ACTA	ARI	THMETICA
	LIV	(1990)

A note on representation of positive definite binary quadratic forms by positive definite quadratic forms in 6 variables

by

YOSHIYUKI KITAOKA (Nagoya)

Let S and T be positive definite even integral matrices of degree m and 2, respectively. We denote the transpose of a matrix X by ${}^{t}X$, and ${}^{t}XSX$ by S[X] if it is defined. Now suppose that S[X] = T is soluble over Z_p for all primes. It is known ([1], [2], [4]) that if $m \ge 7$ and min $T = \min T[x]$ ($Z^2 \ni x \ne 0$) is sufficiently large, then S[X] = T is soluble over Z. Let us consider the case of m = 6. In [6] we showed that if $T = aT_0$, where T_0 is fixed, and a is a sufficiently large integer relatively prime to det S, then $S[X] = aT_0$ is soluble over Z. For $T = aT_0$, det $T = \max_{n \ne 1} T_n$ is evident. Here we show, in particular, that if det $T > (\min T)^{32.2}$ and min T is sufficiently large, then S[X] = T is soluble over Z. Let us consider the problem from a view of getting an asymptotic formula of the number of solutions. Let

$$f(Z) = \sum a(B) \exp(2\pi i \operatorname{tr}(BZ))$$

be a Siegel modular form of degree 2, weight 3, whose constant term of Fourier expansion vanishes at every cusp. We showed (Theorem 1.5.13 on p. 99 in [2]) that for T > 0 and min $T > \varkappa$ (= an absolute constant)

$$a(T) = O(((\min T)^{a/2-1/4+\epsilon} + (\min T)^{-1}\log((\det T)^{0.5}/(\min T)))(\det T)^{1.5})$$

under an assumption of the estimate of some exponential sums, where $0 \le a < 0.5$ and ε is any positive number. Our result above may suggest that the second term on the right-hand side of the estimate of a(T) is superfluous. But the appearance of such a troublesome factor seems to come from the generalization, by using the symplectic modular group Sp(2, \mathbb{Z}), of the Farey dissection. If $a(B) = O((\min B)^{-1-\varepsilon} \cdot (\det B)^{0.5})$ holds for some positive ε , then we have an asymptotic formula for the number of integral solutions of S[X] = T, since the expected main term is

$$\gg (\min T)^{-\kappa} (\det T)^{0.5} \cdot \prod_{p} \alpha_{p}(T, S) \gg (\min T)^{-1-\kappa} (\det T)^{0.5}$$

for any positive κ , where p runs over a finite set of primes where the

Witt index of S is equal to 1, and $\alpha_n(T, S)$ is the local density.

We denote by Z, Q, Z_p and Q_p the ring of integers, the field of rational numbers and their completions in the p-adic metric, respectively.

Terminology and notation on quadratic forms are generally those from [7].

LEMMA 1. Let M and N be regular quadratic lattices over \mathbf{Z}_p with $\operatorname{rk} M = 2n+2$, $\operatorname{rk} N = n \geqslant 2$, respectively, and assume that M is $2\mathbf{Z}_p$ -maximal and N is represented by M. Then for any given regular primitive submodule N_0 of N with $\operatorname{rk} N_0 = n-1$, there exists an isometry $u: N \to M$ such that $u(N_0)$ is also primitive in M.

Proof. Put $N = N_0 + \mathbb{Z}_p x$ and let $N_0 = \frac{1}{L} N_i$ where $rk N_i = 1$ or 2, and $rk N_i = 2$ only if p = 2 and $N_i = \langle 2^a \begin{pmatrix} 2d & 1 \\ 1 & 2d \end{pmatrix} \rangle$ (d = 0 or 1). Since M is $2\mathbb{Z}_p$ -maximal, M is isometric to $\frac{1}{L} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle \perp M'$ where M' is $2\mathbb{Z}_p$ -maximal and rk M' = 4. Hence we may put $M = \frac{1}{L} H_i \perp M'$ where $H_i = \frac{1}{L} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \rangle$ for $r = rk N_i$.

