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A limit theorem for the Riemann zeta-function
in the complex space

by
A. LAURINCIKAS (Vilnius)

In memory of V. G. Sprindzuk .

Let s = g+it be a complex variable and let {(s) denote, as usual, the
Riemann zeta-function. It is known by [3], [7] that the function {(s) has
a limiting distribution in the half-plane ¢ > 1/2. In modern terminology it is
formulated as follows. Let C be the complex space and let B(C) denote the
class of Borel sets of the space C. For T > T, let

1
vp(...) = ?mes{tE[O, T1,...}

Where instead of dots we will write the condition which is satisfied by ¢ and
Mmes{A} denotes the Lebesgue measure of the set A. We define the probability
Measure

Pp(4) = v,({(c+i)ed), AeB(C), o> 1/2.

The function {(s) has a limiting distribution if on the space (C, B(C)) there
eXists a probability measure P such that P, weakly converges to P as T— 0.
More general results are obtained in [1] where it was proved that the
f'-lnt::ti(m ((s) has a limiting distribution in the space of functions meromorphic
in the half-plane ¢ > 1/2.
The aim of this paper is to prove the limit theorem for the Riemann
Z’;‘?lebfunctlcm in the complex space, when ¢ depends on T and tends to 1/2 as
—00.
In [13] the-theorem of this kind has been obtained for the modulus of the
function ¢ (s). It turns out that in this case some power norming is necessary. It
as been proved there that the distribution function

vT('C(O'-T + i[)[ﬂ “linln )= 12 x)

Converges as T— oo to the lognormal distribution function, ie. to the dis-
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tribution function

d(lnx), x>0,
e P

l el 2
d(x) = | e " *du.
1/2ﬂ—m
Here
1 ¢y /InnT
=3t T

where Y, >0, Yr— 00 and Inyy, =o(InlnT) as T— oo0.
Let us put
1 ¢p/InlnlnT

lp=InInT, o= f+ InInT

where ¢, > 0, ¢ — o0 and In ¢, = o(Inl;) as T— co. As was noted in [10], the
distribution function

(1) vr(ll(or+it)*T < x)

also converges to G(x) as T— c0. Here %; = (2~ !Inlnln 7)™ '/2. In particular, it
follows that

2 vo(L(oz+it) = 0) = o(1).
If {(op+it) #0, then [*7(g,+it) will be understood as
exp{#;Inl(oy+it)}

where arg{ (o, +it) is defined by continuous displacement from the point s = 2
along the path joining the points 2, 2+ it and o, +it. Taking into account (2)
we set for simplicity (*T(a,+it) =0 if {(o4+it) = 0. For sets 4eB(C) we
define the probability measure as follows: '

JuT(A)d;r vr((*T (o +it) € A).

THEOREM. On (C, B(C)) there exists a non-degenerate probability measure
u such that the measure p, weakly converges to p as T— 0.

To prove this theorem we shall make use of the method of characteristic
transforms of probability measures given on (C, B(C)) [10], but first we will
replace the §tudy of the measure u, by a study of the measure defined by means
of simpler functions than (**(o+it).

Let % = [ /2™ 'Inl;]~* where [u] denotes the integral part of the number u-
By d, (m),m =1, 2,3, ..., we will denote the coefficients of the Dirichlet series
expansion of the function {*(s) in the half-plane ¢ > 1 (see [5]). For u >0 and
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N = T3* we put _
d,(m) .
Sfs) =Y g g(s) = L(s)—SN*(s).
m<u

¢, €y, ... are suitably chosen positive constants, B denotes a number (not

always the same) which is bounded by a constant. Further on it is assumed that
T- 0.

We will need the mean value theorem of Montgomery-Vaughan for
Dirichlet polynomials:

Let a,, ..., a, be arbitrary complex numbers. Then

T

!

0

2
dt=TY |a,*+B Y mla,|*.

m<n m=<n

This theorem is the special case of the results of [13]. For the proof see
[6], p. 130-134.

LemMma 1. We have

a
5l

m<n

T
[lg(oy+it)?*dt = BTexp{ i T}.
0

Proof. Following [5], [8] we will define the functions

w(t) = }' exp{—2x(t—21)*}dr, L(o)= ]? [Sy(o+it)>w(t)dt,

n2T

J(o) = }U [C(o+it)**w(t)dt, K(o)= ng(a+it)|2"w(t)dt.

