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Davib B. MERONK** and RAY P. STEINER* (Bowling Green, Ohio)

1. Introduction. In this note we compute the constant for the lower bound
of a homogeneous linear form in logarithms of non-zero algebraic numbers
with rational coefficients. The constant we obtain improves that in [Wa].
Actually, we will derive the result from the special case when the rational
coefficients are integers and a certain strong independence holds. In this paper,
unlike the previous one, we only address the strongly independent case;
although reduction to the strongly independent case can be done as in the
previous paper (see Corollary 2 below), there may be cases when a reduction to
strong independence is possible without increasing the bounds quite so much
(see, e.g., [BS]). We will again follow [Wa] but with the modification given in
[LMPW?]; the reader will need to consult both papers since we will only give
those steps in the proof which are different from those of [Wa] and [LMPW]
(for more details, see [BGMMS1]). We will not bother to determine the
constants of [PW, §5] since they are far greater (cs > 2"(n+1)"*?n!; since
Co 2 la

CoCy ChCyCan/n! 2 2V F 20 (g )t Snté (it t

Let ,,..., 2, be non-zero algebraic numbers, K = Q(z,, ..., @,) and
D =[K:Q]. Let

V, = max {h(a,), [loga,|/D, 1/D}
and

V41 = max {h(f’-'j+ 1) |l°gaj+1|/D, "{f} (1<j<n-1),
e
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where again h(a) is the absolute logarithmic height of a. Let
1 4.1
a;=DVjfjloga)]=>21 (I1<j<n) and -=-) —;
a nj=ia;

let 5" =1and V;" =max {1, V;} (1 <j<n). Let b, ..., b, be rational inte-
gers, B, > |b,| and B> max{|bJ|: 1 <j<n—1}. Let E, = min{e*”"", 4Da}
and W > log(B,/V, + B/V,+1). Assume further that

W > max {log E,, (2/nD)log E,, nlog(2” nDV,*)}

and that «,, ..., «, are strongly independent (i.e., [K («}/?, ..., «}/?):K] = 2").
Let M =2(2®nDV,*  E,)" and A =b,loga, + ... +b,loga,.

THEOREM. Under the above hypotheses A =0 or

2n+1
. |A| > exp{—(24e2]u" — 221 pn+2 Vl lr;(log M} W/(logEz)"* 1}.
Now
2n+1 +
(24e?y ™ logM 4¢3y 223 pr+ 21080V Eo)

n! (logE,)"*! (log E,)"*!

This compares with 2°"*26 p"*4log (DV,* , E,)/(log E,)"*! of [Wa, Proposition
3.8]. Since E, > E,, this gives an improvement in excess of 8n%(1.06)". In [M],

2n+1
s s B on+4.5(4 I + : 2n log M
the claim is ¢®n (2¢*)'log (DV,T , E,) in place of (24¢?) A (g B,y

, ’ 12 \r2®
an improvement of at most { —— | = < (8%)"2'!/n2"5.
logE,] n*

Finally, we observe that the allegation in [ACHP] concerning the
constant in [LMPW] seems to be quite without foundation; indeed, [ACHP]
needs to be reworked. The constant we give here is the best for which there is
a valid proof in the literature.

If by, ..., b, are merely rational numbers we easily deduce that if the
positive rational integer d is such that db,, ..., db, are all rational integers,

then the theorem holds if W > log(dB,/V, +dB/V,+1)+logd (still assuming .

that «,,..., «, are strongly independent). Hence

COROLLARY 1. If by, ..., b, are rational, a,, ..., a, are strongly indepen-
dent and d is at least as large as the least common denominator of b,, ..., b,, then
A=0 or

n2n+l

|A] > exp {—{24.92)" U D2y, . V. (log M)(W+logd)/(log EZ)"“}

n!
i
W 2> max {log(dB,/V, +dB/V,+1),10gE,,(2/nD)log E, , nlog(2 nDV,})}.
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Note that we have only bothered with case that the prime is _2. If
[K (2!, ..., 4}9):K] = q" for some prime g other than 2, the only modifica-
tions necessary are those of the previous paper; ie., the Proposition of
[BGMMS2] holds provided only that

W= max {log(dB,/V, +dB/V,+1), log E,, (g/nD)log E,, nlog (2% ng*> DV,")},

where E, is defined as in [BGMMS2]. _

Let B = max {B,, B}. If we remove the assumption that ay, ..., &, ar:
strongly independent, then we must replace each V; by va<j< n),. Wby W
of the previous paper (where here W > log(ndB/V, +dB/ V,[+l}1msu:ac1 olf

2 - 2DV, A 2 e,
W= {h(b): 1 <j<n}) and E; by E; = min{e”™", 4a} (where j :Zﬁ ai

4a;

¥ L1
and - =-) —). Hence

a n;=a

COROLLARY 2. If by, ..., b, are rational numbers and a,,...,%, dare
non-zero algebraic numbers, then with the above notation and hypotheses, A =0
or

