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A note on representation of positive definite
binary quadratic forms by positive definite
quadratic forms in 6 variables

by
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Let S and T be positive definite even integral matrices of degree m and 2,
respectively. We denote the transpose of a matrix X by ‘X, and 'XSX by S[X]
if it is defined. Now suppose that S[X] = T'is soluble over Z » for all primes. It
is known ([1], [2], [4]) that if m > 7 and min T= min T[x] (Z*3x #0) is
sufficiently large, then S[X] = T'is soluble over Z. Let us consider the case of
m = 6. In [6] we showed that if T= aT,, where T, is fixed, and a is a sufficiently
large integer relatively prime to det S, then S[X] = aT, is soluble over Z. For
T'=aT,, det T<(minT)* is evident. Here we show, in particular, that if
det T> (min T)**? and min T is sufficiently large, then S[X] = T is soluble
over Z. Let us consider the problem from a view of getting an asymptotic
formula of the number of solutions. Let

f(Z) = ¥ a(B)exp(2nitr(BZ))

be a Siegel modular form of degree 2, weight 3, whose constant term of Fourier
expansion vanishes at every cusp. We showed (Theorem 1.5.13 on p. 99 in [2])
that for T> 0 and min T> x (= an absolute constant)

a(T) = O(((min T2~ 114+ 4 (min T)~!log((det T)°*/(min T)))(det T)"*)

under an assumption.of the estimate of some exponential sums, whert
0 <a <05 and ¢ is any positive number. Our result above may suggest that
the second term on the right-hand side of the estimate of a(T) is superfluous.
But the appearance of such a troublesome factor seems to come from the
generalization, by using the symplectic modular group Sp(2, Z), of the Farey
dissection. If a(B) = O((min B)~! ~*(det B)*%) holds for some positive &, then
we have an asymptotic formula for the number of integral solutions of
S[X] =T, since the expected main term is

>» (min T)™*(det T)%** [ (T, S) > (min T)~* ~*(det T)°-5
P

for any positive %, where p runs over a finite set of primes where the
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Witt index of § is equal to 1, and «,(T, S) is the local density.
We denote by Z, Q, Z, and Q, the ring of integers, the field of rational
numbers and their completions in the p-adic metric, respectively.
Terminology and notation on quadratic forms are generally those from [7].
LeMMA 1. Let M and N be regular quadratic lattices over Z, with
tk M = 2n+2, tk N = n > 2, respectively, and assume that M is 2Z -maximal
and N is represented by M. Then for any given regular primitive submodule N, of
N with tk Ny = n—1, there exists an isometry u: N — M such that u(N) is also
primitive in M.
h
Proof Put N = N,+Z,x and let Ny = L N, where rk N, =1 or 2, and
i=1

210' 21d)> (d=0 or 1). Since M is

01 . .
2Z -maximal, M is isometric to 1z (( { 0))LM' where M’ is 2Z -maximal

tkN;=2 only if p=2 and N,-=<2"(

h
and rk M’ = 4. Hence we may put M = | H, L M’ where H,= | ((0 1)) for
i=1 r
r=r1kN;

(1) Suppose rkN;= 1 and N; = Z [x;]. Put H, = Z [e, f] (Q(e) = 0N =0,
B(e, f) = 1); then v;:= e+2~ ' Q(x,)f€ H, satisfies that v, is primitive in H, with
Q(v) = Q(x;), and B(v;, w) = B(x;, x) and Q(w;)) =0 for w; = B(x; x)fe H;
Then u(x;) = v; gives an isometry from N; to H,

(2) Suppose N; = Z,[x;,, Xiz] (Q(xi1) = Q(xi,2) =0, Blx;y, xi2) = 29).
Put H, = Z,[e,, ]1LZ,[e, f,] (Qle)=0Q()=0, Ble, f)=1, j=12;
then v :=e,, v,,:= e, +2°—2%,+f, satisfy that Z,[v,,,v;,] is primi-
tive in H, and isometricto N, by u(x; ;) = v;; (j = 1,2)and for w; = B(x;, X)/;
+ B(x;2— Xi.1, X)es, B(vij, w) = B(x;,, x) holds for j=1,2 and Q(w) =0 is
clear.

