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0. Introduction and statement of results. We let H = {reC| Im > 0} be the
upper half-plane. For te H, the Dedekind eta function is defined by

0.1) ©n@) = x4 [T (1—x"),
n=1

where x = e2** and the power of x is interpreted as x* = €™, A transform of
level n of n(z), in reduced form, is a function of the form

0.2) h(z) =yn (ar 0 b),

d

where a, b, and d are positive integers satisfying ad = n, (a,b,d) = 1,0 < b < d,
and y is a non-zero constant, and by an eta product we shall mean a function of
the form

b

I afa,b.d)
03) hx) = 7] q(‘“;’ "’)

where y is a non-zero constant, each «(a, b, d) is a real number, the product is
over the reduced transforms, and there should be only a finite number of
factors in the product.

The object of this paper is to investigate the overall limitations, in terms of
the orders at the cusps and in terms of multiplicative independence, on the
functions which can be constructed as eta products.

Eta products appear in many areas of mathematics in which algebra and
analysis overlap, notably, of late, in Lie algebras (cf. Kac [3]) and their
applications to the classification of finite simple groups (cf. Conway and
Norton [2]). M. Newman published a pair of fairly well-known papers [6], [7]
dealing with eta products, but these papers treat only the case d = 1, b =0,
which we call the principal transforms, and are aimed at constructing forms on
the groups I'y(n) which have the trivial multiplier system, whereas we shall pay
no attention to the multiplier system, but shall be concerned only with the
orders of the resulting eta product at the cusps.
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274 A. J. F. Biagioli

We will now state the principal results of this paper as five theorems,
designated by A-E. To state these theorems we need a couple of definitions;

; 1
a summary of the standard definitions will be given in Section 1. We let 0= 0

be the point at infinity of C, let Q* = Q U {00}, and let x(I";{) denote the width
of the group I' = I'(1) at the cusp {eQ*

DerINITION 0.1, The invariant order of a modular form f at a cusp L€ Q* 15

ord(f;{) = ——0rd(f; ),

(F 0

where I is any subgroup of finite index in I'(1) on which fis a form, and
Ord(f;{) is the standard order of f with respect to I' at (.

DeFiNITION 0.2. For any natural number n, we define an equivalence
relation on Q*, which we call star-equivalence modulo n, as follows: two
elements ¢, {’e Q*, are star-equivalent modulo n, in symbols

{x~ {' (mod n),

w22}

+b) of level n.

if and only if

at
for every transform q(

The first result is an arithmetic characterization of star-equivalence
“modulo n.

THEOREM A. If neN, and '-; :%.EQ*, with (r, s)=(r", ') =1, then

’

r r
- %~ —(mod n)
) 5

if and only if there is some « relatively prime to n such that

¥ = or (mod n),
s" = as (mod n).

04)

The next theorem is the multiplicative independence of the transforms of
level n.

THEOREM B. If afa, b, d) are any real numbers, then -

d—1 at+b a(a,b.d)
H ﬂ W(T)

ad=n
Iubiﬂ 1

is constant if and only if a(a, b,d) =0 for all a, b, d.
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We shall then characterize the eta products as follows:

THeOREM C. Suppose f is a modular form. Then f is an eta product if and only if

(1) f has no zeros of poles in H, and

(ii) for some natural number n the invariant order of f is invariant under star-
equivalence, i.e.,

0.5) { *x~ {'(mod n)=ord(f;{) = ord(f; ().

For the principal congruence subgroups, I'(n), and the principal transform
subgroups, I'y(n), we describe a multiplicative basis for the family of all eta
products which are forms on these groups. For I'(n) the result is quite simple;
a basis is the set of transforms of level exactly n.

THEOREM D. Suppose h is an eta product which is a forrﬁ on I'(n). Then there

are unique real numbers a(a, b, d) for each a, b, d, satisfying ad =n, 0 < b < a‘
and (a, b, d)= 1, and a non-zero constant y so that

b aia,b.d)
hoy =y 11 1 n(‘”j) .

=n 0$b<d
(a,b.d)=

For I'y(n) our description of a multiplicative basis is more complicated.
Given n, we select a divisor d of n as follows: First let J, be the largest odd
square-free number such that é3|n. Then we set

oy if 16 kn,
(0.6) 0=+ 40,, - if 16|n and 64 ¥ n,
84,, if 64|n.

Thus & can be described as the largest number which has no square divisors
other than 1 or 4, such that 6?|n, and which satisfies the additional proviso that
either 2 t 9, or 4|4. As usual, we write d||6 to mean that d|é and (d,d/d) = 1.
We can write any d||§ in the form d = 2°d,, where d,||5,, and we write
b~ 1 (mod d,) to mean that b is a quadratic residue modulo d,, ie., there is
Some c relatively prime to d, such that b = ¢* (mod d,,). We then define certain
¢ta products as follows: .

ha@= ] ﬂ(t+g). for 4any d|8,

O0sb<d
b~ 1(mod d)

(0.7)

hgi(t) = n ?](T+E), when d||é, 8|d and i =3, or 7.
Osb<d d
b~ 1(mod dp)
b=i(mod 8)

Thus, h, , is defined for any d, but h, ; and h, , are defined only when 8|d.
Since the quadratic residues modulo 8 are the numbers congruent to 1 modulo
8, the definition of h,, can be taken from either equation when 8|d.
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Some examples of the functions h, () are:
h31(7) = n(z+3),
hs1(7) = n(t+Hn(+9),
hao,7(x) = n(z+3)n(r+3).

The following theorem says that the collection of hy; for d|d is a ml_.lltl'
plicative basis for the eta products which are forms on I'y(n). S_mce
hy 1(7) = n(z), the functions n(at) for a|n are included among the functions
h4.i(at), so the principal transforms are in this basis. Sometimes, but not always
(cf. the corollary following the theorem), the principal transforms will be the
only functions appearing in the basis.

TueoReM E. Suppose h is an eta product which is a modular form on I'y(n)-
Then there are unique real numbers Ba, d) such that

h(z) =y [ hailazy?,

a,d,i

where the product runs over those a, d, i such that

d|é,

adziﬂ,.,
o, if 8.4d,
"=1,3, or 7, i 8)d.

