On the
other hand, in the case a = b = 1, N = 1 and n odd, the assertion of Theorem
3 can also be deduced from the result of [7].

As we have seen in Section 2, if a=b =1 and K has a real quadratic
subfield (when n is even) then (2) has a solution (x, y) for infinitely many ce N
and min(| x|, | y[) can be arbitrarily large, provided that c is sufficiently large.
This shows that in this case there does exist an exceptional solution in

(*) Added in proof. Recently, Evertse and Gyory (J. Reine Angew. Math. 399 (1989), 60-80)
extended this result to vy(a, b, c). :
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Theorem 3 and Theorem 4 below. Further, the examples given in Section
2 show that Theorem 3 does not remain valid for those ¢ which are not large
enough relative to N or max(a, b).

Theorem 3 is a consequence of the following quantitative version.

THEOREM 4. There exists an effectively computable number C, = C,(n, |Dy)
With the following property. If ¢ > exp {(2N)“*} then apart from at most one
exception (up to conjugacy), each solution of equation (2) satisfies

exp {((log 3a) (log 3b) (log c))**}
< :

(C] min (x|, [y]) <

Further, if ab> 1 or n is odd then each solution of (2) satisfies (4).

This bound in (4) has the property that if ¢ is large enough with respect to
a and b then the bound becomes less than 1. However, for any non-zero
algebraic integers x, y, min ([x|, [y]) = 1 holds, hence Theorem 3 immediately
follows from Theorem 4.

It is interesting to compare the estimates (4) and (3). From equation (2)
and estimate (4) one can easily deduce an upper bound also for max ([x]|, [y])
and, for c large, this gives a better estimate than (3). In the case when a, b, ce N
and gb>1 or n is odd, for large ¢ Theorem 4 can be considered as
4 considerable refinement of the result (3).

4. Proofs of Theorems 1 and 2. We adopt the notation of Sections 1 and 2.
To prove Theorems 1 and 2 we shall need two lemmas.

For any aeK* and any prime ideal p in Oy, we denote by ord,x the
€Xponent of p in the prime ideal decomposition of the principal ideal («). Let
S be a finite (possibly empty) set of prime ideals in Oy. An element 2 of K* is
said to be an S-unit if ord,a = 0 for all prime ideals p not contained in S. The
S-units form a group under multiplication which is denoted by U s- This group
Us contains Uy as a subgroup and if S is empty then Ug = Uy. Consider the
So-called S-unit equation

(5) ax+by=c in x, yeUs,

Where a, b, ce K*. Equation (5) is a generalization of equation (1).

The triples (a, b, ¢), (@, b', ¢') in (K*)® will be said to be (K, S)-equivalent if
there are &y, &5, 836 Ug and A€ K* such that a' = Aga, b’ = Ae,b, ¢’ = Adeye.
Obviously, the number of solutions of (5) remains unchanged when (a, b, ¢) is
Teplaced by a (K, S)-equivalent triple. The result of [5] quoted in Section 2 was
Proved in the following more general form.

LeEmMma 1 (Evertse, Gy(;ry, Stewart and Tijdeman [5]). Equation (5) has at
Most two solutions for all but finitely many (K, S)-equivalence classes of triples

(@, b, c)e(K*)°.

Proof. This is Theorem 1 in [5].
Let k > 2 be an integer, and let a,, a,, ..., a, be non-zero elements of K.

W il o ey
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The equation
6) a X, +...+ax, =a, in x,,...,xeUs

is a generalization of equation (5). A solution (xy, ..., x;) of (6) is called
non-degenerate if

Y ax;#0 for each non-empty subset J of {1,..., k}

jed
and degenerate otherwise. It is clear that if Uy is infinite and if (6) has
a degenerate solution then (6) has infinitely many degenerate solutions. Evertse
[2] and van der Poorten and Schlickewei [16] proved independently of each
other that (6) has only finitely many non-degenerate solutions. The next lemma
is a refinement of this result.

LemMA 2 (Evertse and Gyory [4]). The number of non-degenerate solutions
of (6) is at most Cs(k, Ug), where Cs is a number depending only on k and Us.

Proof. This is a special case of Theorem 1 in [4]. For k = 2, an explicit
expression for C4(2, Ug) can be found in Evertse [3].