(3) Suppose N, = Z,[x;1, Xi.2) (Q(x;1) = Q(x;2) = 27, Blxy, Xi2) = 2°)-
Let H, e;, f; be the same as in (2); then v; ;1= e; +2,, v; ;1= 2°f, +e,+2°f,
satisfy that Z,[v;,, v;;] is a primitive lattice in H; isometric to N; by
u(x; ) =vi; =1, 2) and for w; = B(x,,, x)f;+B(x;2, x)f2, Blvij w) =
B(x;;, x) holds for j=1, 2 and Q(w) =0 is obvious.

We can take an element we M’ with Q(w) = Q(x) and we can extend the
above isometry u: N,— M by putting u(x) = ) w;+w to an isometry from N
to M. n

LEMMA 2. Let M and N be regular quadratic lattices over Z, with
tk M =2n+2, rtk N = n = 2, respectively, and suppose that N is represented by
M. Then there is a natural number % dependent only on M such that for any given
primitive submodule N' of N with tk N' = n—1, there is an isometry u: N—-M
with

[M N Q u(N):u(N)] < x.
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Proof. We may suppose that the scale sM of M is in Z . We choose and fix
a2ptZ p-maximal sublattice M’ of M for some natural number k once and for
all. Suppose, first, that sN is contained in 2p*Z p Since M’ is 2p*Z -maximal
and rkM'—rk N =n+2 2 3, it is known that N is represented by M’ and
hence applying Lemma 1 with scaling by p~* there is an isometry
u: N-M' (c M) such that u(N’) is primitive in M’. Hence we have

(M N Qu(N):u(N)] = [MHQu(N'):M n Q,u(N)] < [M:M"].

Next consider the case of sN > 2p*Z, and let N =N, LN, where N, is
a modular lattice with sN, > 2p*Z, (N, may happen to be {0}), and put

S ={K c M| K is modular with sK > 2p*Z}.

It is known that the number of equivalence classes by O(M) in S is finite. We fix
a finite number of representatives {K,}. Since N is represented by M, there is an
isometry u: N— M such that u(N,) = K, for some i. Because of u(N,) c K}
and rk Kif —(2rk N, 4+3) =tk N, — 1 > 0, there is a submodule N’ of K+ which
is isometric to N, and [Q,N>n K{:N3] < %' for some positive number x’
dependent only on K by virtue of Theorem 2 in [3], and hence we may
suppose that [Q,u(N,)n Ki:u(N,)] < x. Thus we have

[M n Q,u(N):u(N)]
=[MnQ,u(N):(K,LK})n Q,u(N)I[(K, LK) Q,u(N):u(N)]
< [M:K, LKII[KE 0 Q u(N,):u(N,)]  (by u(N,) = K)
<max[M:K; LK{]'«,

which depends only on M. Since N’ is primitive in N, u(N’) is also primitive in
u(N) and we take a natural number " such that u(N) > »"(M N Q,u(N)). It is
easy to see that u(N') o x"(Mn Q,u(N)) and hence [M N QL u(N):u(NY]
< (¢")""'. We can take max {{[M:M], (x")""'} as x in Theorem. o

LEMMA 3. Let M and N be lattices on positive definite quadratic spaces ovew
Q with tkM =2n+2, 1k N = n = 2, respectively, and suppose that N, is
represented by M, for all primes p. We take and fix a basis {e;} of N such that
(Ble, eJ)] is reduced in the sense of Minkowski. Then there is a constant ¢(M)
satisfying: if Q(e,) > c(M), then there exist v,,...,v,_, in M and an isometry
u,: N,»M, with u,(e)=v, (1 <i<n-1) for all primes p, provided

(x): Let H and K be lattices on positive definite quadratic spaces over Q with
tkH = h:= n—1, tk K = k, respectively, and suppose that k > 2h+3 and H,is
represented by K, for all primes p. Let a be a natural number and S a finite set of
rimes containing all prime divisors of a and such that K, is even unimodular for
p#S. For every collection {f,} of isometries f,: H,— K, there is an isometry
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f: H—K satisfying
f(x)=f,(x)ymod aK, for xeH, and for peS
and
Sf(H)) is primitive in K, for p¢S

if min H := min Q(x) (0 # x € H) is larger than some constant dependent only on
a, S, K.