COROLLARY. Every eta product on I'y(n) can be expressed uniquely in the
form

h(@) = [ nlar)®,

aln

where a(a) are real numbers, if and only if n is divisible by no square other than
1 or 4. :

ExampLE. For n = 64-25 a multiplicative basis for all of the eta products
which are forms on I'y(n) is

hy 1 (at) = n(av), for a|1600,

hg i(at) = nlat +%), nlat+§), n(ar+3§), for al25,

hs.i(at) = nlat+Hnlat+3%), for a|64,

hao (1) = n(x+d)n(t+ ), n(z+in(+5), n(c+3n(z+33).

1. Definitions and background. As usual, Z, Q, R, and C shalll denote the
integers, and the rational, real, and complex numbers, _respcctwely. We let
M,(Z) be the set of 2x2 matrices with entries in the integers Z, we set

M:(Z) = {MeM,(Z) det(M) >0} and I(1)={MeM,(Z)| det(M) = 1}-
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b
For M = (: d)EM 2 (Z) we define g = ged(M) to be the greatest common
divisor of a, b, ¢, and d, and the level of M to be
det(M)

¢

(L.1) lev(M) =

We say M is primitive if gcd(M) = 1. We say that M is reducedifc = 0,a,d > 0,

and 0 < b < d. We denote the set of all primitive reduced matrices in M7 (Z) by
T={MeM;(Z)| M is primitive and reduced},

and the subset consisting of those whose level is n by

(12) T, = {(MeT| lev(M) = n} = {(g g)

ad = n, (a,b,d}=1.0$b<d}.

o

Thus T= ) T,, and the union is disjoint.
n=1

We have the following decomposition lemma.

Lemma L1 If MeM3(Z), n=lev(M), and g = gcd(M), then there are
unigue M'e T, and SeI'(1) such that

(1.3) , M = gSM'.
The set T, is finite for each ne N with cardinality

(1.4) Tl = po(n) = n-T](1 +1/p).

pln

(This second equation is the definition of Ho(n))

LemMa 1.2. If lev(M) = m, ged(M) = g, then there are B, SeI'(1) such that

' mQ
(1.5) M= gs(o I)B.

(See Schoeneberg [10], ch. VI, §3, for (1.3), (1.4) and (1.5))

Lemma 1.1 allows us to make the following
DeFINITION 1.3. For any A, M e M; (Z), we define M e Tby the equation
(1.6) MA = gSM4

for some Serl(1), and with g = ged(MA).

b For two integer matrices M, A, of any sizes such that AM is defined, we
dve

(17) ged(A)ged(M)|ged (AM),

dnd if 4 is 2x 2, and we let 4* be its adjoint, so that A*4 = det(A)] and
8cd (4*) = ged(A), then we have
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(1.8) ged(A4)ged (4 M)|det(4) ged (M).

In particular, if det(4) = 1 then ged(4) = 1 and ged(MA) = ged(AM) = ged(M)
for every M. This implies, when M e M3 (Z), that

(1.9) lev(M A) = lev(AM) = lev(M),

and we have the following:
Lemma 14. If Ael(1), then for each ne N

(1.10) M — MA

is a permutation of T,

The matrices M = (a S)EM #(R) act on the upper half-plane H = {reC]|
B
Imz > 0} by linear fractional transformations:
at+b
Mi=va
and we define the automorphic factor o be
(M:1) =ct+d.

For any reR, any f: H-Cu {0}, and any M e M; (R), we define the stroke
operator of degree —r (weight r) by

(1.11) fIM = (det(M))*"*(M:7) " f(M7),

where the power is determined by the principal branch of the logarithm:

—n < arg(z) < . It follows that for any M, Se M; (R) there is a constant a(M, S)
(dependent on r) of modulus 1 such that

(1.12) fIMS = o(M, S)-/IM|S.

1 .
Suppose I' < I'(1) is a subgroup of finite index. Let - oc be the point at

infinity of C, let Q* = QU {0}, and set U" = ((I) T) For any {e Q* we choose
any Ael'(1) such that Al = c0 and define the width of I' at { to be
(1.13) k(l';0)=min{neN| + A" 'U"Ael}.

DerNITION 1.5. Suppose I < I'(1) is a subgroup of finite index, re R, and ¥
r-{&eC| |f| =1}, and C* = Cu{oo} is the Riemann sphere. Then_wc say
f: H-C* is a form of degree —r on I' with multiplier system v provided

(i) f is meromorphic on H,

(i) fli-nV=v(V)f for all Verl, and

(iii) for each A e I'(1) there is some x€[0, 1), mye Z, b,,€ C, and h > 0 such that
in the region Im(At) > h, we have a series representation
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{114) f{l’) i (A : ‘L')" z bmez-ﬁ{m +z}Ar,fN,
where N = k(I'; A™'(0)).

By {I', —r, v} we denote the set of all forms of degree —r on I' with
multiplier system v, and we say simply that fis a modular form if fe {T', —r, v}
for some r, some v, and some I of finite index in I'(1). If fe {I', —r, v} and f # 0,
and if { = A7 "(c0), then we can assume that b,,, # 0 in (1.10), and then the
order of f with respect to I' at { is defined by

(1.15) Ord,(f;0) = my+x.
We then define the invariant order of f at { by
1

The invariant order is so-called because it does not depend on the choice of

I'. Working with the invariant order is sometimes useful because it satisfies the
following transformation formula:

(1.16) ord(f;() =

b
LEMMA 1.6. Suppose r,seZ,(r,s) = |, M = (2 d)GMI (Z). Let m = det(M),
and g = ged(ar+bs, cr+ds). Then

2
(1.17) ord( fiM,7) = Lord( 1: ML)
5 m 5
" .

(Cf. Berndt, Biagioli, and Purtilo [1].) Note that g is the factor that cancels
when the fraction M~ is reduced to lowest terms.
s

If fis a modular form and M € M; (Z) with lev(M) = n, then f|M is called
the transform of f by M, and f|M is said to be a transform of f of level n.
For two functions f and g, we use the notation

Jim g

to mean that = yg for some non-zero constant y. If f'is a form on I'(1), thene
combining (1.3) and (1.12) and (ii) of the definition of modular forms, we see
that for every Me M (Z) there is some M'eT so that

SIM =~ f|M’,

and thus {f|M: M e T,}, which is a finite set, is essentially all of the transforms
of f of level n.

The Dedekind eta function is a form on the full modular group I'(1) of
degree —1/2 (cf. Knopp [4], Rademacher [9], or any of many elementary texts
treating modular forms), and, since k(I(1); §)=1 for all {eQ*,

ord(n; ) = Ord,,(n;0) = 1/24.
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If lev(M) = n, then n|M is a form of degree —1/2 on the transform subgroup
_I'y=T(h)nM™'r()M.