In what follows, Cg4, C, ..., C;, will denote positive numbers which
depend only on K and N.

Proof of Theorem1. Every prime ideal p of Oy divides some rational
prime p for which N (p) = p% with some positive integer f, < n. Denote by
S the set of those prime ideals in O, which are divisors of rational primes not
exceeding N. Then § is finite and Uy, the corresponding S-unit group, depends
only on K and N. Further, x and y are S-units for each solution (x, y) of (2)-

We can choose from every Q-equivalence class of (Q*)° a uniquely
determined representative (a, b, ¢) with relatively prime positive rational
integers a, b and ¢. Hence it suffices to prove the theorem for equations of type
(2) with relatively prime positive integer coefficients. Further, we note that if
(x, y) is a solution of (2) then (2) implies that (a, b) = 1, (a, ¢)| y and (b, ¢)|x in
Oy. So the absolute values of (a, ¢) and (b, ¢} do not exceed N Ln

Suppose that equation (2) with relatively prime coefficients a, b, ce N has
at least three solutions. Then it follows from Lemma 1 that

) a=led, b=IAgb, =2

where 1€ K*, ¢,, &,, &; are S-units and (@', b', ¢) belongs to a finite subset of
(K*)? of cardinality at most C which is independent of a, b and c. Further, we
can write

(8) a=-ea,, b=eb;, c=e5

where e,, e,, 5, a,, by, ¢, are positive integers such that e, e,, e; are
divisible only by primes not exceeding N and that a,, by, ¢, have no prime
factor < N. Since, by assumption, a, b, c are relatively prime hence so are both
e,, ,, e5 and ay, by, c,. Furthermore, e,, e,, e; are S-units.
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We deduce from (7) and (8) that

o (5) - (G ee(2)vee(5)

The primes in the prime decomposition of N (¢,/¢,) do not exceed N. But a,
and b, are not divisible by primes < N, heénce (9) implies that (a,/b,)" and so
a,/b, are uniquely determined by Ng(a'/b’). Further, (a;, b,)=1 and
Ny, (a//b’) assumes at most C, distinct values. Thus the number of possible
values of a, and b, is at most C,. We can proceed in the same way with a, and
¢,, and in view of |(a,, ¢,)| < |(a, ¢)] < N*/" we obtain that (a,, b,, c,) belongs
to a finite subset of N® of cardinality at most Cg which is independent
of a,b and c. .

Fix now such a triple (a,, b,, ¢,). Then it follows from (2) and (9) that

e,x e ., eX e
a, (L)ﬁbl (iy) =¢, with == ) e Us.
ey e, e’ e,

By Lemma 2, e,x/e; and e,y/e; and hence their norms

(:_1)" Ngjo(x) and (:—z)" Ngjo(y)

3

can assume at most C, distinct values. Since

max {|N g (*)|, INg(»I} <N,

this implies that e,/e; and e,/e, can assume at most C,, distinct values. But
(ey, e,)|(a, c) and (e,, e3)|(b, c), hence we can proceed in a similar way as above
to show that each of the e, e,, e; can assume at most C,, values. Consequent-
ly, excluding at most C,, triples (a, b, c)e N 3 with relatively prime a, b, c, each
of the remaining equations (2) has at most two solutions.

If (2) has two solutions with rational components x, y then, by Cramer’s
rule, we get that max (a, b, ¢) < C,5. This implies that excluding again at most
C,4 further triples (a, b, c)e N*> with relatively prime a, b, ¢, each of the
remaining equations (2) has at most two solutions, and at most one solution
with rational components x, y.

Let now (a, b, ¢)e N* be one of the remaining triples, and suppose that for
this triple (2) has a solution (x, y). Put L = Q(x) = Q(y) and I = [L: @]. Since
.the | conjugates of (x, y) are also solutions of (2), hence we have I < 2. Thus L
I8 either the rational field or a quadratic field. Further, it follows that (up to
conjugacy) (x, y) is the only solution of (2). If L is Q or a real quadratic field
then our proof is completed. It remained the case when /=2 and L is an
Imaginary quadratic field. Denoting by X, y the complex conjugates of x, y, we
get from (2) that

a(x—x)= —b(y—y).



