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Dabher folgt fiir diese K mit n:=2z"'ylogy aus (8.2) and (8.5)
S < K" MN+(K*n* M?® N*Y5 +(K° n° MN?)'/1° + M*/2 N log y + (KnN)*/2.

Setzt man K:=(n"*M2N)", so ist 0<K <M <y und K~'MN
= (K2 M3*N%'5, und mit A:=(n?M°5NSY14 B:= M'>Nlogy und
C:=(n° M*> N®)'/** gilt

(8.6) S< A2+ An'? 4 B+C fiir K > 1.
Ferner gilt

8.7) S<A> fir K<,

da S < MN und A% = K~! MN ist. Ich zeige nun

(8.8) An'?*>C, A%’» B, A»n'* fir K> 1

An'? > C ist zu #* M3 > N? iquivalent und daher erfiillt. 42> B ist zu
(y/2)*(M/N>* M > log!'®y dquivalent. Aus (8.1) folgt aber (y/z)*(M/N¥?M
> (y/2)H® 12240 = ylio 5 10g!° y. SchlieBlich ist A > /% zu M3N® > 1’
iquivalent. Wegen K > 1 ist M2 N > 52, und daher M* N® » (M2 N)*2 > n°.
(8.6)(8.8) ergeben

* S<§A2= {ylzl1)‘m—2(N/-M)6—llc}m]ogzy}lf'}"
und Hilfssatz 5 ist bewiesen.
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The proof of Theorem 4 of [1] contains the incorrect inequality
t! < e’ " If this is replaced by the correct ¢! < t'*'e™" the method of proof
yields a weaker theorem, namely that 6 is recurrent if 0 > 11d log d. We present
here a corrected proof of a stronger assertion, giving more details than
presented in [1]. I would like to thank Mustapha Ben Amri Bettaieb for
pointing out this error.

THEOREM 4. Let 0 be a Pisot or Salem number of degree d. If 6 > 5dlogd
then @ is recurrent. In fact, as d — co, the assumption that 0 > (2+o0(1))dlogd
implies that 0 is recurrent. Furthermore the set of K admissible for 0 is finite and
effectively determinable.

Proof. By Theorem 2 of [1], @ is recurrent if 6> 2972 Since
29-2 < 5d1logd for d < 8 this implies Theorem 4 for these values of d, so we
may assume 4 > 9. By Lemma 2 and Theorem 1 (a), # will be recurrent if we
can determine positive integers ¢ and L so that £E™¢ > 1346 and L < (6—1)%

Choosing L =[(#—1)*] the second inequality holds and, since
L>@—-1*—1=0(0-2), it suffices for the first inequality that (6—2)'"¢
> t139¢4 Taking logarithms, it suffices to have F (6, t, d) > 0, where

F@,t,d)=(t—d)log(0—2)—dlogf—log(t!)—dlog3.

Differentiating F with respect to 0 we find that F, > 0if 6 > 2 and ¢t > 2d,
:rhus, for each t > 2d there is a unique solution 8, of F(6, t, d) =0and 8 > 8,
Implies F (0, t, d) > 0. For given 4, it is natural to choose ¢ so as to minimize
0,. For large d, t and 0, F = (t—2d)log0—tlogt, so that 0 = tlogt/(t—2d).
An elementary calculation shows that the minimum of 6 occurs for
t=(2+o(l))dlogd as d—oo with the corresponding value of 6,
= (2+o0(1))dlogd. This suggests the second assertion of the Theorem. A more
Precise analysis is given below.

To obtain results valid for all d = 9, we first examine F (0, t;-d)}-numerical-
ly for small d. For example, we find that, for d = 9, the minimum value of 0,
Occurs for t = 95 giving 8, = 97.2978 = 4.920dlogd. For d = 10, the minimum
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occurs at ¢ = 108, giving 0, = 110.0895 = 4.781 dlogd. These prove the first
statement of the Theorem for d = 9 and 10, and suggest that a reasonable
choice of ¢ is t = kdlogd, for some k ~ S and that 0, > ¢ for this choice of .

Assuming then that ¢ = kd log d, where k will be specified shortly, it suffices
to prove that F(t,t,d)>0. We assume that t>95 so that
log ((t—2)/t) > log(93/95) and use the inequality t't1e™' > 1. We then have

F(t, t,d) > —(2d+1)logt +t—dlog3+(t—d)log(93/95),

which is an increasing function of ¢ for the set of ¢t and d under consideration-
Thus F(t, t, d) > g(d) where

g(d) = (Ak—2)dlogd—(2d + 1)loglogd—(2log k + B)d —log d —logk,

where 4 = 1+1og(93/95) and B = log 3 +1og (93/95). If we choose k = 4.94, wé
find that g is increasing for d > 9 and that g(10) > 0, and thus that F (kd logd,
kdlogd, d) > 0 if d > 10 and k > 4.94. To insure that ¢ is an integer, we take
t = [Sdlogd] = kdlogd with k > 5—1/dlogd > 4.94, provided dlogd > 50/3
which is true if d > 9. This proves the first claim of the Theorem for d > 10.

To prove the second statement, we again examine F(t, ¢, d) for
t = kdlogd, where now k=2+c(loglogd/logd). Since now A=1+
0(1/logd), it is easy to verify that F(t, t, d) > 0 for a suitable choice of the
constant c. This proves the second assertion of the Theorem.

The final statement of the Theorem follows as in [1].
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