ACTA ARITHMETICA
LV (1990)

On some Markov matrices arising from the
generalized Collatz mapping
by
R. N. BurtsworTH and K. R. MATTHEWs (St. Lucia, Qld.)

1. Introduction. In two recent papers [4], [5] the following mapping
T: Z — Z has been studied: Let d > 2 be a positive integer and my, ..., My,
O¢ non-zero integers. Also R is a complete set of residues mod d and for
i=0,,..,d-1, the residue r.eR is defined by r, = im, (mod d). Then the
Mmapping T is defined by

(L.1) T(x) = m_xd:i if x =i (mod d).

The prototype of T was discovered by L. Collatz in 1937 [3] and corresponds
to the choice d =2, my=1, m; =3, R={0, —1}, ie.

(1.2 _ x/2 if x is even,
) T J[(3x+1)/:z if x is odd.

A central property of mapping (1.1) is that the inverse image of a residue class
mod m is a union of residue classes mod md. (See [5], Lemma 2.1.) For example
f T is the mapping (1.2) and B(j, m) = {k€Z: k = j (mod m)}, we find

(B@j, 2m) uB(zjs;l, Zm) if m 0 (mod 3),

B(2j,2m) if m=0 (mod 3) and j # 2 (mod 3),
_ 2j—1 2m
B(2j, 2m)u B(T‘ ~—3-)

if m=0(mod 3) and j =2 (mod 3).

(L3)  T-1B(j, m) =+

-

Of special interest are the T-invariant subsets of Z (i.e. subsets S of Z satisfying

T(8) < §), as the behaviour of the iterates of T can be studied separately on
€ach such set 5. We are interested in T-invariant sets mod m, i.e. T-invariant
Set.s consisting of residue classes mod m. Those which contain no proper

Mvariant set mod m are called ergodic sets mod m (previously called minimal
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T-invariant sets mod m in [5]). Distinct ergodic sets mod m are disjoint and if
r(m) is the number of ergodic sets mod m, then

(1.4) Z =SEr ST . S

a disjoint union, where S{", ..., Si7, are the ergodic sets mod m and S§” is
the union of the remaining residue classes mod m which we call transient
classes mod m. In [5] it was conjectured that each divergent trajectory x,
T(x), ..., T™(x), ... eventually enters some ergodic set § mod m and that each
residue class mod m contained in S is eventually occupied by some iterate, with
positive limiting frequency. Also if S is an ergodic set mod d, it was conjectured
in [5] that either all trajectories starting in S become trapped in a cycle, or
most trajectories starting in § are divergent.

The present paper gives information about the structure of ergodic sets
mod m (as m varies).

THEOREM. Suppose that gcd(m;, d)=1 for 0 <i<d—1. Let

Aiy=rd—m)—r(d—m) forO0<i<i<d-—1
and let

4= A(T} = gcd A“.
O=i<i=d-1
(1) If m is composed of primes dividing my, ... my_, there is only one ergodic
set mod m (i.e. r(m) = 1); (Example 1.3 shows that this ergodic set may change

as m varies. For example take m = 3 and 9).
-1
(2) Assume that ged(m, [[ m) = 1. Then

i=0
(a) if ged(m, 4) = 1, Z is the only ergodic set mod m,
(b) if ged(m, 4) = & > 1, the ergodic sets mod m are just the ergodic sets

mod é. In particular, if p is prime, p'| A, then the ergodic sets mod p°® are those
mod pf, if s>t

The Theorem gives no information if m = m’' m", where ged(m', m") = 1, m’
d=1
is composed of primes dividing my, ... m,_, and ged (m”, [ m) = 1. However
i=0
Conjecture 2 below fills this gap. In some cases the Theorem enables us to
completely determine all ergodic sets.

ExampLE 1.1. If T is the Collatz mapping (1.2) then the ergodic sets
mod m are Z if 3 f m and Z\ 3Z if 3|m. More generally, if T, (x) = x/2 for even
x, (3x 4+ k)/2 for odd x, where k is relatively prime to 6, the picture is much more
complicated. Let 6]k, & > 1. Then the ergodic sets S{ (k) mod & are the orbits
of the action of the group generated by the permutations j—2j and
j—3j(mod §)on Z, = Z/mZ. If 3y m and gcd(m, k) = 1, then Z is the only
ergodic set mod m. If 3./ m and gcd(m, k) = é > 1, the ergodic sets mod m
are the ergodic sets S (k) mod &. If 3|m and ged (m, k) = 1, then Z\ B(0, 3) is
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the only ergodic set mod m. If 3|m and ged (m, k) = & > 1, then the ergodic sets
mod m are the sets (Z\ B(0, 3))n S (k). For example if k= 23,_there are
3 ergodic sets mod 23: B(0, 23) and the subsets of Z corresponding to the
quadratic residues and quadratic non-residues mod 23, respc_:ctivcly. ‘

If 37| k, r > 1, there is a related classification of the ergodic sets, vfnh the
additional complication that the ergodic sets mod 3', t > 1, are now given by
B(0,3%) if t <r and B(0,3)\B(,3* ) if t>r

ExampLE 1.2. If T is the mapping defined by

x/2
(L5) T(x) = {(5x—~3)/2

if x is even,
if x is odd,

then the ergodic sets mod m are Z if (m, 15) =1, 3Z and Z\3Z if 3|m and
S¥m, Z\5Z if 3ym and S|m, 3Z\5Z and (Z\3Z)\5Z if 15|m.