376 B. Brindza and K. Gyory

By taking norms of both sides and using the fact that (a, b) = 1, we see that
max(a, b) < C,s. Then (2) implies that ¢ < C,s. Consequently, apart from at
most C,, further triples (a, b, ¢), L cannot be imaginary and this completes
the proof.

Proof of Theorem 2. Let a, b be given coprime positive integers. The
number of non-zero rational integers x with |x|" < N is at most 2N /", So there
are at most (2N'/")? rational integers ¢ for which (2) is soluble in rational
integers x, y. This together with Theorem 1 imply that for all but at most
C, rational integers c with (ab, ¢) = 1, equation (2) has the following property.
If (2) is solvable and (x, y) is a solution of (2) then, up to conjugacy, this is the
only solution and x, y are non-rational integers in a real quadratic subfield,
L say, of K. We denote by x’, y' the conjugates of x, y, respectively. Then (2)
implies that

ax+by = ax'+by,
whence
1 =x'/x+ (b/a) y'/x— (b/a) y/x.

Let § and Ug have the same meaning as in the above proof of Theorem 1. Then
x,x', y,y are S-units and (x'/x, y'/x, y/x) is a solution of the equation

(10) z,+(bfa)z,— (b/a)z; =1 in z, z,, z,e Ug.
We show that if ab > 1 then (x'/x, y'/x, y/x) is a non-degenerate solution
of (10).

The relations

(b/a)y'/x— (bja)y/x =0, X'/x=1
cannot hold because x' # x. If

x'/x—(b/a)y/x =0, (b/a)y/x =1

then by = ax'. Hence it follows from (2) that a(x+ x’) = c. Since x + x' € Z, this
implies that a|c in Z. Similarly, b|c in Z. But a, b, ¢ are coprime soa=b = 1.
Finally, if

x/x+(b/a)y/x =0, —(b/a)y/x=1

then ax+ by = 0 which is impossible by (2). Thus, if ab > 1, (x'/x, y'/x, y/x) is
indeed a non-degenerate solution of (10). It follows now from Lemma 2 that
X'/x, y'/x and y/x belong to a finite subset of K* of cardinality at most C,s. But
xx' = Npg(x) =1 or —1 and similarly yy’ = 1 or —1. Therefore x2, x'2, y2, y'*
and hence x, x’, y, )’ also belong to a subset of K* of cardinality at most C;p.
The integers a and b being fixed, ax+ by can assume now at most C,, distinct
values. Consequently, apart from at most C,, further values of ¢ with
(ab, ¢) =1, (2) has no solution if ab > 1.
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Finally, we consider the case whena = b =1 and ¢ = x+y. Since x, y are
hot rational, x # y. Further, y must be a conjugate of x since otherwise ( y, x)
Would be a third solution of (2) which is impossible. This completes the proof of
the theorem.

5. Proof of Theorem 4. To prove Theorem 4 we need several lemmas. We
shall keep the notation of the previous sections.

For any algebraic number «, we denote by H (a) its (usual) height, that is
the maximum of the absolute values of the coefficients of the minimal
Polynomial of « over Z. Notice that

H(l/e)=H(x) and [a] < deg(x)H (x).

Further, if a is an algebraic integer then

H(G‘.} < {2 l?l)deg{etl and |a— 1i | < I?idq{ul— 1 :
For algebraic numbers a, # of degree at most n, H(«+ ) and H (zf) do not’
exceed (max (2, H (a), H (}.‘i)))Cn where C,4 is an effectively computable number
:Vhich depends only on n. For these and other properties of the height we refer
o [18].

In what follows, C;4, C;s, ... will denote effectively computable numbers
> 1 which, unless otherwise stated, depend at most on n and on |D,|. We shall
use frequently the fact that the class number hy of K and the regulator Ry of
K can be estimated from above by effectively computable numbers depending
°_ﬂly on n and |Dg|. This follows from an upper bound for hyR, obtained by
Siegel [19] and a lower bound for Ry due to Zimmert [23].

Let 6,,...,0, be the distinct Q-isomorphisms of K in C, and put
9;(e) = o for ae K. Suppose that there are r, real conjugate fields to K and
2r, complex conjugates to K and that they are ordered in the usual manner:
9(K) is real for i = 1, ..., r, and g;,,,(K) is the complex conjugate of g,(K)
for i = rFl T

LemMMA 1. If r> 1, then there exist multiplicatively independent units
1> ..., & in Og with heights not exceeding C,4 such that the entries of the inverse
of the matrix (log|ef|), < isr have absolute values at most C,s.