=0

In [8] it was shown that

3) J& =B /x 'T(nT)".
It follows from the definition of w(t) that

1 2VR(2T ~1)

w(t) = e~ gy,

4./x 2\/;{21‘!.113'— )
Consequently,

B./x"‘exp{—cox(2In*T—1)*}  for t <0,
w(t) = < B/x 'exp{—c,ox(2T—1t)*} for t > 2T+In?T,
B./x 1 for 0 <t <2T+InT.

Since §,(+if) = B\/ﬁ , from these properties of w(t) we obtain

T
4 L) =B /%" [ |SG+it)>dt+BNx 'In*T.
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By use of the estimation [8]
Y di(m)/m = B(InT)*

msN
and applying the Montgomery—Vaughan theorem we have
2T
[ I1SyG+it)?dt = 2T Y. di(m)/m+B Y, di(m)
0 msN msN

=BT Y d%(m)/m = BT(InT)".

m<N
Hence and from (4) we obtain
) L@) = B/ 'T(n T)".
From the definition of the function g(s) the inequality
| K®<IG+LE)
follows. Then by (3) and (5) we conclude that
(6) K@) = B/« 'T(n T)*.

In [12] the following modification of Lemma 7 of [5] was obtained. Let
1/2 < 0 < 3/4, then
K(o) < (l + B(lnln T)—UZ)(K(JZL))(S —40]13(611\/FTI—QMB)M«—ZJ.{S
+B(K )7 83exp{—cy,%(26 —1)In* T+c¢,3(20—1)In T}.
Now, by the use of (6), we find that
= 2 InT 1
) K(o;) =B /=" 'T(In Ty exp =By = BTexp = (-
' T T

And again, by the properties of w(t), we obtain
2T
K(og) = B/x ' | lglop+it)**dt+ BNx " 'In*T.
[+]

Hence and from (7) the assertion of Lemma 1 follows easily.
Let .

fir(A) = v(Sylop+it)e 4), AeB(C).
We will prove that the study of the measure p; can be replaced by that of the
measure fir.

LeMMa 2. If for T— o the measure iy weakly converges to some measure,
then the measure p, also weakly converges to the same measure.
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 Proof. Let &z = (in T)" "™, Then by Lemma 1 and by the Chebyshev
Inequality

=2xT
ETT [lg(or+it)2*dt = o(1).
0

®) ve(lglor+it) = &) <

Then, since the distribution function (1) converges to G(x) as T— oo, we have
©) ve(lC@r+in] < 2./er) = vr(ll(or+it)FT < 2/e7F7)
= G((2/erf")+0(1) = o(1).
Now from (8) and (9) we deduce
(10) v (IS¥*(or+it)] < /er)
< vp(lK(or+it) =l (or+it)— SN (o + il < /e7)
< vrlll(or+il—lg(or+inl < /o)
< vp(lllorp+it) < 2. /er)+0(1) = o(1).
Let AeB(C). Then in virtue of (8) and (10) we have uniformly in,.A4
vi(l*(op+it) € A)
= vr((S¥ (ar+it)+g(o, +it) e 4)
= vp((SV*(ar+it)+g(a+i) € A, |glor+it) < er)+o(1)
= v (Sy(op+it)(1 +g(o7+it) Sy (o + i) € A,
lg(or+it) < &7, |SV*(a7+it)| = \/2r)+0(1)
= v, (Sn(o 7 +it) + Bx|g(or+it)||Sy(or+it) " 1** e 4,
 lg(or+it)] < er, ISV (o +it)] = /er)+o(1)
= ve(Sn(op+it)+o(1)eA, lglor+it) < er, ISY*(ar+it) = /&) +0(1)
=v(Sx(or+it)+o(1)e A)+o(1).

Hence we see that from weak éonvergence of the measure [, the weak
convergence of the measure

Fr(A) S v (o +it)eA),  AeB(O),

follows. It remains to pass from the measure /i, to the measure u,. For that
we will make use of the mappings at weak convergence of measures. Let
iy converge weakly to the measure p and let hy: C—C be defined by
hy(s) = s®7 seC, s # 0, h(0) = 0. Then by Theorem 5.5 from [2] we find
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that the measure /i, hy ' weakly converges to the measure uh~"' where h(s) = s,
ie. ur weakly converges to u.