IfM= (g ?), then we get the transform #n|M(t) = ~ n(nz), which we call the

principal transform of level n, and the transform subgroup for this M

Iy =Tyn) = {(‘; 3).5 r()

is called the principal transform subgroup. The transform groups of level
n contain the principal congruence subgroup of level n:

ry2rm= {(‘: Z)er(u

Lemmas 1.2 and 1.4 have the following consequences for the eta transforms:

1. For every M e M7 (Z) with lev(M) = m, there is an AeI'(1) such that
(1.18) nM|A = ~ n(mz).

2. For any me N and AeI'(1) the transforms n|M for M e T,, are essentially
permuted by the stroke operator:
(1.19) nIM|A = ~ n|M*.

We need the following result:

LeMMA 1.7. A modular form f with no zeros or poles in H and with
ord(f;{) =0 for all {e€Q* is constant.

This follows from Knopp, Lehner, and Newman [5].

¢=0 (mod n)}

a=d= +1 (modn) and bECEO(modn)}.

PART I: MULTIPLICATIVE INDEPENDENCE RESULTS

2. Sufficiency of the condition for star-equivalence. We can prove the
converse part of Theorem A immediately: _
ProrosiTION 2.1. Suppose neN, r, s, r', s’eZ, (r, ) =(, ) =1, aeZ is

relatively prime to n, and
(r) = a:(r) (mod n).
s’ s

L * r~: (mod n).
s s

Then

ab

0 d)e'f:,. Then, by (1.17),

Proof. Take M -——(
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ord(ffM,g) =2(9*/n), = where g = gcd(“’;;bs),

z r! b I
ord(flM,;;,) =24(g”’/n), where g' = god(a ;;, S),
so it is sufficient to show that g = ¢". Since g = gcd(M(:)), and this divides
r

): n, we see that g|n and similarly ¢'|n. From this we get

det(M)ged (3

g =(g',n) =(ar'+bs,ds', n) = (aor +bas, de, n) = (ar+bs, ds, n) =(g,n =g,
so the lemma is proven.

3. A particular eta product. A key construction in our proof is the following
eta product.

LEMMA 3.1. For each ne N there are rational numbers (M) for each M e T,
Such that the function

G a,= T1 (lmyoo
MeT,,
Satisfies
Y _ )L ifnls,
(32 ord(A,,,E)_{O’ b

In this section we shall construct 4, as a product of principal transforms,
Specifically as the appropriate power of the function H, appearing in the
following definition and proposition. Then in Section 4 we will conclude the
proof of Lemma 3.1 by showing that 4, can also be written as a product of
transforms by MeT,, ie. as a product of transforms of level exactly n.

DEFINITION 3.2. Suppose a, de N and y is the Mébius p-function. Then we
define

H,@ =TIT1 q(am)utarﬂntim'

dld aja

ProrosiTioN 3.3. If r, seZ and (r, s) = 1, then

)Lazd (1 - l/pz): ’:f (S, a'd) =a,
(3.3) ord(,,H‘,;f) = { * Jl:ld
% 0, if (s, ad) # a.
. Specific examples of these functions have appeared previously in the
literature, for instance, in W. H. H. Petersson [8], and in the recent investigations

of the character tables of the Monster group, ¢.g, in Conway and Norton [2]
(Table 3, pp. 332-334), but this presentation as a family seems to be new.
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Proof. Let M = aoé ?) where o and & are divisors of a and d, respectively,

and apply (1.13) to get
ord(n(aaz); :) = (a3, */(@d),
and, summing over all «, §, we have

d
ord(‘,H,; E) = W, d,

where

(34) va, =TT Y (a)u(ﬁ).

dld ala

We can factor

'ib(a‘ d) . l_‘['.&(pt! Py).

where p° and p’ are the highest powers of the prime 2p dividing a and 4.
ad, s
@S @) and o, 4

= u(a) have this factorization property, and the terms in the sum (3.4) aré

respectively, because the functions y,(a, d) =

¥, (o, 0) 11;2( ) (This is analogous to the property of multiplicative functions

of one variable.) Thus we need only consider

(pl'l-

(3.5) Y@ p)= Z Z #(P’).H(P‘ ).

i=0j=0
Those terms with i <c—1, or j> 1 are zero, because of the factors

u(@P)u ™).

The case ¢ =y =0 does not occur. Otherwise,

2
(1— ®. 9 ) if ¢ =0,
p’

G6) s, p) =< @ -9 ify=0
@, s — 1, 2 =(1/p) (T, 92—, 9)°,
if ¢c>0, and y>0.

Now we see that y(pS, p*) = 0 if either p°ks, or p*'|s, and that otherwise
v (S, p’) = p*(1—-1/p%). .

Thus if (ad, s) # a then one of the factors ¥(p¢, p') is 0, and so Y(a, d) = 0,
and when (ad, s) = a, we have ¥(a, d) = a*[] (1—-1/p?).

plad
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This completes the proof of the proposition.
4. Uniformizing the level. To complete the proof of Lemma 3.1, we let

@.1) - zn( )

pln
and

(4'2) A" = 1H,1|!¢.

Then equation (3.2) follows from Proposition 3.3. What remains to be
shown is (3.1), i.e., the existence of the exponents #(M). This is a consequence of
the following:

LemMMA 4.1. Suppose a(M) is a real number for each M € M3 (Z), only a finite
number of which are non-zero, and suppose that a(M) # O only when lev(M) is
a divisor of n. Let

o) = [T M.

Then there are real numbers P(M) for MeT, which are rational linear
combinations of the a(M) such that

(4.3) h@) =~ [ (M @)P*™.
MeTn

Remark. By (1.18) and (1.19) it is sufficient to prove the assertion in the
case h(t) = n(mz) for any m|n. (In-fact, this is more precisely what we need to
complete the proof of Lemma 3.1, but the more general statement is true, and
an immediate consequence, so we make it.) Our proof will depend on the form
of some multiplicative identities which we establish in Propositions 4.2 and 4.3.