1<i<r

Proof. See e.g. [10] or [18].

Let ¢,,...,¢ be a fixed system of independent units in Oy with the
Properties specified in Lemma 1, and denote by U the multiplicative group
8enerated by them.

LeMMmA 2. Let ae K*. Then there exists an e€U such that
[ea] < Ca6 Ny (@)
Proof. See e.g. [10] or [18].
Let S be a set of at most ¢ prime ideals which lie above rational primes not

[
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exceeding P (> 2). Denote by 4" the set of o€ Ox\{0} with [Ng,o(a)| < N.
LEMMA 3. Let o, a,, o3 be non-zero elements of Oy with max [o,| < A (4 = 3).
1=k=3

If x,, x, and x5 are non-zero elements of Oy satisfying
0 Xy F0,X, +oxs =0 and  xy, x5, X3€ A (Ugn Oy)
then for some ne Ugn Oy, we have n~ 'x,€04 (k=1, 2, 3) and

(11) max |n7' x| <exp{(Ca7(t+1)log P)c2¢+1) P log (AN)}.
1<k=3

Proof. See Lemma 6 in [7]. We note that the proof of this lemma involves
the effective theory of linear forms in logarithms and its p-adic analogue.

LEMMA 4. Let o, ,, ay be as in Lemma 3, and let a,, ... ,a,, by, ..., b,
be rational integers with

I L Sl S 2= LY e
Then

(12) max(la]ly Ay Iarl'l |bl|'l LEEEE | |brl) < C29 logA'

Remark. Lemma 4 was implicitly proved in [7], in the proof of the above
Lemma 3. For convenience of the reader, we deduce here Lemma 4 from
Lemmas 3 and 1.

Proof of Lemma 4. Put
Xy =ell.g, xy=dl.d, xy=-—1.

By applying Lemma 3 with the choice t = 0, P = 2 we deduce that there is an
ne Uy such that (11) holds with t = 0, P = 2, N = 1. But |7~ | < |»|""*, hence
it follows from (11) that max (jx{’], 1/]xf’]) < C3¢ A®** whence

ik

(13) —Cj,logA < a,logle?|+ ... +a,logle] < Cyylogd  for i=1,...,n

By Lemma 1, the entries of the inverse of the matrix (loglef’]), L<sr have
absolute values at most C,5. Thus (13) implies that

M

E

max(la,l, ..., la]) < Ci3log A.
A similar upper bound can be derived for max(|b,|, ..., |b,]) and (12) follows.
The next lemma is due to Loxton and van der Poorten [14].

LemMma 5. Let n,, ..., n, be multiplicatively dependent numbers in K. Let
w(K) denote the number of roots of unity in K. Then there are rational integers
my, ..., my, not all zero, such that
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nTt..se =1
and
(14) Im| < C34w(K) ‘];[JlogH(rh} for j=1,...,s.
Proof. This is in fact Theorem 3 of [14], apart from the fact that in [14]
the absolute logarithmic height h(n) occurs instead of log H (n,). But
(15) Caslog H(n) < h(n) < Cselog H ()

(cf. [11], p. 60) hence (14) also holds. .
We observe that the roots of unity generate a subfield of degree ¢ (w(K)) in
K where ¢() denotes the Euler function. Hence ¢ (w(K)) divides n, that is

(16) w(K) < C;4.
Consider the numbers

Ay=mirg@e—1, j=1,..,1

where s > 2, the n’s are elements of K* and the g’s are rational integers. We
assume that the n’s are multiplicatively independent, and that the matrix (g;)
formed by the ¢'s has rank [. Further, we suppose that the height of #, is at most
A;(= 4), and that g; has ‘absolute value at most Q (= 4). We set

=logA,...log A,.

The following lemma is an easy consequence of Theorem 4 of Loxton [13]
on simultaneous linear forms in logarithms. It will play a crucial réle in the
proof of Theorem 4. We note that the best known effective lower bound for
a single linear form in logarithms would not be sharp enough in terms of Q to
prove our Theorem 4.