- (1) Suppose $\operatorname{rk} N_i = 1$ and $N_i = Z_p[x_i]$. Put $H_i = Z_p[e, f]$ (Q(e) = Q(f) = 0, B(e, f) = 1); then $v_i := e + 2^{-1}Q(x_i)f \in H_i$ satisfies that v_i is primitive in H_i with $Q(v_i) = Q(x_i)$, and $B(v_i, w_i) = B(x_i, x)$ and $Q(w_i) = 0$ for $w_i = B(x_i, x)f \in H_i$. Then $u(x_i) = v_i$ gives an isometry from N_i to H_i .
- (2) Suppose $N_i = \mathbf{Z}_2[x_{i,1}, x_{i,2}]$ $(Q(x_{i,1}) = Q(x_{i,2}) = 0, B(x_{i,1}, x_{i,2}) = 2^a)$. Put $H_i = \mathbf{Z}_2[e_1, f_1] \perp \mathbf{Z}_2[e_2, f_2]$ $(Q(e_j) = Q(f_j) = 0, B(e_j, f_j) = 1, j = 1, 2)$; then $v_{i,1} := e_1, v_{i,2} := e_1 + 2^a f_1 2^a e_2 + f_2$ satisfy that $\mathbf{Z}_2[v_{i,1}, v_{i,2}]$ is primitive in H_i and isometric to N_i by $u(x_{i,j}) = v_{i,j}$ (j = 1, 2) and for $w_i = B(x_{i,1}, x) f_1 + B(x_{i,2} x_{i,1}, x) e_2$, $B(v_{i,j}, w_i) = B(x_{i,j}, x)$ holds for j = 1, 2 and $Q(w_i) = 0$ is clear.
- (3) Suppose $N_i = \mathbb{Z}_2[x_{i,1}, x_{i,2}]$ $(Q(x_{i,1}) = Q(x_{i,2}) = 2^{a+1}, B(x_{i,1}, x_{i,2}) = 2^a)$. Let H_i , e_j , f_j be the same as in (2); then $v_{i,1} := e_1 + 2^a f_1$, $v_{i,2} := 2^a f_1 + e_2 + 2^a f_2$ satisfy that $\mathbb{Z}_2[v_{i,1}, v_{i,2}]$ is a primitive lattice in H_i isometric to N_i by $u(x_{i,j}) = v_{i,j}$ (j = 1, 2) and for $w_i = B(x_{i,1}, x) f_1 + B(x_{i,2}, x) f_2$, $B(v_{i,j}, w_i) = B(x_{i,j}, x)$ holds for j = 1, 2 and $Q(w_i) = 0$ is obvious.

We can take an element $w \in M'$ with Q(w) = Q(x) and we can extend the above isometry $u: N_0 \to M$ by putting $u(x) = \sum w_i + w$ to an isometry from N to M. \square

LEMMA 2. Let M and N be regular quadratic lattices over \mathbf{Z}_p with $\mathrm{rk}\ M=2n+2$, $\mathrm{rk}\ N=n\geqslant 2$, respectively, and suppose that N is represented by M. Then there is a natural number \varkappa dependent only on M such that for any given primitive submodule N' of N with $\mathrm{rk}\ N'=n-1$, there is an isometry $u\colon N\to M$ with

$$[M \cap Q_p u(N') : u(N')] < \varkappa.$$

Proof. We may suppose that the scale $\mathfrak{s}M$ of M is in Z_p . We choose and fix a $2p^kZ_p$ -maximal sublattice M' of M for some natural number k once and for all. Suppose, first, that $\mathfrak{s}N$ is contained in $2p^kZ_p$. Since M' is $2p^kZ_p$ -maximal and $\operatorname{rk} M' - \operatorname{rk} N = n + 2 \geqslant 3$, it is known that N is represented by M' and hence applying Lemma 1 with scaling by p^{-k} , there is an isometry $u: N \to M'$ ($\subset M$) such that u(N') is primitive in M'. Hence we have

$$[M \cap Q_p u(N'): u(N')] = [M \cap Q_p u(N'): M' \cap Q_p u(N')] \leq [M:M'].$$

