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Weak asymptotic formulas for partitions free
of small summands

by

loachim HerzoG (Frankfurt)

1. Introduction. A frequently occurring problem in Number Theory is the
asymptotic evaluation of sums of the form '
) S, = T hn) (x=w),

n<x

Wwhere h, is an arithmetical function depending on a parameter y = y(x) tending
to infinity.
. The best known (and perhaps most important) problem of this type consists
In approximating the function

@ Y=Y gm= ¥ 1
n<x p|: jpx“{‘ 5

Uniformly in various y-ranges. Here y* denotes the characteristic function of
the positive integers free of prime divisors greater than y.

The study of ¥(x, y) has been the object of numerous articles, e.g. by de
Bruijn [1], Hildebrand [11], [12] and Hensley [8] just to mention a few (}).

De Bruijn, van Lint, Richert ([2], [14]) and others dealt with the more
general problem of estimating “incomplete sums™ of the form
(3) A*(x, y) = Y x¥(m)A(n),

nEx
Where 4 is a (nonnegative) multiplicative function ).

The main purpose of the present paper is to provide a method for deducing
asymptotic formulas for the logarithms of a large class of parameter-dependent
Partition functions, where the result is uniform in a certain range of the
Parameter.

The function

P,(u)= ) p,(n)

nEu
B —

(*) CI. Norton [15] for an extensive bibliography concerning the results before 1970,
(*) Sec also Wirsing’s remark in (18], section 1.34, pp. 418-419.
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with p (n) denoting the number of partitions of the positive integer 7
into summands > y may serve as a typical example(®), (%).

The tool for tackling the problem is developed in the first part of this noté
in the form of a uniform Tauberian theorem for families of Laplace-transforms
depending on a parameter.

It turns out that the scope of this Tauberian theorem is not limited t©
partition functions. This is indicated in the final part of the article, where
incomplete sums(°) of “fast growing” multiplicative functions are estimated-

Remark. While the present note deals only with weak asymptoti®
properties of parameter-dependent partition functions, i.e. formulas for the
logarithm of such functions, a subsequent paper will provide asymptotic
formulas for the partition functions themselves.

2. The Tauberian theorem. The idea of using Tauberian arguments i}‘
partition problems is due to Hardy and Ramanujan [6]. Using essentially thei’
method, in 1968 W. Schwarz [16] proved a Tauberian theorem (%), (") with
remainder-term, from which he derived some rather general theorems on weak
asymptotic properties of partitions (®). :

Of course neither these partition results nor the underlying Tauberia®
theorem are useful when dealing with functions depending on a parameter, but
it turns out that the proof of this Tauberian theorem can be modified in order
to maintain control over the dependence of all error-terms on the involv
parameters. .

To simplify notation in the following theorem the subscript y is dropped n
the case y = 0, ie. A(u) = Ay(u), p(0) = ¢o(0) and a, = 6,(0). C,, Cs,... Wil
denote positive constants throughout the rest of the paper.

THEOREM 1. Let {A,; y = 0} be a set of nondecreasing functions

A: [0, o[~ [0, o

(*) The corresponding problem concerning multiplicative partitions, ie. factorizations of
n into factors = y, has been dealt with by Hensley [7].

(*) Recently Dixmier and Nicolas [3] obtained a sharp asymptotic formula for P;("}
uniformly in 1 < y < n'/*, which they used to improve on a result of Erdds and Szalay [5] on the
number of “practical” partitions.

(°) Here the phrase “incomplete” means that thc summation runs over integers free of small
prime divisors.

(%) See also Kohlbecker [13].

(") Note that there is a misprint in Theorem 1 of [16]: Formula (3.6) should read

etl

ol (o)
g’ (@) !

(%) For applications of the partition results given in [16] see Herzog/Schwarz [9] and
Herzog [10].
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Satisfying the following conditions:
) AQ0)=0< A,(u) < A@w) for all u,y>0.
(5) The Laplace-transform

flo) = az Ay(u) e"*du
converges in ¢ > 0.
(6) For a fixed positive real number i and functions @,€C*(Q0, u[) the difference
llog f,(e) —,(0)l < C,
is bounded by a positive constant C independent of y and o.
0] 0oy 7, —ooyo)200 for all y=0.if(°) o \O.