The sum Sy(o,+if) is rather long and it is difficult to approximate it by
a product. Later on this sum will be replaced by a shorter one. For this we will
need the asymptotics of some Dirichlet polynomial with multiplicative coef-
ficients. Let g(m) = g.,(m; T) be a multiplicative function, |g(m)| <1 and

g(p) = c(z, k)»? & g. Here ¢(t, k) is some function of the parameters te R and
P
keZ.

LeMMA 3. Let T > n > 3InT. Then uniformly for T and t, k in the domain
le(z, k)| < ¢4

= I9(H(1)+ BR;)

where

Proof. Consider the Dirichlet series

Z(s) = E: gm)/m®’, o>1.
m=1

Since g(p) = g, we have by a simple calculation
Z(s) = L*()H(s).
The function Z(s) satisfies all the conditions of the theorem from [4]. Let
M(x)= ) g(m)/m.

mex

Then in [4] it has been shown that
xH(1)(In x)?
I'g+1)

where r(x) = Bx(In x)‘“‘ ‘. By this formula it is easy to find the asymptotics of
the function M(x). Let 4 = x(Inx)™ "2 In view of the identity

(11) A(x) IM( u)du = +r(x)

M(x) = dl(A(x+A)— A(x)—xf (M(u}—M(x))du)

and of the estimate

M(@u)—M(x) = BAx™! for x<u<x+4
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we deduce
M(x) = (A(x+4)— A( )) +%

Thus, applying (11) we obtain

! H()  Bx(nxR*-! B4
e Y 2 e R

_ H()(Inx)
- I'(g+1)
Hence, summing by parts and taking into account the equalities

*(Inu)du
.(( Zt):r = (267
l u

x (] -l!ld
£(_n%;3_1~__1j = B\/I:"' B(20,— 1= inl )2,

+B(Inx)R¢¢~1 4 B(In x)~ /2,
—1)"*"YI'(g+1)-T(g+1, 20,—1)nx)),

we find

Y. g(m)/m**T = H(1)(26+—1)"*+BQRo;—1)""**I(g+1, 2o7—1)Inx)

mx
+Bx'~27(In x)** 4 B(26,— 1) /I, + B(2o.— 1) "Re?(In 1)~ 12,
Putting x = n in view of the obvious estimate

r(g+1, 2oy—1)inn) =1+ Bexp{—c,0r/Inl;}

we obtain the assertion of the lemma
Let M =4InT and

0r(A) = v(Sylor+it)e 4), AeB(C).

LEMMA 4. If the measure o, weakly converges to some measure as T—r 0,
then u, also weakly converges to the same measure.

Proof. By Lemma 2, it is sufficient to prove that the weak convergence of
@ implies the weak convergence of /i,. By the Montgomery-Vaughan theorem

and Lemma 3 we deduce that
d}(m) dz(m)
Z mlar +0( E 2o = BRT'

M<ms<N M<m<N

1 T
T ISn(or+it) =Sy (o7 +indt =
0

Thus, by the Chebyshev inequality we obtain
(12) vo(ISy(or+it)—Sylap+it) = 4/Ry= B\/R;.
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Let AeB(C). From the estimate (12) it follows that uniformly in A4
vr(Sylor+it)e 4)

= v(Sylor+it)+o(1)e 4, |Sy(op+it) = Sylor+it) < 2/Ry)+o(1)
= v1(Sy (o +it)+o(1)e A)+o(1).

The latter equality shows that the weak convergence of ¢, to some measure
implies the weak convergence of /i, to the same measure, which proves the
lemma.

Now we turn the sum S,,(o;+it) into a product. It follows from the
multiplicativity of d (m) that

SM(O'T+I'C]= l_[ (l+ E pf{:(f:l;)_ Zr d:£m+)"

pE<M a<InM/Inp M<m<da™

where the prime indicates that the sum is extended over those m whose all
prime divisors are smaller than M. It is easily seen that

d< [] p*=BT*
PREM

where ¢5 < 1. Therefore, by Lemma 3 we have

v,_( b3 \/R_) = o(1).