Next consider the case of $sN \supset 2p^k Z_p$ and let $N = N_1 \perp N_2$ where N_1 is a modular lattice with $sN_1 \supset 2p^k Z_p$ (N_2 may happen to be $\{0\}$), and put

$$S = \{K \subset M | K \text{ is modular with } \mathfrak{s}K \supset 2p^k \mathbb{Z}_p\}.$$

It is known that the number of equivalence classes by O(M) in S is finite. We fix a finite number of representatives $\{K_i\}$. Since N is represented by M, there is an isometry $u\colon N\to M$ such that $u(N_1)=K_i$ for some i. Because of $u(N_2)\subset K_i^\perp$ and $\operatorname{rk} K_i^\perp-(2\operatorname{rk} N_2+3)=\operatorname{rk} N_1-1\geqslant 0$, there is a submodule N_2 of K_i^\perp which is isometric to N_2 and $[Q_pN_2'\cap K_i^\perp:N_2']<\varkappa'$ for some positive number \varkappa' dependent only on K_i^\perp by virtue of Theorem 2 in [3], and hence we may suppose that $[Q_pu(N_2)\cap K_i^\perp:u(N_2)]<\varkappa'$. Thus we have

$$\begin{split} &[M \cap Q_p u(N): u(N)] \\ &= [M \cap Q_p u(N): (K_i \perp K_i^{\perp}) \cap Q_p u(N)] [(K_i \perp K_i^{\perp}) \cap Q_p u(N): u(N)] \\ &\leq [M: K_i \perp K_i^{\perp}] [K_i^{\perp} \cap Q_p u(N_2): u(N_2)] \quad \text{(by } u(N_1) = K_i) \\ &< \max_i [M: K_i \perp K_i^{\perp}] \cdot \varkappa', \end{split}$$

which depends only on M. Since N' is primitive in N, u(N') is also primitive in u(N) and we take a natural number κ'' such that $u(N) \supset \kappa''(M \cap Q_p u(N))$. It is easy to see that $u(N') \supset \kappa''(M \cap Q_p u(N'))$ and hence $[M \cap Q_p u(N'): u(N')] \leq (\kappa'')^{n-1}$. We can take max $\{[M:M'], (\kappa'')^{n-1}\}$ as κ in Theorem. \square

LEMMA 3. Let M and N be lattices on positive definite quadratic spaces over Q with rk M=2n+2, rk $N=n \ge 2$, respectively, and suppose that N_p is represented by M_p for all primes p. We take and fix a basis $\{e_i\}$ of N such that $\{B(e_i, e_j)\}$ is reduced in the sense of Minkowski. Then there is a constant c(M) satisfying: if $Q(e_1) > c(M)$, then there exist v_1, \ldots, v_{n-1} in M and an isometry u_p : $N_p \to M_p$ with $u_p(e_i) = v_i$ $(1 \le i \le n-1)$ for all primes p, provided

(*): Let H and K be lattices on positive definite quadratic spaces over Q with rk H = h := n-1, rk K = k, respectively, and suppose that $k \ge 2h+3$ and H_p is represented by K_p for all primes p. Let a be a natural number and S a finite set of rimes containing all prime divisors of a and such that K_p is even unimodular for $p \notin S$. For every collection $\{f_p\}$ of isometries $f_p \colon H_p \to K_p$, there is an isometry

 $f: H \to K$ satisfying

$$f(x) \equiv f_p(x) \mod aK_p$$
 for $x \in H_p$ and for $p \in S$

and

$$f(H_p)$$
 is primitive in K_p for $p \notin S$

if min $H := \min Q(x)$ $(0 \neq x \in H)$ is larger than some constant dependent only on a, S, K.