Proof. Recall the following fact:

Let o: W, — W, be an isometry of primitive submodules of M, (6(W;) = W,).
If M, is even unimodular, or if ¢ is sufficiently near to the identity mapping,
then o can be extended to an isometry of M,

Put N’ = Z[e,,...,e,—]. By virtue of Lemma 2, there are an integer ¢,
dependent only on M, and an isometry u,: N,—» M, with [M,nQ, up(N)p, ]
wup(Ny)] < ¢ Moreover we may assume, by Lemma 1, that up(N5, ):s primitive
in M, if M, is even unimodular. In the assumption (x) weput H=N', K =M,
L= u;, and S = {p| M, is not even unimodular}. a should be a large number
such that prime divisors of a are in § and a makes the above fact hold for peS.
If Q(e,) = min N’ is sufficiently large, then there is an isometry u: N'— M such
that u and ), are sufficiently near on N, for pe S and that u(N3) is primitive in
M, for every p¢S. We put v; = u(e;). If p¢S, then M, is even unimodular, and
hence from the above fact it follows that there is an isometry uj, of M, such that
u=uyu, on N'. Therefore, we can put u,=uyu, If peS, then
[M,nQ,u,(N'):Z,u,(N")] < c,, and u and u;, are su[ﬁc:lently near. Noting that
<, depends only on M, the same conclusion holds. o

Remark. The assumption (x) is true for n =2 and 3 [S].

LEMMA 4. Let M and N be lattices on positive definite quadratic spaces over
Q withtk N = n, 1k M = m, sM, sN < Z, respectively. Suppose that there exist
sublattices Ny = N, My <= M satisfying

1) 1 <rkNy<n,

2) there are isometries a: No— Mo, n: N —M§ and o,: N,~»M, for all
primes,

*3) 0,ln, = 0 for all primes,

4) putting k = [N:Ny L N§1, n(x)— o ,(x) e k(M$), holds for all xe N§ and all
primes p|k.

Then N is represented by M.

Proof. Clearly, u=01l#n is an isometry from QN to QM. Take any
element xeN and put kx = x,+Xx,, Xx,€N,, x,€N§. Since u(kx) = u(x,)
+u(x)=o0(x)+n(x;)=o0 (x1)+“p(x2)+'?(x2) g (xz) =a (kx)""?(xz)
—0,(x;)€kM, for p|k, u(x)e M, holds for p|k. For p,{’k N F(NO)PJ,(NO),,
and hence u(N,) = o(N,), Lq{N 8), © M, holds. Thus we have u(Nye M. o
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THEOREM. Let M be a lattice on a positive definite quadratic space over
Q with tkM =2n+22>6. Let N =Z[e,,...,e,] be a lattice on a positive
definite quadratic space over Q so that (Bfe;, e)) is reduced in the sense of
Minkowski and N, is represented by M, for all primes. If the assumption (%) in
Lemma 3 holds and Q(e,) is sufficiently large and Q(e,) > (Q(e,)... Q(e,— )" * ¥
where » is some constant depending only on n, then N is represented by M.