PROPOSITION 4.2. Let & = e*™/*8 and let o and y be the divisor sum function
and the Mdobius p-function, respectively. Then

(4.4) dﬁl r;('r ) ol | 7(5dzy @@

5|a

Proof. We separate the identity into two parts: the first corresponding to’
the factor of x'/2* in the definition of the eta function, and the second
corresponding to the product [ [(1—x"). Thus, setting e(r) = >*¥/24, g = 2™,

o

and @(1) = [] (1—g"), we have n(r) = e(r)®(z) and it is sbfficient to show that

n=1
d—1 b d—1
(4.5 (’(T +—) = e(_) e(Sdr)r e
) A 7 L]0

and

d-1 b
(4.6) n tp(-,-_- + _) - l‘l (ddry @@,

b=0 d}
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d-1
The first of these follows from ) b =d(d—1)/2 and from

b=0
(4.7) Eéﬂ(é)ﬂ(g) = [1 (e@)—potp* ") =1.
a1 paild

The second requires some manipulation. First we note that if E is
a primitive sth root of unity, ¢ is any natural number, aqd d = st, then

(4.8) dl:[l(l —&X)=(1-X%.
b=0
Setting o = e*™/, and letting P denote the left-hand side of (4.6), we have
P =d—l ( +!3) = ﬁ dl:ll(l-—g""q").
(49] bUO‘ ‘ d n=1b=0

If we set t = (n, d) and s = dft, then & = @" is a primitive sth root of unity, and
we get

(4.10) P= l:[l(l -q"’)‘.l

(Keep in mind that s and t are functions of n and d) We now decompose
n modulo d as n = md—c with 0 < ¢ < d. Then t = (c, d) is independent of m, so

: = : o 5 d —c)s g
@y =T (1 a-e=) =11 1 (1 a-e)

= ﬂ=d[cd.d=]gt m=1
sz 1‘[ SI_‘II (ﬁ (] _‘thm-—ej))‘ — 1—[ ( ﬁ (1 _qdn)) .
=ty W gl

We apply a Mdbius inversion in the form

1, if(n,s)=1,
%“(’F {0, if (1, 9) > 1.
Thus
o @ uir)
(4.12) TI (—q* = T1 [T —¢*y = ]I[( _](l—q""l)
n=1 n=1rin rs \n=

(n.s)=1 ris

rln
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- H( I« —q""’})ym = [ ®(rdey.

rls \m=1 rls

Substituting this expression into (4.11), we have

(4.13) P = [] [1®(dey® =[] d(rdryciowm,

st=d r|s rld
which is (4.6), and so the proof is complete.

. 5 ; ; at+b
To get an identity in which an arbitrary transform r;( i ) appears, we

can substitute t—at/d in (4.4). When we do this, however, the transforms
appearing on the left are not necessarily all reduced. For values of b such that
(a, b, d) = g # 1, they will not be. Consequently, the levels, ad/g* of these terms
are not all the same. To get an identity in which the left-hand side involves only

* transforms of the same level, ad, we do another M&bius inversion.

PROPOSITION 4.3. With &, o, and u as in Proposition 4.2, with ¢ being the
Euler totient function, and

L i @a=1,
E(a‘d)"{o, i @d> 1,

we have
i at+b o(ia.a) ar \#Owoe(drn
@i gmen T ,,( H0) et (2
b= t
@b.d)=1 -

Remark. Some specific examples of these identities appear in Conway and
Norton [2], p. 333.

Proof. Applying Proposition 4.2,

d-1 dii—1 ult)
(4.15) ,T(‘E;'_b)= n q(ar:a)

. tita.d) c=0
d)=1

N (.uﬁ. (a/r+c)“"’
tltad} N\ c=0 q d/":
n ( a ln a \eirnue) uie
e n(r—'r) )
t(a,d) nan N\t
ar afd/ri)u(riut)
= ( l_l g'idh—l}n{r)) H H’T(_ 1:)

tl(a.d) Nadyrjd \ ¢

ald{rt)u(r)u(t)
= é‘(ﬁfa’iwt{a.dll—ﬂn.d]) 1 q(‘_‘f t)
t

tla
rt|d

]
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Proof of Lemma 4.1. For any natural numbers a and d we set

gzl at+b
(4.16) Hl[a, d](1) = H q(—d—)

b=0
(a,bd)=1

Then for a fixed n and any ad = n, (4.14) can be expressed as
(4.17) H[a, d](z) = ~ [| n(mt)™,

m|n
for some rational numbers a(m). As a runs over the divisors of n this is a syster!}
of a,(n) equations in the o(n) quantities n(mt), where g,(n) is the number o
divisors of n. To prove Lemma 4.1 we will show that for each m|n there are
rational numbers f(a) such that

(4.18) n(mt) = ~ d]‘:[ H[a, 417,

Since H[1, 1](z) = n(z), it seems plausible that we can-procced by considering
one prime pin, and reducing to an expression involving H[a,, dy](t), where

pXa,, and pXd,.

Suppose that a, d are natural numbers and that p is a prime which divides
ad. Let a = app’, and d = dgp’, where pfagd,. By (4.14), we have

ar \#Dunaid/ry)
4.19) Hla,d](x) =~ [] n(Tr) .

tla,rtld

We separate the factors in this product according to the powers of P “.ihich
divide each of r and t: p°|ir and p’||t, where 0 < & < jand 0 < & < max(i, j —&).
We denote the resulting expression by P,; and we have

ar plru(t)eld/rn)
(4.20) P,= 1[I I‘](Tt) ;
2 nld,;g:
pE|lrpd|lt
When & > 1 or 8 > 1, the exponent is zero, so P, ;= 1. If j = 0 or &> j, 0:
i = 0, we define any expressions P, s for which the corresponding product 1
empty to be P,;=1. Then we have

(4.21) H[a,d] = Py oPo1P1oP1.s.

We define r, and s, by r = p°ro and s = p’s,. Then as r runs over the divisors of
a, ro runs over the factors of a,, and similarly for s, and d,. In addition, the

exponent u(r)u(s)a(d/rt) is multiplicative, so we.have
(4.22) P, = Hlag, do)(p"* D u(p) (@’ o (@’ ~*79).