Proof. Recall the following fact:

Let $\sigma: W_1 \to W_2$ be an isometry of primitive submodules of M_p ($\sigma(W_1) = W_2$). If M_p is even unimodular, or if σ is sufficiently near to the identity mapping, then σ can be extended to an isometry of M_p .

Put $N' = Z[e_1, \dots, e_{n-1}]$. By virtue of Lemma 2, there are an integer c_p dependent only on M_p and an isometry $u'_p \colon N_p \to M_p$ with $[M_p \cap Q_p u'_p(N'_p) \colon u'_p(N'_p)] < c_p$. Moreover, we may assume, by Lemma 1, that $u'_p(N'_p)$ is primitive in M_p if M_p is even unimodular. In the assumption (*), we put H = N', K = M, $f_p = u'_p$ and $S = \{p \mid M_p \text{ is not even unimodular}\}$. a should be a large number such that prime divisors of a are in S and a makes the above fact hold for $p \in S$. If $Q(e_1) = \min N'$ is sufficiently large, then there is an isometry $u \colon N' \to M$ such that u and u'_p are sufficiently near on N'_p for $p \in S$ and that $u(N'_p)$ is primitive in M_p for every $p \notin S$. We put $v_i = u(e_i)$. If $p \notin S$, then M_p is even unimodular, and hence from the above fact it follows that there is an isometry u''_p of M_p such that $u = u''_p u'_p$ on N'. Therefore, we can put $u_p = u''_p u'_p$. If $p \in S$, then $[M_p \cap Q_p u'_p(N') \colon Z_p u'_p(N')] < c_p$, and u and u'_p are sufficiently near. Noting that c_p depends only on M_p , the same conclusion holds. \square

Remark. The assumption (*) is true for n = 2 and 3 [5].

LEMMA 4. Let M and N be lattices on positive definite quadratic spaces over Q with rk N = n, rk M = m, sM, $sN \subset Z$, respectively. Suppose that there exist sublattices $N_0 \subset N$, $M_0 \subset M$ satisfying

- 1) $1 \le \text{rk } N_0 < n$,
- 2) there are isometries $\sigma: N_0 \to M_0$, $\eta: N_0^{\perp} \to M_0^{\perp}$ and $\sigma_p: N_p \to M_p$ for all primes,
 - · 3) $\sigma_n|_{N_0} = \sigma$ for all primes,
- 4) putting $k = [N:N_0 \perp N_0^{\perp}]$, $\eta(x) \sigma_p(x) \in k(M_0^{\perp})_p$ holds for all $x \in N_0^{\perp}$ and all primes $p \mid k$.

Then N is represented by M.

Proof. Clearly, $u = \sigma \perp \eta$ is an isometry from QN to QM. Take any element $x \in N$ and put $kx = x_1 + x_2$, $x_1 \in N_0$, $x_2 \in N_0^{\perp}$. Since $u(kx) = u(x_1) + u(x_2) = \sigma(x_1) + \eta(x_2) = \sigma_p(x_1) + \sigma_p(x_2) + \eta(x_2) - \sigma_p(x_2) = \sigma_p(kx) + \eta(x_2) - \sigma_p(x_2) \in kM_p$ for $p \mid k$, $u(x) \in M_p$ holds for $p \mid k$. For $p \nmid k$, $N_p = (N_0)_p \perp (N_0^{\perp})_p$ and hence $u(N_p) = \sigma(N_0)_p \perp \eta(N_0^{\perp})_p \subset M_p$ holds. Thus we have $u(N) \subset M$. \square

THEOREM. Let M be a lattice on a positive definite quadratic space over Q with $\operatorname{rk} M = 2n+2 \geqslant 6$. Let $N = Z[e_1, \ldots, e_n]$ be a lattice on a positive definite quadratic space over Q so that $(B(e_i, e_j))$ is reduced in the sense of Minkowski and N_p is represented by M_p for all primes. If the assumption (*) in Lemma 3 holds and $Q(e_1)$ is sufficiently large and $Q(e_n) > (Q(e_1) \ldots Q(e_{n-1}))^{\kappa(n+4)}$ where κ is some constant depending only on n, then N is represented by M.