Proof. We may assume that Q(x)e 2Z for every x e M. By virtue of Lemma
3, there exist v,,...,v,_;€M and an isometry u,: N,—»M, such that
u,e) =v; (i=1,...,n—1) for all primes. Take ee N such that Ze = N} in
N where N,=Z[e,,...,e,-,], and put k=[N:N,LZe]. Hence Q(e)
= k?dN/dN, » k*Q(e,) since S:= (B(e, e;) is reduced. Put

S, S
S= (S; SZ) where S, eM,_,(Z), S, ='S,eM,_,(2), S,eZ;
4

then we have

n-=1 SI_ISZ — S’ 0
(B ef”[( 1 )] ‘(o s4~sr'fszl)'

Thus k is at most det S, = dN,,. By virtue of Lemma 4, we have only to show
that, putting M, = Z[v,,...,v,-], there is an element v in M§ satisfying
Q(v) = Q(e) and v—u,(e)ek(My), for all primes p|k. Take a basis {w;} of
Mg(< M) such that A:= (B(w;, w)) is reduced, and take P = Y 'f;w;e M} such
that P = u,(e) mod k(M3), for all primes p|k and 0 < f; < k. Identifying P and
'(fi»---»fa+3), the existence of v, which is what we want to show, is equivalent to
the existence of an integral solution X of A[P+kX] = Q(e). Since u,(e)e(M3),,
it has an integral solution over Z,, and the equivalent diophantine equation
kA[X]+2'PAX = (Q(e)— A[P])/k has an integral solution over Z,. Since 4 is
reduced, A=diag(Q(wy),...,Q(w,+3)) holds and hence we have

A[P] « Y f20(w) < k*Y Q(w) « k*det 4 = k*dM§ < k2dAMdM , « k*dN,,.

Thus we have Q(e) > x%,k?Qle,), A[P] < x,k?dN, for some constants x,, x,
dependent only on M. Hence we have

(Q(e)— A[PY)/k > (%, k?*Q(e,) =, k*dN ) k
> Qe )k(x, — %,dNo/Q(e,)) »> k(dN gy
» dN y(det kA,

if Q(e,) >» (ANo)"*9, since detA = dMj < dMdM, « dM, = dN,, k <dN,
and degree of A = n+3. By virtue of [8] if (Q(e) A[P))/k » (det kA*) for
some %, which is given explicitly there, the diophantine equation has an integral
solution. Since dN, > (Q(e,))"~", we have only to take Q(e,) such that dN,
exceeds a constant needed in [8].

Aokl B AN
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Remark. As we noted, the assumption (*) is valid forn = 2 and 3, and » in
Theorem is 5.2, 8/3 for n = 2, 3, respectively [8]. Thus in the case of n = 2 the
assumptions needed in Theorem are dN > (min N)*?-? and the sufficient size of
min N as in the introduction.
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On Eisenstein’s problem
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and KENNETH S. WILLIAMS*** (Ottawa)

1. Introduction. Let D be a positive nonsquare integer such that
D = 1(mod 4). In this paper we shall be concerned with the solvability or
insolvability of the equation

(L.1) T?—DU? = +4

in coprime integers T and U (equivalently in odd integers T and U). If there are
odd integers T and U satisfying T2—DU? =4 we say that (1.1) has odd
solutions, and if there are no odd integers T and U satisfying T>—DU? = 4 we
say that (1.1) has no odd solution. When D = 1 (mod 8) simple congruence
considerations modulo 8 show that (1.1) has no odd solution. When
D = 5 (mod 8) the equation (1.1) may (D = 5) or may not (D = 37) have odd
solutions.

In 1844 Eisenstein [1] asked for a necessary and sufficient condition for
(1.1) to have odd solutions. In fact Gauss in his Disquisitiones Arithmeticae
(1801) (see [2], §256, VI) had already mentioned this problem, in a slightly
different setting, and given the list of all D = 5 (mod 8), D < 1000, for which
(1.1) has no odd solution.

When the equation

(1.2) Vo DW?=—|

is solvable a necessary and sufficient condition for the solvability of (1.1) in odd
integers was given recently by Kaplan and Williams [5], in terms of the lengths

I and I* of the continued fraction expansions of \/i_) andl(1+\/5)f2
respectively (see Theorem 0 below). It was known that [ = [* (mod 2), and also
that | = [* = 1 (mod 2) if, and only if, (1.2) is solvable.
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