At one stage we believed that there were only ﬁnitely_many ergpdlc sets
mod m as m varies over all integers. However the following mapping gives
4 counterexample.

ExampLe 1.3. If T is the mapping defined by

1 ; 3x/2 if x is even,
49 TI=1ax+1)2  if x is odd,

then the ergodic sets mod m are Z if 3t m and T'(Z) if 3'|m. The set‘s T(Z)
consist of 2' residue classes mod 3* and are hence distinct as t varies.

Let m|n, m < n. Then Example 1.3 illustrates the fact that if S is an ergodic
set mod m, then S is a T-invariant set mod n, but will not necessarily be an
ergodic set mod n. All we can say is that S will be a union of transient classes
and one or more ergodic sets mod n. (For example, take m = 3,‘ n= ?,
S =B(0,3)uUB(,3)) We can show (see Lemma 2.3) that if B(j, m) is
a transient class mod m, then the n/m residue classes modn whlch_ comprise
B(j, m) are transient classes mod n. Equivalently, if B(j, n) is cpntamed in an
ergodic set mod n, then B(j, m) is contained in an ergodic set m(.)d m.
Consequently an ergodic set S mod n is contained in exactly one ergodic set
mod m if m|n. Computer evidence suggests that the following conjectures hold:

ConjecTuRrE 1. If S = B(j,, m)u...u B(j,, n) is an ergodic set mod n,
then

@, (S) = B(j,, mu...uB(, m)
is an ergodic set mod m if min.

CONJECTURE 2. If S and S’ are ergodic sets mod m and m' respecti.vel'y.
where ged(m, m) = 1 and ged(m', m) =1 for i =0, ..., d—1,then SN § is an
ergodic set mod mn'.
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We use standard theory of Markov matrices (see [2], [6]). Using the same
notation as in [S], T~'(B(j, m)) n B(k, m) is a disjoint union of pjx (m) residue
classes mod md. Then (see [5], Lemma 29), if qu(m)= pa(m)d, 0<j,
k<m—1, the matrix Q(m)=[q;(m)] is an mxm Markov matrix, ie.
a matrix whose elements are non-negative and whose columns sum to unity. If
d|m, a simple formula exists for g (m):

1/d if j = T(k) (mod m/d),
0 otherwise.

(1.7) g (m) = {

However, if d 4 m, the formula is not so simple. (See [5], Lemma 2.4.) As in [51,
a subset §' of Z, = Z/mZ is closed with respect to Q,(m) if

B(k, m)eS' and B(j, m)¢S' = gy (m) = 0.
Under the 1-1 correspondence (see [5], Lemma 3.1)
(18) B(jls m)u UB(j:! mJH{B(Jl' m}! waay B(jn m)}s

T-invariant sets mod m correspond to closed subsets of Z, with respect to
Q+(m), with ergodic sets corresponding to minimal closed sets of Qr(m). In
practice we determine ergodic sets mod m by finding the minimal closed sets of
Qr(m), using a computer implementation of an algorithm in [1].

If S is a Tinvariant set mod m, we let M, (S) denote the submatrix of
Qr(m) formed by the rows and columns which correspond to the residue
classes mod m in S. Then S is an ergodic set mod m if and only if M, (S) is an
irreducible matrix. Also if the rows and columns of Q,.(m) are relabelled so that
in relation to the partition (1.4), states in S{™ precede those in S if i < j, the
matrix Q,(m) takes on a simpler form:

D, (m} 0 0 e 0
B,(m) M,(S{") 0 0
19  Qrm~| Bym 0 MuS®) .. 0
Brlm} (m) 0 0 M m-(S‘riﬂg])
where M, (8{™), ..., M, (S!7),) are irreducible matrices and (Do(m)* -0 as

K - o0. (See [6], p. 296.) One special type of irreducible matrix is a primitive (or
regular) Markov matrix. This is a matrix A for which a suitable power 4X has
all its elements positive. For such a matrix we let i (A), the index of primitivity of
A, be the least such positive integer K. If m = d', it is implicit in [4], Lemma 5,
and Lemma 2.5 below that i(Q,(m)) = t.

2. Some basic properties of transient and ergodic sets mod m. The fol-
lowing result is a consequence of [5], Lemma 3.1.
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Lemma 2.1. If ged(m, || m) =1, there are no transient classes mod m.
i=0

The following result is a consequence of [6], Lemma 3.5.27, p. 322:

LemMA 2.2. B(j, m) is a transient class mod m if and only if Y, ¢\ (m)
K=
Converges, where

[Q_&f}(m]] = (Q'r (m})k'.
Also if B(j, m) is a transient class mod m and B(k, m) is an arbitrary residue
class mod m, then > ¢ (m) converges.
K=0
From Lemma 2.2 we easily deduce the following two results:

LemMa 2.3. Let B(j, m) be a transient class mod m. Then if m|n, the n/m
Tesidue classes mod n which comprise B(j, m) are transient classes mod n.