Proof. We may assume that $Q(x) \in \mathbf{Z}$ for every $x \in M$. By virtue of Lemma 3, there exist $v_1, \ldots, v_{n-1} \in M$ and an isometry $u_p \colon N_p \to M_p$ such that $u_p(e_i) = v_i$ $(i = 1, \ldots, n-1)$ for all primes. Take $e \in N$ such that $\mathbf{Z}e = N_0^{\perp}$ in N where $N_0 = \mathbf{Z}[e_1, \ldots, e_{n-1}]$, and put $k = [N:N_0 \perp \mathbf{Z}e]$. Hence $Q(e) = k^2 dN/dN_0 \gg k^2 Q(e_n)$ since $S := (B(e_i, e_i))$ is reduced. Put

$$S = \begin{pmatrix} S_1 & S_2 \\ S_3 & S_4 \end{pmatrix} \quad \text{where } S_1 \in M_{n-1}(\mathbf{Z}), \ S_2 = {}^tS_3 \in M_{n-1,1}(\mathbf{Z}), \ S_4 \in \mathbf{Z};$$

then we have

Ann. Antahanatan 1994

$$(B(e_i, e_j)) \left[\begin{pmatrix} 1_{n-1} & -S_1^{-1} S_2 \\ 0 & 1 \end{pmatrix} \right] = \begin{pmatrix} S_1 & 0 \\ 0 & S_4 - S_1^{-1} [S_2] \end{pmatrix}.$$

Thus k is at most $\det S_1 = dN_0$. By virtue of Lemma 4, we have only to show that, putting $M_0 = Z[v_1, \dots, v_{n-1}]$, there is an element v in M_0^{\perp} satisfying Q(v) = Q(e) and $v - u_p(e) \in k(M_0^{\perp})_p$ for all primes p|k. Take a basis $\{w_i\}$ of $M_0^{\perp}(\subseteq M)$ such that $A := (B(w_i, w_j))$ is reduced, and take $P = \sum f_i w_i \in M_0^{\perp}$ such that $P \equiv u_p(e) \mod k(M_0^{\perp})_p$ for all primes p|k and $0 \le f_i \le k$. Identifying P and $M_0^{\perp}(f_1, \dots, f_{n+3})$, the existence of v, which is what we want to show, is equivalent to the existence of an integral solution X of A[P+kX] = Q(e). Since $u_p(e) \in (M_0^{\perp})_p$, it has an integral solution over Z_p , and the equivalent diophantine equation $kA[X] + 2^i PAX = (Q(e) - A[P])/k$ has an integral solution over Z_p . Since A is reduced, $A \approx \operatorname{diag}(Q(w_1), \dots, Q(w_{n+3}))$ holds and hence we have

$$A[P] \ll \sum f_i^2 Q(w_i) < k^2 \sum Q(w_i) \ll k^2 \det A = k^2 dM_0^{\perp} < k^2 dM dM_0 \ll k^2 dN_0.$$

Thus we have $Q(e) > \varkappa_1 k^2 Q(e_n)$, $A[P] < \varkappa_2 k^2 dN_0$ for some constants \varkappa_1 , \varkappa_2 dependent only on M. Hence we have

$$\begin{split} \big(Q(e) - A[P]\big)/k &> \big(\varkappa_1 k^2 Q(e_n) - \varkappa_2 k^2 dN_0\big)/k \\ &> Q(e_n) k \big(\varkappa_1 - \varkappa_2 dN_0/Q(e_n)\big) \gg k (dN_0)^{\varkappa(n+4)} \\ &\gg dN_0 \big(\det kA\big)^{\varkappa}, \end{split}$$

if $Q(e_n) \gg (dN_0)^{\kappa(n+4)}$, since det $A = dM_0^{\perp} \leq dMdM_0 \ll dM_0 = dN_0$, $k \leq dN_0$ and degree of A = n+3. By virtue of [8], if $(Q(e) - A[P])/k \gg (\det kA^{\kappa})$ for some κ , which is given explicitly there, the diophantine equation has an integral solution. Since $dN_0 \gg (Q(e_1))^{n-1}$, we have only to take $Q(e_1)$ such that dN_0 exceeds a constant needed in [8].