 Furthermore, it is assumed that for all sufficiently small o the following
Inequalities are satisfied: -

®) —¢'(6) < —C,¢'(20),
©) —0(0) < —¢'(0),  @}(0) < C,9"(0).
Suppose that for some function 0 < M(y) 7o (y 7 ) the estimate
M
(10) — @' (0)+ ¢,(0) < C4 aiy)

holds, where o« <1 is a real number.
Now if b: [0, co [ - [0, oo is a function strictly increasing to infinity such that

(11) M(b(w) = o(us?)  (u— o),

then uniformly in 0 <y < b(u)

(12) log 4,(u) = ¢,(0,(y)) +u0,(5)+O(R@W)  (u— o),
Where the remainder-term in this asymptotic equation is given by
2 1/2
(13) R(u) = au{fp”(d..)log—;—}
¢"(0,)

@nd ¢,(y) is uniquely determined by

(14) ~e3le.0) = u
ifuis sufficiently large.

“'-..______

(") ¢” » means that ¢" is nondecreasing, and o % 0, etc., should be interpreted similarly.
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Remarks. (i) Applying the mean value theorem and the monotonicity of
¢" shows that

(15) —¢'(0)+¢'(20) = 09" (20).
On the other hand,
(15) —¢'(0)+¢'(20) < (C, —1)(—¢'(20))
by relation (8). Therefore we have
(16) 09" (0) < Co(~¢'(0))
if we set C, =2(C,—1).
(i1) ‘The inequality

(17 —¢y(0) < 09;(0)
is obtained from (7) via differentiation, and (16) shows that
(17) ¢"(@)lg' (@) * =0 (6—0+)

if (7) is taken into consideration.

(iii) From (16) and (8) we deduce

09"(0) < —C,¢'(0) < —C,C,¢'(20) < 2C,C40¢"(20)

implying that
(18) 9" (0) < C5¢"(20).

(iv) The relation
(19) o, ()N0  (u o)
as well as the right-hand inequality in
(20) i0,<0,0) <o,

(both valid for all y > 0) follow immediately from (14), while the left-hand
inequality (valid for 0 < y < b(u)) will be proved below. o

In view of (17) and (20) it is evident that the remainder term R(u) 18 o
smaller order than the main term in (12).

Proof of Theorem 1. The estimation from above is rather easy.
The monotonicity of the function ur A, () implies that for all y, TZ

(o) = A),(T}Tare"""du = AJ,(T)e_T",
T

so by (6)
(21) Ay(T) < Cgexp{e,(o)+ To}

iff ¢ > 0.
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The right-hand side of (21) attains its minimum at ¢ = o (y).

Hence, if T, > 0 is chosen (*°) such that ¢,(y) is well-defined for all T> T,
the estimate

(22) A4,(T) < Ceexp{o,(o7(y)+ Tor ()}
is valid for all T> T,
In order to find a good lower bound for log A,(T), the integral

) £(020) = 6:0) A, (Wexp(—uar(y)du

is evaluated by using the Laplace-method.

Motivated by (22) the integrand in (23) is approximated by exp{y/,(u)}
Where

(24) ¥y (u) = %{Uu(y)]"‘“"u(}’)—wr()’)-
The derivatives of y, are given by

L]

d
(25) E%(u) = 0,(y)—0o(y)
and
(26) - zup,,(u) um —{} (o)}~

This shows that u = T gives. the maximum- value of ¥ (u).
Therefore the integral (23) splits in the following way:

To (1-8T
(27) (UT(y)] = Ur()’){f + I + ! + I}(A (u)e-"ﬂ'rm]du
0 To (1-aT R

=IP(T)+ ... +I3N(T),

Where R = (1+4¢)T and the function s-s(T) is chosen later such that
0l<e< 1/4

~ The main contribution will arise from I‘”(T] but at first upper bounds for
the other integrals will be deduced.

The first integral is simply estimated by
(28) I(T) < A(Ty) = 0(1).
Using (22) we obtain

(1—g)T

29) l}”lﬂﬁcaar(y) 1_! exp iy, (u)}du.

B —

('°) Independent of y.
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The Taylor expansion near u = T yields

U,fu) = @07 )+ HT—u)* ¥5 (@)

with some real number @ between u and T
For u < T the inequality

vy @ = — {9} (a0} " < —{oy(er )} ! = ¥5(T)
is implied by (7) and (19), and consequently we have

. (-1 (T—u)?
I{NT) < Ceor(y)exp{e,(or(y)} .‘;! xp _m a

1 2 R2 " .

