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Finally, someone interested in the problems considered in this paper, could
do no better than consulting Selmer’s research monograph [12].
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1. Introduction. In [5] Niederreiter developed the concepts of permutation
polynomials in several variables over a finite field and orthogonal systems of
polynomials over a finite field. In this paper we generalize these notions by
allowing the image spaces of the polynomials to be arbitrary subfields of the
finite field. Several properties of permutation polynomials and orthogonal
systems are preserved and new ralationships are exhibited. For a development
of the basic properties of permutation polynomials and orthogonal systems, see
[1], Ch. 7, Sec. 5.

In [3] Mullen demonstrated an application of the theory of permutation
polynomials and orthogonal systems to the construction of complete sets of
mutually orthogonal frequency squares of prime power order. Although
Mullen’s construction generated previously known designs, his algebraic
approach was completely different than previous methods which were based
upon statistical design theory. In a similar manner, we will show in a follow-up
article how to use the theory developed in this paper to construct additional
complete sets of frequency squares, rectangles and hyper-rectangles, as well as
build orthogonal arrays of various strengths.

Let F, denote the finite field of order ¢" where g is a power of a prime p and
n is a positive integer. Let F¥% denote the multiplicative group of nonzero,
elements and let F}. denote the product of k copies of F,., k > 1. The ring of
polynomials in k variables over F,» will be denoted by F [X15...,% ). Unless
otherwise specified, two polynomials f, ge F [x15...,%,] are equal if they are
equal as functions. Recall that every function f: Fk%.— F . can be uniquely real-
ized as a polynomial in Fenlx,,...,x,] of degree at most ¢"—1 in each variable.

Following Niederreiter in [5], a polynomial fe Fn[xy,...,x,] is called
a permutation polynomial over F . if the equation f(x,,...,x,) = a has exactly
q"*~ " solutions in F%. for each ae F,n. In addition, a system of polynomials

* This work is part of the author’s Ph. D. dissertation at PSU under the direction of Professor

G. L. Mullen.
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Jiseoos ;€ Flxy,...,x] is an orthogonal system in F,. if the system of
equations f(x,,..., %) = a,,...,f,(x;,...,X,) = a, has exactly ¢g"*~" solutions
in F% for each (a,,...,a,)€Fin

For any t[n we know F is a subfield of F . Since q is fixed, the trace
function of Fgn over F, will be denoted by TR,, and is defined by the
polynomial

TR (X)) = x+x%+ ... +x7°,

Let TR, denote the trace function of F, over F,. Throughout this paper, let
K, = ker TR, Define an additive character y, of F, via

¥, (x; t) = exp(2mi- TR, (x)/p).

As indicated in Theorem 5.7 of [1], all nontrivial additive characters of
Fg have the form y,(x;t) = ¢, (ax;t) for some ae F¥%. Also note that

(L1) V%3 1) = ¥ (TR (x); 1)
By equation (5.9) of [1], we also have for every aeF¥%,
(12) Y alb; ) =0.

beF

ql
Finally, J, will denote the character defined by ,(x;t) = ¥, (x; t).

2. Field permutation functions. Throughout this section, assume n, ¢, u, v,
and k are positive integers. We begin with the following concept:

DEerFINITION 1. A function f: Fk— Fo. is called a field permutation function
(FPF) from F, to F,. in k variables (denoted as (k;t;u) FPF) if the equation
Sxy,...,x%) = a has exactly g~ solutions in Fl for each aeF,.

We see that the existence of a (k;¢;u) FPF is guaranteed whenever tk = u.
Moreover, the number of different (k; t;u) FPFs is given by (g*)/(g*~*1)®". It is
often necessary, particularly in various applications, to view a (k;t;u) FPF fas
a polynomial in the ring Fu[x,, ..., x,] with f Fi.— F ., where n is a common
multiple of t and u. The FPF fis determined by restricting the domain of the
polynomial to F, and the values of the polynomial off of Fi: are generally
ignored. In this setting, we call the FPF a (k;t;u) subfield permutation
polynomial (SPP) since we consider F, and F,. as subfields of F,. It is easy to
see that for any common multiple n of ¢ and u there are g"4™~ 9" distinct
polynomials in F,[x,,...,x,] which give rise to the same (k;t;u) FPF,

When t = u = n we have Niederreiter’s notion of a permutation polynomial
of Fpn in k variables, denoted here as a (k;n) PP, and a (1;n) PP is
a one-to-one map of F,. onto itself.