—(24e?)'22°

T\ S prr2y, LV, (log M W*+C(,D)}
R ErT? (log M)( n, D))

(Al > exp{

where

C(n, D) = n(n+1)log (D> V) +x¥/n+logd, V;=max{jV, 1} (1<j<n)

X¥ is defined in the previous paper, and M = M (Va_y/Va=1)"

Actually, (24€%)"2%! is not optimal. A computer search shows that for
n=4 and D =8 (D = 20), 2% (2®) suffices. Thus, for example, the constant
obtained for the constant for the logarithms associated with the regl quartic
extension of the field of rational numbers having least discriminant is improved
by a factor of 2°° over [Wa]. A table for the constant for small values of n and
D (obtained by computer search) is included for the sake of completion.

We also provide at the end of Section 2 a modified version of the theol_'em
and its corollaries which though more complicated to state, actually gives
better constants in many practical cases.

2. Proof of the Theorem. As in our previous paper, we let M =
2(2°nDV,", E,)" and obtain

(3.7 logM < 2Bn? DV, , +nlogE, < 2An* DV, 108 E,
where
084 ifn,D>2, 098 ifn,D>2,
A=<279 ifn=D=1, B=<317 ifn=D=1,

1.54 otherwise; 1.78  otherwise.

2 — Acta Arithmetica 55.1



19

18 ). Blass, A. M. W. Glass, D. K. Manski, D. B. Meronk and R. P. Steiner Constants for lower bounds II
ket We next determine f,—f,. As in our previous paper we obtain
n2n+1 % -2_ E
U'=coc; ey = =2 D" 2V, ... ¥, (log M) W/(log E,)"** e e Ut ( 1 +i)( L)
= c,c5 cicy 222 \(log4) 2nD

and assume that
and
€022, co=(co+27%)e!?%, (= (co+2 8)el/?58, coc, < 214

» 1 1
X 2( 14 z(1+-)
C0CaCy <27, ¢y 224 fhlogS( 1 ! )+ ( n)+ f ( ‘ 1)(§+—' )

&
329 P<e;<2'% 2, 2%<c, <27, ¢, =25 T Cc\logdy "t onlog2) " ce, | 27 \(logdy e
Let As shown in [LMPW],
2 ifn=D=1 and ge{2, 3}, n-1 (n—1)(BL,+b,L,+1)
- 1 ifn=1 and qDE{4, 5’ 6}, lﬂg(lj[l |A(bnj-r_bpj-n; tr“)éTlogze(l'i‘ T £

0  otherwise. Since logx < (xlog2e)/2e if x > 2e, we obtain

Then

-1)(BL,+b,L,;+1
22+v,29n+1 2 + # T l-l—(n ) : ))log(Ze)
2 n®2"" D*max {W, V,*, WV, flogE,} < U T

provided that - as an upper bound for the latter and hence,

(3.39 CoCyCheacy = 2234/ on), s g _U.__l._
0€1€2¢3C /(2n) log(r:n: |4 (b A,—b, Ay t')l)“{‘Z"Dc,c,'

We will assume (3.3°) from now on. (For example if n > 3, this holds if (:0' =2%
c;=2% and ¢, = ¢, =29) Thus we obtain

As in [Wa], we let 1 1 2+1/22n) 1
] Js= fl +h+ t—om +2“n
S =2[c;nDW/logE,], T =[UJc,cy2"DW], P 20, 16
L.y =[W/(ogE,)'**], Lg=[Ufc,cq2"D(L,+1)logM] and -
and 2D

fi= f3+213 7
L, =[Ule,e;n2"*'DSV] (1 <j<n).

Consequently we may take
Note that our conditions imply L, > ... > L. =1 ¢ ¥

It is easy to establish from these definitions that 1 2c1 2"0( i+ 232)
(3.99 T < 1+ 2mw 162 .
(3.109 1 :,r That £, < 1/2 will follow immediately from (3.10). As in our previous paper, we

' 4Ey L, < MITEE, next deduce- that
I 1 1 24n7!

o 22 9n ' B
B12) - (Lr+ViogM < 02" 2D)(Bgip ) (g fo= fom Rttt o o
(3439 Ly+L, 2L, <t timw, and
(3.14%) 12Q"L,E,8) < (L, +1) M+, [t {fl £, @@+ 4 1 ( 20+c;)}

= 23

using (3.79, (3.29 and logE, < E /e 4 4"'1 2D 2D  2Dcycy cyc4 2°°D
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As before, to obtain the desired contradiction we require that

f'} - f6 224

This is equivalent to

18 1 8 4 1 1
(19 1>— (85 S =] 3(
s c_-, D nD 08 (log4)"*?! + 9nlog?2

l 12+ 6+2+4
64 D nD

12 2 1 2 ¢
222{8+ D(4+ 2)
1 16 2 2
+ B 5 -
((logw )( "D D)('2+ *D('*n))}
2 | 1 1 2 log3 log3
+(4+= g [ 2
( D)(cc—]){kz c,( n+(log4)"+'+9nlog2)