Thus the definition of R together with the monotonicity-properties of ur—0 s(-")
and g} (o) gives the estimate

1 &R? }2¢;'(on(y))
49, (cx(») &R

In order to obtain a similar estimate for I{¥ it is helpful to approximate

difference o;(y)—og(y) in advance. I
An application of the mean value theorem shows the existence of a red

number &€ [agx(y), a-(y)] such that
eT=R—T= —@}(0x0)+@}(0+() = (6:()— oz (»)) ¢} (),
hence by (17) we obtain

(30) IfNT) < Csar(y)exp{co,(ar(yl)—
the

eT _ —e@y(ar(y)
‘P;(GT(}’)) ‘P;:(GT(V))GT(J')

o7(y)—0gY) < a7(y) < ear(y).

The relation

ar(y) < E <2,
or(y) T
which is a consequence of (7), is now used to infer that
(31 or(y)—0R(y) < 2e0,()).
From below this difference is bounded by
eT 1 &R
(32) or(y)—og(y) 2

= :
@y (0x(Y) ~ 2¢5(ax(¥)

For u > R the mean value theorem guarantees the existence of a n
u*€[R, u] such that

umbe!

¥, (W) =¥, (R) = (u— Ry} (u*),
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and expanding ¥ (R) near T yields
¥, () < Y, (T)—3(R— TP W/ (R)| — (u— R)|Y(R)|

1 2902

&“T
————u—=R),(R).

=) o)

Therefore we get

IP(T) < Cyo4(y) f exp{y,(u)}du

or(y) 1 &2T?
< Corr { Ml

and by replacing [{/}(R)| = o(y)—0g(y) with the right-hand side of (32) the
inequality
(33) ILM(T) < Cgar(y)exp {‘ﬁ»(“r(]’))—l_}fi}

. 40 (o ()

is obtained. -
From (30) and (33) it follows that

(34) I(T)+I$(T) < 4Cgexp {(py(ar(y))} ev,
where U is an abbreviation for
(35) e L B {—-—“TU’)“’;(“R(””}
49} (or(v) &R
1 €2R? 20,95 (0 R(»)
— - +| Ry R )
49)(oa) Og{ R }

The next step consists in obtaining information on the difference o, —o,(y)
for y in the interval [0, b(u)]; this information is then used to verify the relation
U— — oo uniformly in the given y-range.

Another application of the mean value theorem shows that a point
o*e[o,(y), 0,] can be found satisfying

O=u—u= —fp'{ﬂ'u)+fp;-(5u{y))
= (0,—a,(W)(—@" (%) + @}(0.(»)— @' (0. ().
and this implies the inequality

—¢'(0,(»)+ @,(0.(»)
@"(c%)

0<0,~0,() <
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From (10) and the monotonicity of ¢” we infer that

MO) . MO) o,
0 0F9"@) 9" (@)e, 0,07

du_o'll(y) S‘ C

uniformly in y < b(u). .
Estimating the right-hand side above by (17) yields("')

M@y o,
au"au{y) < CSW ou(y)a
P L'/ E—y

* — gy (o.()ouy)
and since ¢,(y) < o, we deduce the bound

cr,,—a.(y) < CB—M'[LUI _“U‘. =

M(y)__al —a‘
i (P;(‘U.)au :

> —gylo) "

Here (7) was used as well as the assumption a < l L
Applying (10) to replace —g,(s,) by —¢'(g,) gives(*?)

| M(b(w)o: =

—¢'(0,)—Cs0, *M(b(u))

M (b(w)
Tuor

O'.—G'“(y) < Cg

M (b(w)os "

< 2C
3 u+o(u 3

uniformly in y < b(u). ' I
Now the fraction occurring in the last line of the estimate above is o(1)

(11), hence we obtain
(36) o,(y) =40, uniformly in 0 <y < b(u)

for all sufficiently large u.
Therefore

@y (0r0) < C,9"(0r(Y) < C2¢"(hog) < C;C5¢"(08)
by (9) and (18), uniformly for y in the range [0, b(R)].

This estimate together with (16) implies the inequalities

oz Ux'?:‘s:n()')) 79" (0%) < C,C,C, =C.