LEMMA 6. Under the above assumption we have

(17) max [4,| > exp {— C15 (2 log Q)*/ log (QQ)}
1sjst

where C,g is an effectively computable positive number depending only on s and n.
Proof. For a deduction of Lemma 6 from Theorem 4 of [13], see [1]. In
[1], the Mahler height M (n,) is used instead of H(n,). However, we have
Ciolog H(n;) < log M () < Caolog H(n)
(cf. (15) and [11], p. 54), hence (17) holds.

Proof of Theorem 4. Denote by G the normal closure of K/Q, and by
Og, g and D, the ring of integers, the degree and the discriminant of G,
respectively. At some points of our proof we shall work in G. We shall use the
inequalities |[Dg| < [Dgl? (cf. [21], Lemma 7) and g < nl.
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Let (x, y) be an arbitrary but fixed solution of (2). If r;, the unit rank of O,
is equal to zero then the assertion easily follows. In this case max (a, b) = c/(2N),
since otherwise (2) would not have any solution. If now ¢ > max {(4N)?, %7}
then ¢/(2N) > ¢'/* and the bound occurring in Theorem 4 is greater than N.
But min([x], [¥]) < N hence (4) is proved.

Next we suppose that r; > 1 when n > 2. Then, from (2) we get
(18) axV4+by® =¢ for i=1,...,n.

Let i, be an index for which |x“’| is minimal among the numbers
[xM], ..., |x™|. We may assume without loss of generality that | y| is minimal
among the numbers |y, ..., |y™|. Then it follows from (18) that

ax _blyl
(19) ?_IIT -
and
(20) |by{io}_l _ alx""”l
| ¢ e -

Let {¢,, ..., &} be a fixed system of multiplicatively independent units in
O, with the properties specified in Lemma 1. Then, by Lemma 2, there are
a, B, x', y'eO0g such that

(21) x=ox, y=pBy and hence yio = Bio) G
where

(22) X o=,y = g gl

with appropriate rational integEs a; b;, ;md

@) max (|al, | B]) < Cay N'I.

By (2) we have

24 _ (a2)x'+ (b)Y =c

where, by (23), |aa| < C4y aN'", |bf| < C4ybN'". Then (24) together with (22)
and Lemma 4 imply that

(25) max (|a,|, ... , lagl) < C42108(4N)

where A = max(a, b, ¢) (which is by assumption equal to c). Similarly, by
taking the igth conjugate of (24) and applying again Lemma 4

(26) max ({by], ..., |brg)) < Cszl0g(4N)

follows.
The numbers c, ¢,, ..., &, and a (if a > 1), b (if b > 1) are multiplicatively
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independent. Let {11, ..., n,} be a maximal subset of multiplicatively indepen-
dent elements of

A ={C, &1y ... » &g, G, b, 0, B}

Which contains ¢, ¢,,...,&, and a (if a>1), b (if b>1). Obviously
2gs<g re+5 < n!+5. Here, by Lemma 1, H(g) < Csqsfor j=1,...,r;and,
by (23), H(a) < C44 N and H (%) < C,4N. Hence we have

27) Q.= f[ log (max (H(n), 4)) < Cys(log 3N)? (log 3a) (log 3b) (log 3c).
Jj=1

The elements of &/ belong to the field G. The set &/\{n,, ..., n,} can
contain at most two elements different from 1, namely the elements a and g,
If o 5 1 and if it is not contained in {4, ..., 1, then, by Lemma 5, (16), (23)
and (27), there are a positive integer m and rational integers my, ..., m; which
are not all zero, such that

and
max (m, {m,|, ..., |my]) < C46(log 3N)? (log 3a)(log 3b) (log 3c).

A similar assertion holds for g if g% % 1 and if g% ¢ {n,, ..., n,}. In view of
(21), (22), (25) and (26) it follows now that there is a positive integer M with

(28) M < Cg4;(log 3N)® ((log 3a) (log 3b) (log 3c))?

such that

29) (Ef)u =nf...n", (bym)u =ni...n¥
c C

With some rational integers p,, ..., p,, 4y, ... , g, satisfying

(30) Q:=max(py, ... [pJ. lgsl. ... . lg, 4)

< Cus(log AN)(log 3N)® ((log 3a)(log 3b) (log 3C))2.
Put
A.I=nfl...qf'—l and A2=n11_“ng._l'

We shall first derive an upper bound for max(|A,], |4,]) in terms of
max ([x“|, | y|). Then, by using Lemma 6 we shall give a lower bound for
max(|4,|, |4,]), provided that

Piil,
(31) rank( ! )= 2.
qy---4
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Estimate (4) will then follow at once by comparing the lower and upper
bounds.
For any complex number z, .we have

|zM —1| < M |z— 1| max (|z|™, 1).