322 Y. Kitaoka

Remark. As we noted, the assumption (*) is valid for n = 2 and 3, and κ in Theorem is 5.2, 8/3 for n = 2, 3, respectively [8]. Thus in the case of n = 2 the assumptions needed in Theorem are $dN > (\min N)^{32.2}$ and the sufficient size of $\min N$ as in the introduction.

References

- J. S. Hsia, Y. Kitaoka, M. Kneser, Representations of positive definite quadratic forms, J. Reine Angew. Math. 301 (1978), 132-141.
- [2] Y. Kitaoka, Lectures on Siegel modular forms and representation by quadratic forms, Tata Institute of Fundamental Research, Bombay; Springer, Berlin-Heildelberg-New York, 1986.
- Local densities of quadratic forms; in: Investigations in Number Theory, Advanced Studies in Pure Math. 13, 1987, 433-460.
- [4] -- Modular forms of degree n and representation by quadratic forms II, Nagoya Math. J. 87 (1982), 127-146.
- [5] Modular forms of degree n and representation by quadratic forms IV, ibid. 107 (1987), 25-47.
- [6] Modular forms of degree n and representation by quadratic forms V, to appear in Nagoya Math. J.
- [7] O. T. O'Meara, Introduction to quadratic forms, Springer, Berlin-Heidelberg-New York 1963.
- [8] G. L. Watson, Quadratic diophantine equations, Philos. Trans. Roy. Soc. London Ser. A 253 (1960/61), 227-254.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE NAGOYA UNIVERSITY Chikusa-ku, Nagoya, 464-01 Japan

> Received on 2.5.1988 and in revised form on 25.8.1988 (1822)

ACTA ARITHMETICA LIV (1990)

On Eisenstein's problem

by

Noburo Ishii* (Osaka), Pierre Kaplan** (Nancy) and Kenneth S. Williams*** (Ottawa)

1. Introduction. Let D be a positive nonsquare integer such that $D \equiv 1 \pmod{4}$. In this paper we shall be concerned with the solvability or insolvability of the equation

$$(1.1) T^2 - DU^2 = +4$$

in coprime integers T and U (equivalently in odd integers T and U). If there are odd integers T and U satisfying $T^2 - DU^2 = 4$ we say that (1.1) has odd solutions, and if there are no odd integers T and U satisfying $T^2 - DU^2 = 4$ we say that (1.1) has no odd solution. When $D \equiv 1 \pmod{8}$ simple congruence considerations modulo 8 show that (1.1) has no odd solution. When $D \equiv 5 \pmod{8}$ the equation (1.1) may (D = 5) or may not (D = 37) have odd solutions.

In 1844 Eisenstein [1] asked for a necessary and sufficient condition for (1.1) to have odd solutions. In fact Gauss in his *Disquisitiones Arithmeticae* (1801) (see [2], §256, VI) had already mentioned this problem, in a slightly different setting, and given the list of all $D \equiv 5 \pmod{8}$, D < 1000, for which (1.1) has no odd solution.

When the equation

$$(1.2) V^2 - DW^2 = -1$$

is solvable a necessary and sufficient condition for the solvability of (1.1) in odd integers was given recently by Kaplan and Williams [5], in terms of the lengths l and l^* of the continued fraction expansions of \sqrt{D} and $(1+\sqrt{D})/2$ respectively (see Theorem 0 below). It was known that $l \equiv l^* \pmod{2}$, and also that $l \equiv l^* \equiv 1 \pmod{2}$ if, and only if, (1.2) is solvable.

^{*} Research supported by the Government of Japan.

^{**} Research supported by the Government of Canada.

^{***} Research supported by Natural Sciences and Engineering Research Council of Canada Grant A-7233.