In the following result we present a useful necessary and sufficient condition
in terms of character sums:
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THEOREM 1. Let f: Fi—Fo. Then f is a (k;t;u) FPF if and only if
Z 'Jlr(ﬂbl,-..,bl); u):o
(bg....,b,,}ep;,
for all ceFx.

Proof. Suppose that f is a field permutation function. Then for ¢ #0 we
have

Z 'r”.:(f(bp---sbg);“)= qﬂ.-u z lf’l‘.(ﬂ; uy=0
(b1.....bu)eF ot aeF gu
by (1.2).

Conversely, for aeF,. let N(a) be the number of solutions in F% of
f(xy4,...,x,) = a. Then we have :

N(ﬂ) = 7] Z K Z wc(f(bl Y 9bk); H)Jf-‘(ﬂ; H)
9" @s....W)eF gt ceFgu
a1 ; .
- qu +q"ﬁ;"'u ‘Ft(a, u)(bl..,..zb‘;r;lil";t th(bl’ U bi)’ u)
=4q*""+0

as desired.

When ¢t = u = n, Theorem 1 reduces to Niederreiter's result (Theorem 1 of
[4] or Theorem 7.7 of [1]) concerning permutation polynomials. We can use
Theorem 1 to generate a key example of a subfield permutation polynomial in
one variable. To do this, of course, we must assume that t 2 u, and n is any
common multiple of ¢t and u. First observe that

Fon # Ky Fou = {ab: ae K, beFu}.
This is easy to see from the following calculation: for any n>1 and t >y,
IKop Foul < (§" "= 1)(g"—1)+1
S@ '@ -D+1<qg"-2¢"*+2 < ¢q".
We now know there exists some nonzero YEF\K,Fou. We claim that the
polynomial TR,,(yx) is a (1;t;u) SPP in F on[x]. Applying Theorem 1, we
have for any ceF*

g4

bEZF'. Y(TR,u(yb); u) = 3 Y.(yb; m)

bqu:
= Z 'pl(TRn;:(C?b]; f) = z Yub; 1) =0
beF

beF ;e o

by (1.2) since d = TR, (cy) # 0 (otherwise, cye K, which implies ye K., F,.).
Note the use of (1.1) in the first two steps.



310 S. J. Suchower

Incidentally, note that if t < u and »n is any common multiple of ¢t and Uy
then F = K, F . Otherwise, we could use the construction above to exhibit
a (1;t;u) FPF, an impossibility since ¢'™* < 1.

Assuming only that tk > u and n is a common multiple of tk and u, we can
now easily see that TR, (y(x,®; + ... + x,®,)) is an example of a (k;t;u) SPP,
where w,,...,w; is any basis of Fyx over Fg, and ye Fp\Kpui' Fou

This naturally leads us to the following relationship among field per-
mutation functions.

THEOREM 2. Let tk > u > v, and n be a common multiple of u and v. Given
Y€ Fgn\Kpy' F o, then fis a (k;t;v) FPF if and only if there exists a (k;t;u) FPF
g such that f=TR,,0yg.

Proof. Suppose f is a (k;t;v) FPF. We shall construct a suitable (k;t;u)
FPFg. For aeF,, define

X(a) = {(by,....b)EFy: f(by,....b) = a},
and
Y(a) = {ce Fu: TR,,(yc) = a}.
We know that for any aeF,,
|X(a) =q*" [Y@|=¢""" and () X(@=F; () Ya)=F,u.

aeF guv acF gv
For each ae F., arbitrarily partition X(a) into ¢*~" disjoint subsets of s.ize
g™ ~* and label them W(c), one for each c € ¥(a). We can now define a function
g: F&-F, by glby,....,b)=c if (b,...,b)eW(c) for some ceF,. BY
construction we have f= TR,,0yg.

To show the converse, first recall that TR,,(yx) is a (1;u;v) SPP in F[x]
so each ae F . has exactly g*~" preimages in F,.. If g is a (k;t;u) FPF, then
each be F . has exactly g'* " preimages in F&. Thus, the function TR,,0yg has
the property that each ae F,. has exactly ¢* *-¢* ™ = ¢**~* preimages in Fg-
We conclude that TR, 0yg is a (k;t;v) FPF.

The choice of the function g is, in general, not unique. The proof above

k—vyyeY

indicates that there are %——_“—;F (k;t;u) FPFs for each (k;t;v) FPF.