Using this together with (29), (19) we obtain that

(&)
) Y
C
M
@Mﬂblyl(m+1) :
c C

We may suppose that

X

a
max

(32) |44l =

c

sMFE—l
c

M
)

N (abM)*~!
cn-l

since otherwise, if ¢ > C49N, estimate (4) follows immediately. But we have

min (x], [y)) >

(33) [T =Nyl <N and [ 1) =INgo(»I<N.

i=1 i=1

Thus
b 1

¢ whence
bM’ c M

Hence, in view of (28) we deduce from (32) that

(log 3N)® ((log 3a) (log 3b) (log 3¢))*
¢

[yl <

[A4] < Cso ‘bl yl.

We can estimate from above |4,| in a similar manner and we obtain
(34) max(|4,], |4,)

(log 3N)® ((log 3a) (log 3b) (log 3¢))®
50
c

<C max (a x|, b| y|).

We are now going to derive a lower bound for max(|4,|, |4,]). Assume
that (31) holds. Then Lemma 6 together with (27), (30) and ¢ > C4oN imply
that

max (|4,], |4,)) > exp{~Cs (Rlog 2)'log (Q2)}
> exp { —Cs, (log 3N)((log 3a) (log 3b) (log 3¢))*/ (log log 3¢)*?}.
Comparing now this inequality with- (34) we infer that
(35)  max(|x®, | y))
> cexp { —Cs; (log 3N)((log 3a) (log 3b) (log 3¢))*/? (log log 3¢)*'2}.
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But (33) gives

_ N N

XSt and IS

!lence, if ¢ > exp{Css(log3N)"} with a sufficiently large Css, (35) implies
Immediately inequality (4) of Theorem 4.
It remained the case when

pl"'ps
rank( )-sl
qy--- s

In case ¢ > N, neither the p's nor the g's can be all zero. Indeed, if p; = 0 for all
J then taking norms in (29) a"|Nk,(x)| =c" follows. But (a,c)=1 hence
¢ < |[Ng(x)| < N. Similarly, if g, = 0 for all j then it follows that ¢ < [Ngjp(y)l < N.
Assuming that ¢ > N, the tuples (p,,..., p,) and (q,, ..., 4, are therefore
proportional. Thus, by (29), there exist coprime non-zero rational integers p, g
such that

(36) ax Mp_ bytio})Mq
) e ’

First consider the case when p and g are distinct. We may assume without loss
of generality that p > g and that p > 0. Next we distinguish two subcases.
If g <0 then (36) implies

(ax)Mp (by(iol)M{ =9 — M9

By taking norms.on both sides with respect to G/Q and using the transitivity of
the norm and the fact that (ab, c) = 1 we infer that a=b =1 and that

'NK!‘Q (x"Mp |NK,'Q( y)IM‘ —q) — cﬂM(p—q}

Which is impossible if ¢ > N'/".
Suppose now that g > 0. Taking norms on both sides of (36) we get

|a" Nx;q(x)l”" = |b"Nx;Q()’)|MqC"mP—'”-

Since by assumption a, b and ¢ are coprime, this implies that any rational
Prime factor of b and c¢ divides Ng,o(x) and any rational prime factor of
a divides Ng,(y) in Z. Consequently, the product of distinct rational prime
factors of abc is at most N2, Denote by ¢ the number of distinct prime factors of
abc, and by p,,...,p, the first t prime numbers. Then it follows that
Py...p, < N2 As is known (cf. [17]), we have

l I
tlogt<p, and ——p,< ) logp;
Css =1
Hence

t < Csglog3N/loglog3N.
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We can now apply Lemma 3 to equation (2). Let S be the set of distinct prime ideal
divisors of abc in Oy. The cardinality of S is at most nCss log3N/loglog3N.
Further, these prime ideals lie above rational primes not exceeding N. It
follows from Lemma 3 that there is an € 0\ {0} with the following properties:
If