To write this more compactly, we set F,(1)=h[aqdol(p't), and oll]
=o(p')=p'+... +p+1, for any | = 0. Thus (4.22) becomes
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Py o= FoUl, Pio=Fp—1,

Py = Fop~1, P,, = Fi-21,

(4.23)

whenever the F, and o[[] are defined. To cover all cases, we set F_, = 1, and
o[~1] =0¢[—-2] = 0. Looking again at (4.21), we have

F:_flﬂpic[f—n
(424) H[a, d] =~ W
Fgla"kl
If we set « =i+j, and Gop = Tet—i=1j» then (4.24) becomes
Fk+ 1
i i Gui—
H{aop', dop'] = ~ ==L,
Then
a . Ga'
” Hlayp', dopj] = G F = ake
i=k+1 - %3

(Here we use G, -, = F§ and G, ,., = F,)) By the definition of G, We have

a
FReit™t=~ Fgemt=3 T Hiaop', dop')

i=k+1

We fix a numer a and then by induction on & it follows that there are rational
numbers f;; such that

Hlay, dg)(p*t) = F, = n (H[aop', dop’]y~.
i+tj=a
By induction on the number of primes dividing m, we see that there are
rational numbers f(a) such that

Hlag, doJ(m7) = ~ || H[a, d}(z)’®
ad=n

Whenever a,d, || n, and a,d m|n. (In fact, we can assert that B(a) # 0 only when,
@ |la.) Taking a, =d, = 1, we have the Lemma 4.1, since each H[a, d] is
a product of transforms of level exactly ad = n.

5. Proofs of Theorems A, B, C, and D.

LemMMA 5.1. Suppose neN, {, {'e Q*, and AeI'(1). Then {x~ (' (mod n) if
and only if AL »~ A{ (mod n).

Proof. If lev(M) = n, then lev(MA) = n, so
ord(n|M; A{) = ord(n|M4; ) = ord(n| M A; {') = ord(n| M; A).

Proof of Theorem A. The converse part of the theorem was proven in
§2. For the direct part, let us suppose r, s, r, s’ € Z, (r, s)=(r, s)=1, and
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’

Lo~ r_} (mod n), ie.,

5 5

(5.1) ord(n|M; f) - ord(rﬂM; -s':) whenever lev(M) = n.
5

1 r 1 o
Choose AeI(1) so that AE = and set (;) = A(s,), SO tl:lat 6*~ B (mod n)-

Since 4, is a product of transforms of level n (Lemma 4.1),

1 o,
ord (A,,; 5) = ord(.dn,ﬁ).

By the definition of 4, (see (3.2)), this implies that f =0 (mod n). Thus

()= ()=o) tman.

. r ;
Applying A~' to this congruence yields (s,)su(:) (mod n), and this

completes the proof of Theorem A.
LEMMA 5.2. The number of equivalence classes under star-equivalence modulo
n is
(5.2) toln) = n[T(1+1/p).
pln
Proof. Consider ¥ ={(r, sx 0<r, s<n and (r, s, )= 1}. Then

|#\ = n?[1(1 —1/p?) = po(Me(n).

pin
(See Schoeneberg [10], ch. IV, §2.) Let ¢: Q*—.% be defined by y(r/s) = (r', s')
where (r, s) = 1, ¥ = r (mod n), and s' = s (mod n). y is onto. (See Schoeneber?
[107.) For { € @*, we let [{] be the equivalence class of { under star-equivalenc®
modulo n. By Theorem A, ¢([{]) has ¢(n) elements for each L. Consequently
there are py(n) equivalence classes.

Proof of Theorem B. By Theorem A, the number k of equivalenc®
classes under star-equivalence is finite, so we let {,,...,{, be cusps chosen on¢
from each equivalence class. Chodse A;el(1) so that Al; = oo and set
6, = A,|A; (the | is the stroke operator). Then for any {€Q*, we have

1, if {x~{;(mod n),

ol 8 = {0 if not.

k
Let Ba. = ord(n|M; £ and consider the function (n|M)/[] &¢*-. This func
i=1

tion has order zero at every cusp, and has no zeros or poles in H so 1t 18

constant. Thus i
(5.3) M =~ [] 8fm.c.
, =1
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There are rational numbers «;, (cf. Lemmas 1.1, 1.4, and 3.1) such that
(5.4 8=~ [ (IM)sim.

MeT,
Substituting (5.3) into (5.4) yields

k ZBmgaim

5‘ = ~ n 5}’ EY
j=1
and applying ord( ; {;) to both sides of this equation gives us
1, ifi=j
5. ; P ’
(5.5) %%Mﬁu.; {0, 125,

Since, by the lemma and (1.4), the matrix (a;,,) is square, it is invertible.
Now suppose c,, are any real numbers such that
(5.6) [T My =~ 1,
MeT,

Le., the function is constant. Then substituting (5.3) into (5.6), and evaluating
the order at {;, we see that ) a; ¢, = 0 for all i, and hence that c,, = 0 for

M
each M. This completes the proof of Theorem B.
Proof of Theorem C. Suppose f is a modular form with no zeros or

poles in H such that ord(f;{) = ord(f;{’) whenever { *~ (' (mod n). Take
{1558 and &,,...,6, as in the proof of Theorem B. Set

g= ﬁ §?rd(f:(fl'
i=1

Then ord(f/g;{) =0 for all (e Q*.

Let I' < I(1) be a subgroup with (I'(1):I') < co such that f is a form on
I’ and set I'" = I' n I'(n). Under the homomeorphism I" — I'(1)/I"(n), the kernel is
I, and I'/I" ~ image(I') is finite. Hence (I'(1):I") < co.

Since both f and g are forms on I”, Lemma 1.7 implies flg =~ 1, or
f=~ g, so fis an eta product.

Conversely, if f =~ [](n|M)™, then f has no zeros or poles in H, and

M

setting »n to be the least common multiple of the levels of those M for which
dy, # 0, we see, by Lemma 4.1, we can find numbers ¢}, for MeT, so that

f=~ 1 (IMy»,

MeT,

and then ord(f;{) = ord(f;{’) by the definition of star-equivalence, so Theorem
C is proven.

Proof of Theorem D. The uniqueness follows from Theorem B, so sup-
pose h is an eta product which is a form on I'(n). By Lemma 4.1 and the

3 — Acta Arithmetica LIV.4
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definition of star-equivalence, there is some natural number m such that
(5.7 { *~ {'(mod m)=>ord(h; {) = ord(h; ().

Suppose we can show that this holds with m replaced by n (note that, in
general, m # n). Then we can take {; and &, as in the proof of Theorem B, set
B. = ord(h;{,), and we then have

h =~ []o%,
because the orders agree everywhere. This will complete the proof of Theorem
D because of (5.4).

So suppose { #~ {' (modm), and taker, s, r,seZ sothat { =r/s, ' = r/s,
and (r, s) = (', s) = 1. By Theorem A, there is some a, relatively prime to n

such that (r,) = a(r). Choose o, so that o, =« (modn) and so that «, is
S S

relatively prime to m. Then (a,r, a,s, [m, n]) = 1, so we can find r”" so that
r’ = a,r (mod [m, n]) and (", a;s) = 1. Setting s” = ;s and {" = r"/s", another
application of Theorem A yields {” * ~ { (mod m), so that ord(h;{") = ord(h; {)

Modulo n, we have
r’ r r
=a = ,
s S s’

so {"" and { are equivalent cusps modulo I'(n) (see Schoeneberg [10], p. 86), a.}‘ld
thus ord(h; ") = ord(h;(’). Hence we have shown that { + ~ {' (mod n) implies
ord(h;{) = ord(h;{’), and this completes the proof of Theorem D.