<C,C ;
T 5—4‘3{510

(*') Note that —¢'(6,) = u = ~¢(0,(y) by definition of s,(y).
(*?) Recall that the function y—M(y) is assumed to be increasing.
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Inserting this result into (35) yields
2p2

€ ~ 1
U< ——=——+10g(20) +log-,
< 4—5¢,,(%)+ 0g(2C) + og~

hence choosing

i @"(og) . o' (op)*| 2
B = zﬁ{ko'(o,,nz"’g PP }

it follows that

' 2
U< 10g(2@)—%loglz£?:)l) —+—00 (R—w)
R

uniformly in y < b(R).
Consequently

(37) KT)+I(T) = o(exp{o,(or()})  (T— )

uniformly in y < b(R).
The estimate

"R
A,(R)exp{—a,())(1-e)T} = 0,(y) | A, (wexp { —uo(y)}du = I*(T)

{(1-¢)T
holds by monotonicity of the function u— A, (u), and since

IAT) = f,(o:) +o(exp {0, (0, ()})
by (28) and (37), we get the lower bound ('3)
log A,(R) = ¢,(a1(y))+ Tor(y) +log C,—eTap(y)
2 ¢,(07(»))+ To(y) +1log C,—eRay.
In order to complete the proof we replace ¢ (o7(y)) resp. To,(y) by @,{or(»)

fesp. Rogx(y) in the formula above.
In view of (31) we obtain the following inequalities:

0 < Rog(y)—Top(y) = T(og(y)—01(y)+eTop(y) < 3eRoy
and . :
0 < 9,(0r()— 9,(07Y) < (070)— o) }0} (0 (V)] < 2¢Rag,

Where the ¢ -difference was estimated by means of the mean value theorem.
Therefore

log A,(R) > o,(0x(y))+ Rog(y)—6eRo, +log C,

oo

(*?) Observe that Tor(y) = ~¢'(67)0-(9) < —¢'(07)07 < —¢'(0g)og = Rayg by (20) and (7).
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uniformly for y in the interval [0,b(R)], and this finishes the proof of
Theorem 1.

3. Partitions. The present section is devoted to the study of partitions wthl}
are free of summands smaller than a parameter y. As an application ©
Theorem 1 we shall derive asymptotic formulas for the logarithm of such
partition functions which are valid uniformly in a certain range for y. Since OU‘;_
approach to the problem is rather general and works ‘for a large class ©
partition functions it is possible to find much sharper estimates when dealing
with special partitions (14). N I

Let (4,) be a strictly increasing unbounded sequence of positive red
numbers such that the counting function

Nw= Y 1
Av <u
satisfies
(38) N(u) <, exp(eu)

for all £>0 and let k= k(y) = min{veN; 4,y <y < 4. o
. Denote by A(y) the (countable) set of all real numbers of the for

I=Y rA, where the r,’s run through the set of nonnegative integers.
vk

If Ie A(y), then p,(l) denotes the number of solutions of the Diophantin®
equation
(39) = Z ra,

vk
. ‘ : N -

in nonnegative integers r,, ie. p,(l) is the number of partitions of [ in
summands = y. . _

We are looking for an asymptotic formula for log P,(u) with remain
term, where

der

Py(u) = Z py(n

lelilz)
The generating function of the sequence (p,(/))eap) is given by
g, = [ {1—exp(=43)} "' = ¥ p,(De”",

j‘v;y leA(y)

where in view of (38) both the product and the series are convergent n
Res > 0.

(%) Cf. Erdds and Szalay [4], p. 432 fi. and, in particular, Dixmier and Nicolas (3}
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The logarithm of g,(s)
0,(5) = 10g g, = — ¥ log{1—exp(—A,9)
A,zy
is defined in Res > 0.

Using only weak assumptions on the enumerating function N(u) the
following theorem ('*) gives the desired uniform estimate for log P, (u).

THEOREM 2. Suppose there is a constant C > 0 such that
(40) N(2u) < CN(u)
for all u>4,.

Further let b: [0,c0[ — [0, c0[ be a strictly increasing unbounded function
satisfying

(41) : N(b(w) = o(us,) (u— o0).
Then uniformly in 0 <y < b(u) the formula(*®)
(42) log P,(u) = ¢,(0,(y))+uo,(y)+ O(R(u))

holds, where o ,(y) is defined by
—oy(0,00) = u
and the error-term is given by

R ) " l uz 1/2
(W) =0, {w (o) ogm} :

Sketch of proof. Partial summatron shows that in Res > 0

0,(8) = 5| P, {we="du,
0

CRE ?ﬂ;‘m - (N(:»)—N(y))f;(u(e“—1)“)du
and
o 2 us
o= I (—e,”,—_‘-?]—)zd(N(u)—Nm)-
Since
—odll)= ¥ Ao fehi—1)1,
1,2y

(**) Some of the calculations concerned with ¢(s) may be found in more detail in the paper
[16] of Schwarz,

(') Recall that o, = 0,(0) and @(s) = @,(s).
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the monotonicity
—a@y(a) 7 (aN0)

is obvious.