Two immediate corollaries of Theorem 2 may be worth noting. _

COROLLARY 3. Let tk > u. If't < u, set m = k; otherwise, we can set m =1 of
m=k. Let n be a common multiple of tm and u. Put Q(x,,...,Xx;) = w¥)
+ ... +wx, where wy,...,w, is any basis of Fu over F,, and Qllxl,...,x{J
=(Xy,...,X), the identity function. Given 7€F\Kym Fq, then f 15
a (k;t;u) FPF if and only if there exists a (k—m+1;tm) PP g such that
f:_— TRHIH{?QOQm)-

Proof. If t > u and m = 1, we simply replace u by t and v by u in Theorem
2 to get the desired result. If m = k, we first define a (1;tk;u) FPF f, from f vi2
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Silxy@y + ... +x,0,) = f(xy,...,%,). Apply Theorem 2 to f, by replacing u by
tk and v by u to obtain a (1;tk) PP g such that

Sxgseex) = f1(x10 + ... +x,0) = TR (79 (x, 0, + ... +X,0,)).

This result gives, via the trace function, a nice relationship between
permutation polynomials of Fym and field permutation functions from Fgm to
Fgu. In effect, if all permutation polynomials of Fm in k—m+1 variables are
known, then all field permutation functions in k variables are known.

In Theorem 2, if v|u then we may take n = u so that K. = {0}. By choosing
7 = 1, we havethe following special case that is independent of the parameter n.

COROLLARY 4. Suppose v|u. Then fis a (k;t;v) FPF if and only if there exists
a (k;t;u) FPF-g such that f= TR,,0g.

An incidental fact derived from this series of results is that when t > u, n is
a common multiple of t and u, and y € F»\K,,* F ., then the function h(x) = yx
maps Fg uniformly onto Fgn/K,,. That is, each coset of F,./K,, has exactly
q'~" preimages in F .

3. Orthogonal field systems. Throughout this section, let n, t, v, k, r, and
Upseooslly, Uy,...,0, all be positive integers. Set s=u,+...4+u,. We now
introduce a new concept:

DerFINITION 2. Foreach i, | <i<r,letf;: F{;. — F ... The system of functions
Jis-+.5/; is an orthogonal field system (OFS) from Fu to Fyp,...,Fp, in
k variables (denoted as (k;t;u,,...,u,) OFS) if the system of equations
Ji(Xpsenx) = ay,.., f(xy,...,X,) = a,, has exactly g*~* solutions in F% for
each (a;,...,8)€F i x ... X Fyu,.

Once again, we can represent each function above as a polynomial in the
ring Fyn[x,,...,x,] where n is a common multiple of t, u, ..., u,. In this case we
call the system a (k;t;u,,...,u,) orthogonal subfield system (OSS). When
t=u, =...=u =n, we obtain the notion of an orthogonal system of
permutation polynomials of Fu. in k variables as defined in the introduction.
We will see many similarities with this concept.

One can easily show that if f,,..., S, form a (k;t;u,,...,u,) OFS, then fer
each i, 1 <i<r, the function f; is a (k;t;u) FPF. This indicates that an
orthogonal field system is a natural extension of the concept of field
permutation function discussed earlier. In fact, the number of different
orthogonal field systems of the form (k;t;u,,...,u,) is given by (g*!)/(g" ~*!)*".
We note that this reduces in the case t =u, =...=u, = n to Niederreiter’s
calculation in [5] (p. 422).

The following result provides us with an implicit bound on the possible
number of functions in an orthogonal field system. This result extends Theorem
1 of [5] (or Theorem 7.36 of [1]) by taking t = u; =... = u, = n (in this case,
note that the condition tk = s becomes k > r).
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THEOREM 5. Let f,,....f, form a (k;t;u,,...,u,) OFS. Then we can always
form a (k;t;u,,...,u,,v) OFS f,,....f,, g provided tk = s+uv.
Proof. We shall construct a suitable function g. For

(@y,...,a)el = Fpy X ... X Fpuy,

put .
X(ay,....,a)={(by,....b)e Fk: fi(b,,....,b)=a, for | <i<r}.

Since |X(a,,...,a,)] = q"** for any (al,...,ar)eﬁ, we can then arbitrarily
partition X(a,,...,a,) into g* disjoint subsets each of size g*~*7?, andllabel
these subsets Y(a,,...,q,, a), one for each ae F .. We define a function g in the
following way: g(by,...,b)=a if (by,...,b)e¥(ay,...,a,a) for some
(ay,..-,a)ell and aeF,. Clearly by design we have that f},...,f,g form
a (k;t;uy,...,u,,v) OFS. .