PART II: MULTIPLICATIVE BASES
FOR THE FAMILY OF ETA PRODUCTS ON A SPECIFIC
SUBGROUP OF I(1)

In Part I we established some results concerning multiplicative relation-
ships between eta products. We now wish to determine multiplicative bases fof
the family of eta products which are modular forms on a given subgroupP
I' < (1) of finite index. We shall give only a very brief description of a basis 11
the general case in §6, and in § 7-9 shall give a detailed description of a mor¢
practical multiplicative basis for the principal transform subgroups I'y(n):

6. Forms on I'(n) and arbitrary subgroups. We let
& = {[InIM*™: MeM3(Z), only finitely many a(M) # 0}

be the set of all eta products, and for any I" we let 4 = %, be the subset of
& consisting of those eta products which are forms on I
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When the subgroup is the principal congruence subgroup I" = I'(n), Theorem
D of Part I showed that o# = {y|M: MeT,} is a multiplicative basis for %.

Recall that the mapping M+— M4 is a permutation of T, the set of primitive,
reduced transformations of level n, for any AeI'(1), and that this gives an
action of I' on T when A4 is restricted to matrices in I'(1), for any subgroup of
r(1). (Cf. Definition 1.3 and Lemma 1.4)) If M e T,, then the orbit of M under
this action lies entirely in T,. The following theorem describes a multiplicatively
spanning set for the family ¢ of eta products which are forms on I when T is
a congruence subgroup, ie., when I'(1) > I' > I'(n) for some ne Z.

PROPOSITION 6.1. Suppose I' < I'(1) is a subgroup of finite index and h is an
eta product. Then h is a form on I' if and only if it has a representation

6.1) h=y- [T (|l My®o
MeT

where y is a constant and a(M) are real numbers, only a finite number of which are
non-zero, and which satisfy

(6.2) (M) = a(M)
for each Aerl.

Proof We may assume that a(M) # 0 only for Me T, for some n > 1.
(Take n to be the least common multiple of the levels of those M in the original
product for which «(M) # 0, then apply Lemma 4.1.) Then, for any AeT", we
have h|A™! = ~ h, (the constant js v(4 "), cf. Definition 1.5 of modular forms)
and also

WA =~ TT (IMA™90 =~ TT @I =~ [T 1My,
MeT, MeT, MeT,
so
[T My =~ TT My,
MeT,, MeT,
and the theorem follows from Theorem B of Part I
Now we can give a multiplicative basis for %.
THEOREM 6.2. Suppose I'(1) > I' > I'(n), suppose Me T let {M) = {M*| AeT}
be the orbit of M under the action of T, and define
nl{M>= T[] nIN.
Ne(M)
Then a multiplicative basis for the family € of eta products which are forms on T is

# = {nldM>: MeT).

It is perhaps expected, but notev;rorlhy nonetheless, that we do not obtain new

forms on I' by using eta products of levels higher than the conductor n of I" (the
least n such that I' > I'(n)).
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Proof. Suppose h is an eta product and a form on I'. Since I' > I'(n),
Theorem D shows that h can be written in the form

h= T 1My,
MeT,,
and then the proof of Proposition 6.1 shows that h is in the multiplicative span
of #. From Theorem D again, it follows that 5 is multiplicatively indepen-
dent.

7. The basis of level n for I'y(n). In this section we describe more precisely
the multiplicative basis for % given by Theorem 6.2 when the subgroup is
I' = I'y(n). This basis turns out not to be very natural because it does not
contain the principal transforms n(at), a|n. A multiplicative basis which is
constructed around these transforms, and which, when it does contain other
eta products, contains only eta products which involve the least number of
factors possible, is constructed in §§8 and 9. Section 8 will produce a multi-
plicatively spanning set which contains the principal transforms and which is
fairly close to a basis, having a few extra members in general, and Section 9 will
give the final reduction to a multiplicatively independent set.

We now describe the orbit (M) of an arbitrary M € T under the action of
I(n). If b and c¢ are relatively prime to n, we say that b and c are in the same
quadratic class modulo n, and we write

(7.1) b ~ ¢ (mod n),
provided there is some integer J, relatively prime to n, such that
b = ¢6* (mod n).

It is equivalent to say there is some & such that bc = 8% (mod n), i.e., bc i
a quadratic residue modulo n.

PROPOSITION 7.1. Suppose n is a natural number, and

ab y an‘bf
Mz(ﬂd) and M_(Od')

are in T with ad|n and a'd'|n. Then M and M’ are in the same orbit under thf
action of To(n), i.e., there exists A€l ,(n) such that M' = M*, if and only if

a=ua,
(7.2) d=d,
b ~ b(mod (a, d)).
Proof. Suppose 4 = (:" ﬁ)er o(n) and consider

_ [ax+byn af+bdé
MA_( dyn dé )
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The greatest common divisor of the first column, since ad|n, is g, so there is
some Sel’(l) and b with 0 < b’ <d so that

a b
MA = 3

We set D = n/a. Then d|D and

a+byD =
S= X
dyD x

Modulo (a, d), we then have

MA = 0 bo _[(** 0b _ Oab’.
0 0 0=*/\00 00
Since aé =1(modn), this gives us b' = bé®(mod(a,d)), so that b ~b
(mod (a, d)).

Now suppose ad|n and b ~ b'(mod (a,d)). Choose  so that b’ = bs?
(mod (a, d)) and so that (5, n) = 1. We can then find o, f, and y so that

o
A= (}m f;)e I'o(n). By the first part of the proof, there are SeI'(1) and b” in

0<b”<d so that
abu
MA=S(0 d)

and this b” satisfies b" = bo* = b’ (mod (a,d)). Choosing k, | so that
b"” = b’ +ak+dl, we have

M(AU™Y = (SU‘)(‘; 3)

Since AU ¥l y(n), this completes the proof.

8. Reducing the level of the spanning set. Suppose ad|n, and M = (g j)e T

Then, following Proposition 7.1 and Theorem 6.2 we define

1) =5 )

ceC
where

C={ceZ| 0<c<d and c ~ b(mod (a, d))}.