L 3Hm | N 1
cs 2“(” +(B+ﬁ)(3+5)(uog4r+‘))}'

These equations are satisfied by ¢y = 2,¢, =2% ¢y =17l and ¢, = 2% ifn = |;
by co=3, ¢;=2% ¢3=131 and ¢,=2% if n=2 or 3; ¢, =5, ¢, = 3e%,

¢y =369 and c, = 2% if n > 4. This completes the proof of the first part of the
theorem.

As before the rest of the theorem is proved by first noting, as in the
previous paper, that (3.9°) and (3.13°) may be modified to

T < eﬂf““ﬂn+ 1)
and
2L| s. ew‘f(ll+l}

respectively if n >3 and W* is sufficiently large. Hence we obtain

18 1 2 4 2 I !
1> —+—(45+= W <
( t +(n+1)p+4'°g3((log4)~”+5n(n+1)))

€; €, DAt
1 16 2 4 c 4 12 2 2 Cs
c4<12+n+5+_) 222(8+ +—+— D = S+ == D

& 6 2 4 1
(§+2 D)('2+?+D+n )(1 (log4)"))
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L a+e/) EN 1 1 ))
5 {2.92 (” ]+10g3({log4)"+1+5n{n+1)

3+ 4 1 1 1
cs 2“((:“r )( ﬁ)(”(logw*”n))}‘

If n =3, this is satisfied by ¢, =5, ¢, =2°% ¢3 =56 and ¢, =2"; if n >4,
this is satisfied by ¢, =5, ¢, = 3e?, ¢3 =191 and ¢, = 28 This establishes
Theorem A. =

As in the previous paper, if n > 25, then setting ¢, =4, ¢; = 219 and

= 2! by (3.1°) we may take c, to be 21.6 (and ¢, —» 21.51 approximately as
" — o0). So the constant 26"*+22p"*1/¢" can be replaced by (21.6)"225n"* ! if
h>25, _

The computer gave minimum values for ¢ = ¢gc, c3 ¢3¢, of the same order
of magnitude as in the previous paper. Indeed, ¢ can be taken to be 7/8 of the
Previous computer values if 2<n<10 and 2< D <9, .8 of the prevlous
computer values if 2 <n < 10 for all other values of D, and the previous
Computer values if n= 1.

Let E; = 4. Then (3.5) becomes E; S Z Ljlloga| < 2U/(c; ¢, 4" a). The

Proof of the Theorem goes through with the modifications that

(i) E, is replaced throughout by 4 and

(ii) the first summand on the right hand side of (3.1°) is replaced by
(2"'“6/“))/‘-'2 If, for example, a = 16 and n >4, (24¢*)"2?' is replaced by
5"22! Hence we actually get an improvement of Matveev’s claim (in this case)
of at least n*-5/704 which exceeds 1 if n > 14.

Similar considerations hold for the corollaries.
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On the arithmetic of an elliptic
curve over a Z -extension

by

FRANCOIS RAMAROSON (Washington, D.C.)

1. Introduction. Let E/Q be an elliptic curve with conductor N. Assumf:
that E admits a parametrization by modular functions and let ¢ be a Weil
Parametrization:

¢: Xo(N)—E

where X,(N) is the Shimura canonical model for the Riemann surface
#|T(N), quotient of the upper-half plane by the action by the group

Iy(N) = {(‘: 2)est (Z): ¢ =0 (mod N)}.

For simplicity let us assume that N is prime and let K be an imaginary
quadratic field in which N splits completely and with discriminant less than
._4.

In [1], Gross developed the theory of Heegner points on X, 0 (N). These
points are rational over abelian extensions of K, and via the Weil paramet-
rization mentioned above, they should contribute to the Mordell-Weil groups
of the elliptic curve E over these abelian extensions.

Let now p be a prime which is ordinary for E, this means that E has good
reduction at p and the trace of the Frobenius endomorphism of . the reduced
curve modulo p, is not divisible by p. For such a p, one can consider K, 'the
anticyclotomic Z ,-extension of K, which is contained in the union of all ring
class fields corresponding to the orders of K of conductor p", n = 0,1,2,.

The Heegner points are rational over these ring class fields an_d tht? Weil
Parametrization carries them over to E; taking norms gives points in the
Mordell-Weil group of E rational over K ,. The points so obtained in E(K)
fit together into an object called the Heegner module, which is a module over
the relevant Iwasawa ring A. '

In [6], Mazur made a precise conjecture concerning the structure of the
Heegner module, namely, under a technical assumption, that it is a cyclic
module of rank one, over the Iwasawa ring A.
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