(37 _ (n) = l:l porde?

is the prime ideal decomposition of # then p|abc and hence N (p) < N" for each
p. Further, ax/n, by/n, c¢/n belong to O, and

by ?)
,|—=1, 1= | <expexp{Cs;logN}.
q‘q‘n pexp {Cs,log N}

Since (a, b) = 1, it follows that for any prime ideal factor p of 5, p°" divides
x or y. Consequently, taking norms we get that ord,n < log N. Thus we infer
from (37) that

(39) Nk ()] = [[ N (p)%" < exp {Csq (log N)*}.

pln

Further, by (38) it follows that
c* ¢
— =N E

IN ks () ke (".’)
which together with (39) imply

ax

(38) max (

< E’ < expexp{Csolog N}

¢ < expexp {Cgolog N}.
Hence, if
(40) ¢ > exp {(2N)°*'}
with a sufficiently large Cg4, then p # g cannot hold.

It remained the case when p = g = 1. Then, by (36), (ax)/(by"®) is a root of
unity, say {. In view of (21) we have then

(41) aax’ = [bftoly o,

Since, by assumption, (a, b) = 1 hence we deduce from (41) that bja and a|f’
in O;. However, this implies that a|f. Hence b|x, aly and so, by (2), ab|c follows.
But (ab,c) =1, thus a = b =1 and, by (41) and (21), x = {y“. Further, it
follows from (2) that

(42) c=x+y=0l 4y,

We show that { = 1. We recall that x“ and y are minimal in absolute
values among their conjugates. Thus from (33) we get |[x)| < N/, |y| < NV~
Hence, by (42) we have
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C (io) X Nl.hl io) len
VO] <M PN
cC C b [ c

By (35), this implies that

ip) (io) __ y,lio)| i/n
l.V‘l}l - |C_V y |52N )
c 2 | [ | c
It follows now that
{io) ZN”"
$ie-11 <21 <
c c
whence
AN
(43) -1 <

==
Denote by k the greatest positive integer for which p = e**/*eG. For k = 2 we

have {e{l, —1} and, by (43) and (40), { = 1. Hence we may suppose that
k> 3. By (16) we have k < Cg,. Further, it is easy to verify that

Aot ey, Pt
— pu— — n—
% e %% %
and that
1::05—1lt = (:os2it = 1
2k~ 6 2

If now ¢ # 1 then

2n 2n _2n 1
—1>je—11>2cos = > > —
=11 = le—1| ZZkCOSZk %> Cas
Which contradicts (43) if in (40) Cg, is large enough. Thus { = 1 and x = y\,
For large ¢ we have now from (42)
(44) y+y =c.

[?enote by I the degree of y over Q. We show that [ is even. If y® = y then (44)
8ives ¢ =2y and ¢" = 2"|Ngo(y) < 2"N which is impossible if ¢ > 2N'"
Hence, in (44), )% # y and so | > 1. Suppose that [ = 2h+1 for some positive
Integer h. Consider a conjugate y* of y which is different from y and y'“. Then
taking the ith conjugate of (44) we get

Y 4 plio) = ¢

for some i, where, by (44) and the choice of y, y® differs from y, y'® and y*®.
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After repeating this argument h times we obtain h conjugates of (44) in which
2h distinct conjugates of y will occur. The sum of these 2k conjugates is equal
to he which is a rational integer. But the sum of all the conjugates of y is also
a rational integer, hence there must exist a conjugate of y which is rational.
This is, however, impossible and thus [ is even. Since ! divides n (the degree of
K) hence n is also even.

We have shown above that if ¢ is large enough and if ab > 1 or n is odd
then (36) cannot hold. In this case each solution of (2) satisfies inequality (4) in
Theorem 4.

In what follows, we suppose that a = b = 1, that n is even and that (40)
holds. Assume that (2) has another solution (u, v) which is not conjugate to the
solution (x, y). Then neither u nor v is conjugate to x or y. We shall show that
at least one of the solutions (x,y) and (u, v) satisfies inequality (4) in
Theorem 4.