(This was denoted by n|(M) in Theorem 6.2.) Then (M) is a form on I',(ad),
and consequently also a form on I'y(n).
We let

Ho={{M)| MeT,;,
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and

# = {{M)| MeT, for some m|n}.

By Proposition 7.1, # is a multiplicative basis for the family 4, and ¢ 2 #,,
so 2 is a multiplicatively spanning set for ¢ which contains the principal
transforms. In this and the next section we reduce #, first to a set 3’ and then
to a set #”, each of which is still a multiplicatively spanning set for %, and then
show that #" is a multiplicative basis for 4.

Before describing 2 and ", we consider the properties of the relation
b ~ ¢ (mod m) introduced above. Let [b], = {ceZ| b ~ ¢ (mod m)} be the
quadratic class of b modulo m whenever (b, m) =1. If k is the number of
incongruent solutions modulo m of the equation x? = 1 (mod m), thén' [b]..
contains ¢(m)/k incongruent elements, and this means there are k quadratic
classes modulo m. If p is an odd prime, then x> = 1 (mod p®) has two solutions,
and if « > 2, then x2 = 1 (mod 2°) has the solutions x = + 1 (mod 2*~ ). Hence,
if we let w,(m) denote the number of quadratic classes modulo m, we have

w,(m) = w, (292",
where r is the number of odd primes dividing m, 2*||m, and
1, ifa=0,1,
®w,29=<2, ifa=2,
4, ifaz=3.

If d|m, then b ~ c(mod m) implies b ~ ¢ (mod d). Thus there is a map
[b),—[b), which is a surjection, and this is a bijection if and only if
@, (m) = w,(d). There is a least divisor of m which has the same number of
quadratic classes as m and its value we call the quadratic radical of m, and
denote it by

qrad(m) = 2 ] »,

plm
podd
where
0, iof 4+m,
p=<2, if 4m, 8)m,
3, |if Slr_n-.

Note that 2 is never a full divisor of qrad(m), #nd that grad(grad(m)) = qrad(m)-
The condition d = grad(d) will mean that d is divisible by no square other than
1 or 4, and that either d is odd, or 4|d.

The number & defined in the introduction (cf. (0.5)) can now be described by
saying that ¢ is the largest number such that

%ln  and 6 = grad(d).

For each M = (a b

E'i; we now define
0 d)
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d
My=——""".
) (qrad(a, d))
Thus e(M) = 1 will mean that d|grad(a), and, under the assumption that ad|n,
we see that e(M) =1 if and only if we can write a = a'd, where a'd*|n and
d = grad(d).
We set

H' = {{M)| MeT, lev(M)|n and e(M) = 1}

e(

= {<M>| M =(“{‘: ;’), (@ b,d)y=1, 0< b <d, ad*|n, d=qrad(d)}.

We shall show in this section that 3¢ is a multiplicatively spanning set for .
In the next section we shall show that we get a multiplicative basis by choosing
specific values for b. We let

X = {<(3 3))53?’" b is a quadratic residue modulo d},

and, when 8|d, we set d = 8d,, where d, is odd, and let

39 = {<(3 3)>E3f"’ 8|d, b is a quadratic residue rﬁodulo d,

and b= 3 or 7(mod 8)},

and, finally,
H' = H U HY .
Some comments on the nature of the functions in 5’ and " are in order.
When d = 1, the function (M) is simply n(at), so these are always included in
' and )" for any a|n, and there will be no others when n is divisible by no

square other than 1 or 4. When we satisfy the condition d|a, as is true for all of

the functions in # and #” we set a = a'd, and the product involved in {M is-
somewhat simpler than in general:

(M = l—[ n(a't+c/d).
c¢~b (modd)

When there is some square d2|n, the functions chosen for #" are chosen so that
d is as small as possible, and eonsequently the length of the product in

My= ] nlac+bld

is relatively short, The level of the transforms in this product is ad”, and #"
contains as many functions of small level as is possible. Thus ' has been chosen
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so that the functions involved are as simple as possible. On the other hand,
although #” is multiplicatively independent, this is not always an advantage.
There is some asymmetry forced when we neglect the residues which are not
quadratic in its definition, and there are some advantages to be gained, for
instance, on I';(25), by considering both

() =reromeryy ana ((§3))=rne+dmerd

one must use more complicated exponents to make some constructions with
one of these left out. So we might advise considering working with #” instead
of #" unless there is some definite benefit to be derived from the multiplicative
independence.

Proof that #’ spans % multiplicatively. We show that if ad|n,

ab

M= (0 d)E T, and e(M) > 1, then there are (M,), {(M,)es# such that
e(M,) < e(M) and such that

(8.2) (M) =~ (M DM ,)P

for some integers o and . Then a proof by induction on e(M) will show that we
can eliminate from 4 all of the functions for which e(M) > 1, without losing
the property of being a multiplicatively spanning set for ¢ and thus #” will be
such a set.

So suppose e(M) > 1 and choose p a prime such that p|e(M). We take C as
in (8.1), let d' =d/p, and set

C'={c| 0<c <d and ¢’ ~ b(mod (a, d))},

b!
and choosing some b'eC’, we set M' = g d’)'

We use the following cases of Lemma 4.4

&t 1k +1 -1 :
I_] ’”(0 o nP*t(mlp)~', for p a prime,
(8.3) ) '
Ot ) cm > ana TIal(2 %) =~ 52"
Ilallg,)=~n"0 and - Tlnllg g)=~n" 02"

Case 1. We consider first the case in which the quadratic classes modulo
(a, @) are the same as those modulo (a, d). (The number of quadratic classes is
the same in every case, but when p = 2 and 4 f d, then the quadratic classes
modulo (4, d') include some even numbers which were not permitted in the
quadratic classes modulo (a, d).) In the cases we are considering, each ce C can
be represented uniquely in the form ¢ = ¢’ +kd', where k =0, 1,..., p—1, and
¢'eC'. Hence, by (8.3),
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p-1 1 k ac ac /
JLIT g )Mo &)=~ IL7" W o)/ I (o o
= (M. )P+ pa pc’
< l> /c'l;[C,qi(O d.r .

Subcase 1la. Suppose pyd'. Then with b"” = pb'(modd’), we set
b”’
M, = (pa ) and we have (M) =~ (M, )P 1 {(M,>" .