The result above shows that not only is it necessary that tk > s, but that
every orthogonal field system with tk > s can be extended to the limit tk = s. If
tk = s, then the OFS gives a bijection between F% and F, x ... x F,.,, where
s=u,+... tu,. :

We now present some necessary and sufficient conditions.

THEOREM 6. Let v|ged(uy, ..., u,). Suppose for each i, 1 i<, fii Fye—Fgu.
Then the following are equivalent:

(@) fi.....f, form a (k; t;u,,...,u,) OFS;

(b) l 2 > Ve (f1(Bys- s bs wy). e (fbyse . by w,) = O for all

(b1.....bi)e Tt
€1reerC) € Fau X ... X Fu\{(0, .., 0)};

© h(xy,...,x)= ZTR,J,,(ciﬁ(xl,...,xh_)) is a (k;t;v) FPF for every

i=1
(€ys--s€)EFqui x ... x Fu\{(0,...,0)}.

Proof Set IT = Fyu; % ... X Fgu, and IT* = I1\{(0,...,0)}. The equivalence
between (a) and (b) is essentially the same argument found in the proof of
Theorem 1, and so is omitted. The equivalence between (b) and (c) follows from
the simple calculation: for de F¥%,

E " ¢“1Ul(bl!"'!bk); ul)"“\{’d‘c;-(.ﬁ(bl!""bk); “r)

(by.....bi)eF g
= Z 'J"d(TRm.Fu(ﬁJq (bl gy bx])§ U) “us 'l’/d(TRll.-ﬂr'(crj;(bl yrasy b")); l.’)
!h,....bk}EF:|
= Y Ylhby,...,by); v).
[ TRTees bk]’EF;‘

We need only note that for any d € F}., dIT* = IT*, so the first sum above is the
same sum found in (b). This completes the proof.

Once again- observe that when t=u, =...=u =n, the equivalence
between (a) and (b) reduces to Niederreiter’s Theorem 2 in [5] (or Theorem
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7.37 in [1]), and the equivalence between (a) and (c) reduces to the Corollary of
Theorem 2 in [5] (or Corollary 7.39 in [1]) since the trace functions TR,
1 <i<r, become the identity function.

The following theorem. determines a relationship between the orthogonal
field systems (k;t;u,,...,u) and {(k;t;vy,...,0,) where u;>v, 1 <i<r, and
tk > 5. Except for technical adjustments, the proof is similar to the proof of
Theorem 2.

THEOREM 7. Let n be a common multiple of u,,...,u,, Vy,...,U,, and for each i,
1 <i<r, fix some Y€ Fgr\Kppuy* Foui.

Then f,,....f, form a (k;t;v4,...,0) OFS if and only if there exists
a (k;t;uy,...,u,) OFS g,,...,g, such that Joreachi, 1<i<r, f= TR,,,.07:9;.

As implied above, Theorem 7 is a generalization of Theorem 2 to OFSs.
Following the notation used in the statement of Theorem 7, we see that there
@y
(qu-s!)q'
s=u+...+u, S =v,+...+v,

Hifvy

are (k;t;uy,...,u,) OFSs for each (k;t;v,,...,v) OFS, where

4. Additional properties. Many of the results in this section are extensions of
properties of permutation polynomials and orthogonal systems. We shall
adopt the notation of the previous two sections where appropriate.

Recall that every (1;¢) PP has degree at most ¢'—2 (Corollary 7.5 in [1]).
We use this fact in the following:

THEOREM 8. For t > u, let fbe.a (1;t;u) SPP in F ~[x], where n is a common
multiple of t and u. Then there exists a (1;t;u) SPP heF, gn[x] such that f = h on
Fg and q'™" < degh < ¢"-2.

Proof. First examine (x™)* mod (x*"—x) where 0<m<gq'—2 and
0<i<n/u We can write m=ag"""+b where 0 <bh < ¢g"~™ Note that
0<a<g“—1. Observe also that if a=g*—1, then b< g —2; if
b=g"""—1, then a < ¢"—2. This happens because m < ' —2<g"—2. We
now have mod (x?"—x),

(Mt = (xea T ROy ba'  ybateta
and
bq"'+a < (qn—fu_ l)q‘“+(q‘“~— l) T q"—l.