M<m<a™®
Thus, in 2 manner similar to that used in the proof of Lemma 4 we can see that
if the measure

d (m)

ar +it

def d. (p*
Fr4) = vr( 1 (1+ oz p,,(—“”-,)eA) 4eB(C),
P aZinM/inp

=M

weakly converges to some measure as T— o, then u, also weakly converges to
the same measure. "

Proof of the Theorem. We will write the product defining g, in
a simpler form, We have

4 d,
a3 m,0% 1‘[(1+ Y f(’:],)

pP<M asinM/inp P

d.(p) , 4.’ B ) ( d,.(P))
= 1+ + + gt
pgﬁ( AL L T mgsu P

_ D) | 4,07 d,(p)
= [] +0(1))pl]ﬁ(l +parq-+u+p2(ar+m) H (1 +pa-r+il)'

VM<psM
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Now we will find the characteristic transform w,(t, k) of g,. We have [11]
(14) wi(e, k)= [ Isitetsedg,
€\{o)

1 T
i [ Ty (0)|"exp{ik arg IT (1)} dt .
0

Here teR, keZ. It can be easily seen that
[Ty () = I (0 T3 (1)
and
exp{ikarg ITy, (1)} = FYA(1)- "% (1)

For each prime p we have

d d 2 (it +k)j2 o d d 2 1
(14524 SE) - § cuo(S2+-220),

p

(15) ) d_(p) (it +k)/2 © d‘(p)
(]+p:r+it) = Z Cxll)—rrm plor+in
where
it+kfit+k it+k 1
=Lk [ _m)ﬁ.
Therefore o _
2 (it +k)/2 2]
0 (A5 s

Where for an even | we have

hea(®) = €caDdulp) + ccanll=1)Cl 1@ 2(R(pD)+ . +cu(12)dL2 %)
and for an odd I

ek () = coax(Ddy(p)+ coul = 1) Ci- 1 & 2 (p)dy (P7) + ..
+eox([l/2]1+ (/2] + 1)d, (p)d (p?).
Here Cj are binomial coefficients. If T is sufficiently large, and 7, and k, tend
to infinity sufficiently slowly as T— oo, then for all |7] < 1, |k| < k; the
estimates h,,(p') = o(1), d'(p)e.x(p’) = o(1) for I > 1 are valid. From (13), (15)
and (16) we find that uniformly in ¢t and |t| < cq, k| < c,

(7 mgoR = (1+o(v) 1 3 Jale) 5 000

MI=0 vM<psMmi=o P

(P !
- (1 +0( l)) Slj_u(l + IEanl:ﬁInppunt-(fli-l-z;z)
hei(p) - hea(p?) | o(1)
X H (l +ﬁ+pm:r+m+j’3;z)

VM<psM
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=(1+o(1)) ]'L(1+ Y %}

ps<vVM I<SinM/inpP
:n(P) :k(Pz)
X WEEM(I +pa‘1-+il+P2(¢r+n}

m&M Mﬂmﬁd

~ (o) T SaBy 5 faln)
Here

Et,k(.pl} = ct,k wd!e(P),
gt.k(m} = 1_[ gl.k(pt)s

pllim
g (PI} = {ht.k (P{L p < \/E!
MOV ZVal) SM<p<M

We note that in (17) d < T°® where cg < 1. Similarly we find that uniformly for
all t and |1] < cq, |kl < ¢4

(18) ﬁ&:}—*’“(r)=(1+o(1))( ¥ & ;f('? + ¥ g‘;’f(':))

m=M M<m<=d

Consequently, from (14), (15) and (18) we deduce that uniformly in |t] < ¢,
ki < ¢4

(19) wrlt, k) = (1+0(1)) = I 5 Gual) o go-iltm)

0 staT-'—" e mﬂ'r—ll
m m

9, x(m)

gr.-(m)
a'1-+|l Z : i d.f

Menca WT Y

+

+
Nlw Slw SHliw

m£

E gt.—k(m)

meT~ it

Z’ g:.k (m) dt

o +it
M<m<a™

m=sM

z' Q;J;(m)
f s me-r +it

] —i\m
2 g, l'.(_ ‘,) dt
M<msa M7

<+

(=3 ] Oty ] O oy

def

= Il_+12+13+14'
By the Cauchy—Schwarz inequality

1 T 2 1/2 l T

(] )" (7]
Therefore, by the Montgomery-Vaughan theorem and Lemma 3, I, = o(1)
uniformly in |7| < ¢4, |K| < ¢,. Similarly, I = o(1) and I, = o(1). Taking into

z Grk (m)

mu-r+it

;G\
Z aT—it L
m<M M<ms<d ™M
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account the equality