Subcase 1b. Suppose p|d. The matrices (;:]a I:;) appearing in the

denominator of the last expression above are not reduced: the entries have
a common factor of p. So we set d” = d'/p, choose some b" = b’ (mod d") with

(a, b", d") =1, and set M, = (a b

0 d")' The function (M, involves a product

over the index set
Cn oo {CNI 0 é (.'” < du and C" s b" (mod (a’ d””}.

Consider the map c¢'—¢” of C' onto C” determined by ¢’ = ¢’ (mod d”). Each
¢” e C" has the same number of preimages in C’; call this number B. Then, since

I a C.ﬂ _ a cl’ h
o g =~ o g+ ) We have
(M) =~ KM HPT KMy

Case 2. Suppose p = 2|(a, d) and 2 yd'. Then the map ¢+ ¢’ determined by
¢=c(modd) is a 1-1 correspondence of C onto C' and so we have
M) =~ {(M,>/{M,> as in subcase la.

9. The multiplicative basis for eta products on [y (n). Suppose
ad b ,
M - (o d)e Twith d = qrad(d). Let d = 2°d,, where d,, is odd. If (b, d) = 1,

we let v, be the number of odd primes p such that b is a quadratic residue
modulo p, and set

Vo, if =0, or
(mod 4), or
, 3, or 7 (mod 8),

—

b=
v =¥, b= p=3and b=

vo+1, otherwise.

Thus v(M) counts the number of odd primes p for which b is not a quadratic resi-
due, adding one, in addition, when 4||d, b = 3 (mod 4) or 8|d, b = 5 (mod 8).
Hence we see that (M) e " if and only if v(M) = 0. We introduce a partial
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fu-(5'2)

d'|d and d' < d,
M<M if or
d =d and v(M') < v(M).

We shall show that if v(M) > 0, then there is an identity (M) =~ [] (M D™

ordering on

ad*|n, d = qrad(d)}

by saying

for some o,€ Z and some M; < M. Then 5" will have the same multiplicative
span as the set ¥, ie., it will span ¢ multiplicatively.

Case 1. Suppose there is an odd prime p such that p|d and bis a quadratic
non-residue modulo p. Let d' = d/p and choose b’ such that b’ = b (mod d'),
0<b <d, and b’ ~ 1(mod p). Then v(d, b’) = v(d', b') = v(d, b)—1. We set

Co={cl 0<c<d, d,c)=1, and ¢ ~ b(mod d)},
={c| 0<c<d, (d,c)=1, and ¢~ b'(mod d)}, and
C,={c| 0<sc<d, (d,c)=p, and ¢~ b ~ b’ (mod d)}.

Then their union, in terms of 4', is
CouC,uC,=C={c|0<c<pd, (d,c)=1, and c ~ b’ (mod d')}.
We can rewrite C, also in terms of d' in the form

C,={pcl 0<c<d,(d,c)=1, and ¢ ~ pb' (mod d')},

so we set M, = (a(f :) M, = (a: Z?), and consider the function 1 defined
by

d
h= (MY (M, (M, = nnt(‘; ;')

Reducing the elements of C' modulo d' we obtain the set
={c|0<c<d, (c,d)=1, and ¢ ~ b’ (mod d)},
so that, aiaplying the first equation in (8.3),

l;[ ” ’”(0 p) (“P"" ;)
-~ [T 2 (s )]

apd' b ap*d’ pb
Hence, with M, =( £ d')' M, =( PO I:,), o, =0, =0 = =1, and
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= p+1, we have M, < M for each i, and (M) = [[{M>*, so this case is

done.

Case 2. Suppose b ~ 1 (mod d,); 2* = 4, and b = 3 (mod 4). This is almost
identical to case 1, and we’ omit the argument.

Case 3. Suppose b ~ 1 (mod d,), 2° = 8, and b = 5 (mod 8). We choose b,,
b,, and b; so that b,=b(modd,) and so that b, =1, b,=3, and

ad b,

b, =7 (mod 8), and define M; = ( 0 d) Consider the product

d
(MM Moy (M) = T nl(" C)
where C'={c|0<c<d, c~b(moddy, and c¢ is odd}. We let
C"={c] 0<c<d, c~b(moddy), and c is even}, and multiply both sides by

the factors ql( ) where ce C” to obtain

0d

ceC” k= 0 4 0 d

-G s)(5 )

for the set C, = {c| 0 < ¢ <d,, ¢~ b(modd,)}. We apply the second and
third equations in (8.3) to obtain

<M><M1>(Mz><M3><M4>?<M5>_3 =na <M6>15<M7>_19
_ (4ad, 2b _ (8ad,, 4b _ (8ad, b
o= (50 0) wem (5o n) o= (500)

16ad, 2b
M’=( 0 da)'

3
MMM TT [T (’ ") (4""" ”)

where
and

This completes case 3.
This covers all of the cases, so we have shown that 3" is a multiplicatively
spanning set for ¥%.

To show that it is multiplicatively independent, we note that the number of
elements in 5, is

|#ol = ). (n),
ad=n
which is a multiplicative function of n, and that the number of elements in "
is also a multiplicative function of n, by the Chinese remainder theorem, so we
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can check that |9¢,| = |¢"| by checking that it is true for each prime power p*
We leave this computation to the reader. Then 5, is multiplicatively inde-
pendent, and " has the same multiplicative span as #, so 5" must also be
multiplicatively independent.

Thus #” is a multiplicative basis for ¥ and Theorem E is proven.
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1. Introduction. For a positive integer h, the h-range n(h, A,) of an integer
sequence

(1) A ay=0<l=a,<a,<...<q,

is the largest n for which each of the integers 0, 1,..., n can be written as a sum
of h elements of A,, repetitions being allowed. The extremal h-range n(h, k) is
given by
n(h, k) = maxn(h, 4,).
A
The problem of calculating n(h, k) is by some authors referred to as ‘the postage

stamp problem’, due to a rather obvious combinatorial interpretation. In this
note we consider n(h, k) for k = 1 fixed and h large.

By a simple combinatorial argument, Rohrbach [11] showed that

h+k
n(h, k)<( . )
so in particular
kk-—l. h k
= k-1
2) n(h, k) g(k—l}!(k) +O0(h*™ 7).

On the other hand we have n(h, k) > (h/k)* (Stéhr [13]).
For k <3 we have

il i ck(g)kwm*'l),

where ¢; = 1 (trivial), ¢, = 1 (Stéhr [13]), c; = 4/3 (Hofmeister [4], Klotz [6]).
For k > 4, however, it is not even known if such a constant ¢, exists. Guy ([3],
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