That is, (x™)*" mod (x*"—x) has degree at most ¢"—2. By Corollary 3 we know
there exists a (1;1) PP ge Fx[x] and ye Fgn\K ' Fqu such that f = TR,,,0yg on
F . Since g has degree at most ¢'—2 and TRyu(X) = x+x¥+ ... +x¥° 7%, then
the calculations above imply that h(x) = TR,.(79(x)) mod (x" —x) agrees with
fon Fg and has degree at most g"— 2. Moreover, since h is a (1;t;u) SPP, then
h has at least ¢'~¥ distinct roots in F .. Thus, degh> ¢~

When u|t, so that we may take n = ¢, the bounds found above are sharp.
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However, when u t't we can still exhibit a (1;¢t;u) SPP in F;.[x] which realizes
the upper bound, namely

niu

h(x) = TR, (x¥" ) mod(xt"—x) = Y o " xa"=a 1
i=1

has degree ¢"—2.
The following result extends Theorems 5 and 6 of [2] (or Theorems 7.42
and 7.43 of [1]) to FPFs. The proofs are similar and so are omitted.

THEOREM 9. Let 1 <j <k, and f: Fi— F,. Suppose we can write

SOy X) = g(X g5 s X)HB(X 4 1500 r X)-

If either g is a (j;t;u) FPF or his a (k—j;t;u) FPF, then f is a (k;t;u) FPE. The
converse is true only when q is prime, u=1, and g: Fj— Fyu, h: Fe/— Fgu

We now turn our attention once again to orthogonal field systems. We
generalize Theorem 7 of [5] (or Theorem 7.44 of [1]).

THeoReM 10. If k = rl, then there is a one-to-one correspondence between
orthogonal field systems of the form (k;t;u,...,u,) and field permutation
functions of the form (I;tr;s), where s =u,+ ... +u,

Proof. Since the number of such orthogonal field systems and field
permutation functions agree, then many correspondences exist. We will
construct a particular bijection. Choose n so that t|n and foreach i, 1 <i <1,
u;|n. Fix a basis @,,...,®, of F - over Fy, and a basis d,,...,0, of Fyn over Fgn

Set X = Y 8,F,. Note that X is a subspace of Fy of cardinality ¢*. Thus
i=1
there exists a vector space isomorphism ¢: X — F.. ’
Suppose f,,....f, form a (k;t; uy,...,u,) OFS. For (a,,...,a)€ Fy, write for

eachi, 1 i<l a;= Y by-1)+;w; where for each j, 1 <j <k, b;e Fy. Define
=1
a function g: Fiw— Fy by

glay,...,a) = ‘P(Z 5if;‘(bl"'-’bk))'
i=1 .

It is easy to see that g is a (I;tr;s) FPF. Moreover, the process can be reversed
to define f,,...,f. given the function g.

Note that when t = u; = ... = u, wemay take w; =9, l <i<r,and ¢ the
identity map to obtain the same proof found in [5].

We finish with the following straightforward result for generating oI-

thogonal fields systems. This theorem is useful for constructing complete sets of

mutually orthogonal frequency squares, as mentioned in the introduction. This

result is also a partial generalization of the Corollary of Theorem 2 in (53 -

THEOREM 11. Let n be a common multiple of t, u,,...,u,. For each b
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1 <is<r, fix y,€ Fp\K, Foui, and define
Ll' = {TRNII(C}JJ: Cqur.u}.
Let g,,...,g, be (k;t) PPs. If
P(Xpse.nxy) = Y digilx,,.... %)
i=1
is a (k;t) PP for every (dy,...,d,)e L, x ... x L\{(0,...,0)}, then the functions
TR"J’m OY1G15--- ',.TR,,;,,,O']’,Q,.

form a (k;t;u,,...,u) OFS.

Proof Forany(c,,...,¢,)€ Fpu X... X F . \{(0,...,0)}, we have by Theorem 1,

0= Z WI(TRMI(CITI)QI(!’D""bt)+ +TRnfl(cr'}’l;]gr(bls'--!bk); t)

{ﬁl,.-..bk)er‘;‘.
= Z ‘p1(TRun{C1?1}91(b1:---sbk); f)---‘lfa(TRnn(Cr?r}gr(bp---:bk); 1)
(b,.....b,,;erg.
= i § Ve, (TRHIHI{?I gi(by,-.., bk)); “1) cee 'ptr(TRnfnr(ngr(bl, ceay bk)); "r)
1y-enibideFae

which completes the proof by Theorem- 6.
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