Z gr.k(m) Z gr.—k(m)
msum¢T+limQM mtr-r—l't

— v Gex(mge-ilm) Gua(m)ge,—im) ()"
=% e XD ___*____(m)

OT 0T
m<M m<Mn<M mn
m#n

and Lemma 3 we obtain

ko= F gt,k{n;)ig:?—n(m) 4B |9 (m)g:. -1 (m)]

&
msM m 5::5 M meT n°r

2 2
= exp{—(%+%)}+0(1}

uniformly in |z| < ¢g, k| < ¢,. Hence and from (19) it follows that

- 2 2
wa(z, k) = exp{—(%+%)}+o(l]

uniformly in |t| < ¢, |k| < ¢,. By the properties of characteristic transforms, we
find that the measure §; weakly converges as T— oo to the measure defined by
2 g2
the characteristic transform exp< — %+% } It is obvious that the limit
Measure is non-degenerate. It follows from the lemmas proved above that the
Measure u, also weakly converges to the same measure. The theorem is proved.
Here we have considered only the value ¢ = o4. It is easily seen that
a similar result with appropriate changes is also valid for ¢ > o. The case
0 < g, is more complicated.
The author expresses his gratitude to Professor J. Kubilius for constant
attention to the present work.
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O0o0wennbie TITAa-PYHKIMH ¢ XapaKTEPHCTHKaAMH
H NpeJCTaBJIeHHe YHCeJl KBaJAPaTHYHbIME (opmamMu

T. B. Benxsame (T6ummcu)

Csemaoit namamu Baadumupa
Tennaduesuua Cnpundscyxa
noceaujaemca

IIycts
S=f)=f(xy X3 .0, x)=3x'Ax =% ) apx;x,
' ik=1

~ LEJIOYHCJEHHAs MNOJOXHUTENbHAS KBaApaTH4YHas ¢Qopma, rae x — Bek-
Top-crosifen ¢ KOMIIOHEHTAMH X, X,, ..., X5, @ X' — BEKTOp-CTpoKa; 4 —
OnpeneHTENh CUMMETPHYECKOH MATpHUbLl A = (4;) ¢ YeTHBIMH AHArOHaNb-
HeiMu 3nemeHTaMu; N — ctyneHp GopMsl f, T.e. HAHMEHbIUEE HATYpajbHOE
YHCio, Ui KOoToporo NA~™! — cAmMMeTpuueckas LEJOYHC/IEeHHas MaTpHla
C YeTHBIMH AHATOHANBHLIME 3neMenTamu. [danee, nyctb r(n; f) obo3HauaeT
HHCNIO NpeiCTaBJIeHHH HATYPAJbHOTO YKicia n GopMoi f, T.e. YMC/IO pelleHHH
B llensIX YHCNaX ypaBHECHUA

n=f(x1, X35 0005 Xg).

KonugectBo paboT, NOCBAIEHHBIX T.H. TOYHBIM (opMyiaM s GyAKuAn
r(n; f), BecbMa BeNMKO. DTa TEMa NMpPHBJIEKaJa BHHMAaHUE MaTEMAaTHKOB ellle
B npomnom Beke (Iaycc, D¥senwtenH, Jluysmute ¥ Ap.).

3apaua nonydenus dopmynsl mig r(n; f), romHo#l ans Bcex n, CBOOUTCH
K 3ajave nojydenusi GopMyNbl IS TITAa-pAaa

o
1) 8 f) = 1+ ¥, r(n; f)e*=
n=1
ABnsrolerocs 1esoi MoayaapHol dopMoi HeKOTOPOro THNA, 3AECk H BCIOY
B nanbHeiiiem te H (H — BepxHAs NoaymiockocTs). CxeMa MeToaa mnoay-
YCHMs TAakoH (OpPMYyNbl 3aK/IOYaeTcs B CledyiouieM. TaTa-psan npeacTaBis-
€Tca B BHAE CYMMBl JABYX CJlaraeMBIX:

8(z; f) = E(z; f)+ X (1),
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