In order to show that —a¢}(0) is unbounded as ¢ decreases to zero, take an
arbitrarily large constant K and choose M > y such that N(u) — N(y) > K for
all u > M. Therr

K Mo _K _,
2

i d ua = . .
> K [ 500>

if ¢ is sufficiently small.
From

—@'(0) = 0“5 N (u)h(uo)du

where h(w) = —— , we deduce

w
dw e —1

—@'(e)=2 uf N (2v)h(2va)dv

Arf2

< 2Cuj: N(@)h(v-20)dv+0(1) < C'+(—¢'(20)).
Ay
Condition (10) is verified with @ = 1 and M(y) = N(y) by observing that

© 4 _
0< —¢'(0)+@y0) = — i N(u)‘-f;(u(e"‘-— l)_")du—N(y)I E;(u(e""—_ 1)"*)du
Ay ¥y

A y y -1
gN(y){;;"-l:_l_e”—l}-l-N(y)e”—l < N(y)e™ .

The remaining conditions in Theorem 1 obviously hold, and so the
assertion follows. o

ExampLE. Consider the sequence A, = v, i.e. partitions into positive lqtegelfl-‘";
After some simple but lengthy calculations the following results concerning !

corresponding partition function P (u) are obtaiged: o
If b(u) is a strictly increasing unbounded function satisfying b(u) = o(u

then uniformly in y < b(u)

112),

log P,(u) = J%nu”z —dylogu+ylogy—y{1+ log(\/g/u)} +

+0(b*(uyu "2 +u'l* flogu).
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If, in particular, b(u) = O(u®®(log u)'/#), then the same asymptotic formula
holds with remainder O(u'*/logu) uniformly in 0 < y < b(u).

Since n—p,(n) is a monotonic arithmetical function, the formula remains
valid if P (u) is replaced by p,(N), NeN.

This is an immediate consequence of the inequalities

1
5 2 M <p(N)< Y py(n).
N;&N nsN
4. Multiplicative functions. The following theorem shows another ap-
Plication of our Tauberian theorem and is a generalization of a result on fast
growing multiplicative functions obtained by W. Schwarz ({173, Satz 1).

THEOREM 3. Let A be a nonnegative multiplicative arithmetical Sfunction such
that

32

(43) Zf—(z—p) < w
P

and

ApY)
(44) < 0.

2.8
The function
. A
tx)= Y eali logp

p<x
Is assumed to satisfy
(45) t(x)(logx)"' s (x—o0)
and
(46) e < Ct(e")  (u> uy).
Further we suppose that('")
47 }:?logp-p‘“{l —alogp} <0

]
¥ o> 0 is sufficiently small.
Define
A
o= W (550
p>y

‘--_'——_—.

(*") In [17], p. 357, Schwarz shows how condition (47) can be replaced by simpler

a,&surnplion:f. on t(x).
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and
An)
4,)= Y Jc,.(ﬂ)—-jrl '
n<x

where , is the characteristic function of the positive integers free of prime divisors

smaller than y. o
If b(u) is an unbounded strictly increasing function satisfying

(48) t(bw) = o(u) (u—>00),
then uniformly for y in the range [0,b(u)] the asymptotic formula
(49) 10g 4,(¢") = 9,(0,()+0,0) + O (R()

holds true, o,(y) resp. R(u) again defined by
—@yo.() =u

respectively

¢"(0,)
Sketch of proof. In o >0 the generating Dirichlet-series is given by

A Alp?
5@ = T 1y e = ﬂ{”';fp—)rw@p-“ -

nz1 n Py p

uZ 1/2
R(u) =0y {‘p”{o’nj lOg _-—} .

hence
flo)=a }0 Ay (e)e ™ du (o >0)
log y

by partial summation.
The relation

log £,(0) = ¢,(0)+0(1)
is derived from the Euler-product representation and (44).
The monotonicity
—o@yc) 70 (eN0)

follows from (47).
Since

—@y0)=0 [ {t(e)—t(y)}e " du,
log y
a short calculation shows that

0 < —¢'(0)+0y(0) < ).
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Therefore condition (10) of Theorem 1 is satisfied by choosing « =0 and
M(y) = t(y).

The remaining conditions are easily verified by using some of the results
given in [17].

So the assertion follows from Theorem 1 again.
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