Since each conjugate of (u, v) is also a solution of (2) in G, we may choose
that conjugate as solution for which |u“"| and |v| are minimal among the
absolute values of the conjugates of u and v, respectively. Repeating the above
argument for (u, v) instead of (x, y) we see that if us v then min([u|, [v]) is
less than the bound occurring in (4) and the proof is completed. Hence it
suffices to deal with the case when

x = ylio}’ u = p\iv,

We shall now repeat some part of the above arguments for x and u instead
of x and y. We can see in the same way as above that

E_1l'=ﬂ
' C

and that
u=_9¢el,. el
with some rational integers d,, ..., d,, satisfying
max (|d,], ..., |d.5]) < Ce4log(AN)

and with some non-zero 9 € O for which [F] < Cgs N'/". Let now {n}, ..., ni}
be a maximal subset of multiplicatively independent elements of

=40, 815040 8 08}

which contains c, &,, ..., &,. Then we have 2 < t < n!+ 3. We can define 2 in
the same way as in (27) and inequality (27) follows for the n’s. Further, we can
see that there is a positive integer M’ which is less than the bound occurring in
(28), such that

x\M* " . w\M’ ; :
¢ c
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with some rational integers pi, ..., P> 41, --- > ; for which
Q': = max(|pil, ---, lpdl 144, -, lail, 4)
< Cge(log AN)(log 3N)® (log 3¢)>.
By (40), neither the p; nor the g} can be all zero. Put

A =P .. g%—1 and Ay =n%. . .g%—1.
We may suppose that both [y] and [v] are greater than N (M')"~'/c"~! since
otherwise estimate (4) of Theorem 4 immediately follows for the solution (x, y)
or (u, v). Following again the above argument we get

log 3N)® (log 3¢)?
max (|43], M'zl)‘-‘gcm( : ]c( g30)

max(jy|, |v]).

Further, if
rank (P1 pi) =2,
qy - 4:

max (|4, |45]) > exp { —Cgg (log 3N) (log 3¢)'/? (log log 3¢)*'?}

follows. Now comparing the upper bound with the lower bound we obtain for
min ([y], [v]) the upper bound occurring in (4) and the assertion follows.
Finally, consider the case when

ralnk(p,1 P:) =1

_ gy ... 4

Then there are coprime non-zero rational integers p', ¢’ such that p'>0
and that

) (E)M‘p’ _ (g)wa_

If ¢ <0 then (46) gives

then

xu;p.u_M;q, = CM'tp’-q']_

But taking norms we see that this contradicts (40). Hence g’ > 0. Taking norms
again on both sides of (46) we get

INkjg (M7 = |Ngjp )M M ®' =),

This shows that any rational prime factor p of ¢ divides Ngo(x) in Z and hence
P < N. But then Lemma 3 can be applied to equation (2) in the same way as we
did before and we arrive at a contradiction with (40) for sufficiently large Cq;.
This completes the proof of Theorem 4.
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ACTA ARITHMETICA
LIII (1990)

Uber eine Klasse von gleichverteilten Folgen

von

EpmMunD Hrawka (Wien)

Dem Andenken an V. G. Sprindzuk gewidmet

Es seien py, ..., p, verschiedene ganzrationale Primzahlen von der Gestalt
4k+1. Jede dieser Primzahlen besitzt im GauBschen Zahlring Z[i] die
Zerlegung in Primzahlen
(1) p;=mm;

Wobei 7, #; Primzahlen in Z[i] sind, dabei ist noch @; nicht zu x; assoziiert,
dh. es ist m; zu 7; teilerfremd. Es ist nun fir j=1,...,s

2) L e
I"'rjl ((Pj)
Wobei ¢(x) = ¢™* sein soll. Wir setzen noch

(3)

@;=2my;
und betrachten die Folgen
@ S
bzw.
(5) V=W ...  ¥)

Und fassen sie als Koordinaten des Punkte ¢ bzw. ¥ in R® auf
1. Wir behaupten nun

SATZ 1. Es sind y,, ..., Y, iiber Z linear unabhdngig: Sind hy, h,, ..., hey,
9anze Zahlen, so daf

©) Byt . +hly+hypy =0
So folge

h1=h2—_—...= S+I=0'

L :
Acta Arithmetica LIII. 4
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