LEMMA 24. If B(j, m) is contained in an ergodic set S mod m and S does
ot split into more than one ergodic set mod n, where m|n, then not all the
Component residue classes of B(j, m) mod n are transient classes mod n.

For exémple, if T is the Collatz mapping, then B(0, 3) is a transient c!ass
mod 3, so if 3|m, residue classes B(3t,m), t =0, ..., m/3—1 are transient
classes mod m.

Our proofs of primitivity are based on the following property of Q(m).
(See [5], Lemma 2.8)

Lemma 2.5. T ¥(B(j, m)) n B(k, m) consists of a disjoint union of p(m)
residue clgsses mod md*, where

@1 (Qr(m)* = [”",j;—fm)]

The next result gives part (1) of the Theorem.

LemMA 2.6. If m is composed of primes, each dividing m, ... my_y, then
there is only one ergodic set § mod m. Moreover M, (S) is primitive.

Proof. If m is a product of k primes (not necessarily distinct) each
dividing some m,, then the proof of [5], Corollary 3.4, generalizes to show that
Q7 (m) has a row of non-zero elements and so has precisely one ergodic set.
Then the identity

(222) Qrx(m) = [Q(m)]*

(Which is a restatement of (2.1)) shows that Q. (m) also has precisely one ergodic
set,
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Remark 2.1. Lemmas 2.4 and 2.6 show that Conjecture 1 is true if m and
n are composed of primes dividing mg ... my—;.

The following definition is standard. (See [2], p. 45.)

If 0 < j, k < m—1, we say B(j, m) is equivalent to B(k, m) (with respect to
Qr(m)) if there exist r, s >0, such that ¢{(m)> 0 and qf}(m) >0, ie.

23) T "(B(j,m)nBk m#@ and T *(B(k,m)nB(j, m #®.

This does in fact define an equivalence relation on Z,,. A closed set is a union of
equivalence classes and the minimal closed sets are precisely the closed
equivalence classes.
d=1
LemMa 2.7. Let ged(m, [] m) =1 and suppose that S is an ergodic set
i=0
mod m. Then for each t > 1, S is also an ergodic set mod md'. Moreover, if
M, (S) is primitive, 50 is Mg(S) and i(Mpq(S)) < i(M,(S)+t.
d-1
Proof. Suppose that ged(m, [] m;) = 1. Assume that § is an ergodic set

i=0
mod m and that B(j, m) and B(k, m) are contained in S. Then B(j, m) and
B(k, m) are equivalent mod m and (2.3) holds for some r, s > 0. We show that
(2.3) also holds with m replaced by md'. As T" (k)€ S, by (2.3) with k replaced by
T*(k), an integer x exists satisfying

T"(x) = j (mod m),
x = T'(k) (mod m).
Using the notation my(k) = m; if T*(k) = i (mod d), we have
mo(k) ... m_y (k) =1 ri(k)d' ak+b
2- T = Q L i =
@)  T® g (k 5 e (k)) sl

where a and b are integers, with ged(a, m) = 1.

Then (2.4) gives

(24)

(2.6) b} o d-:_b (mod m)
and hence
@7 g "a_b (mod md").
Let y, be an integer satisfying

_d'x—b

2.8) Yo =

(mod md"*"),
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Also let

29) y = yo+cmd ™,
where ¢ is an arbitrary integer. Then

(2.10) T'(y) = T'(yo) +cMmd’,

where M is a product of ms.
Now from (2.7) and (2.8)

(2.11) Yo =k (mod md"),

0 TK(y,)= TX(k) (mod d) and hence my(yo)=my(k), for K=0,....¢
Consequently (2.5) gives

ayo+b

(212) Tl(yo] = d°

Hence from (2.8)
T'(y,) = x (mod md")
and (2.10) gives
. T'(y) = x+(c, +cM)md".
Hence
2.13) T+ (y) = T (x)+(c, +cM)M'm
= (j+czm)+(cl+cM)M’m
=j4+mlc,+c, M +cMM),

where M’ is a product of ms.
Since ged(d, MM') =1, we may choose ¢ so that ¢, +¢, M'+cMM'
=0 (mod d4"). Then (2.13) gives

(2.14) T **(y) = j (mod md').
Also, from (2.9) and (2.11)
2.15) y = yo = k (mod md").

Finally, from (2.14) and (2.15), we have

T-¢*0(B(j, md")) n B(k, md") # 9.

d-1
Lemma 2.8. Let ged(m, [] m;) =1 and suppose that S is an ergodic set
i=0 .
mod m. Then if m' is composed of primes dividing d, S is also an ergodic set
mod mm'. Moreover, if M,,(S) is primitive, 50 iS Mum (S)-

4 Acta Arithmetica $5.1 -
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Proof. If m, m’" and § are as above, there exists an integer ¢ such that
m'|d'. Then mm'|md" and the fact that S is an ergodic set mod md" implies that

§ must also be an ergodic set mod mm'. The, primitivity result follows from
Lemma 2.5.

3. The proof of the Theorem. We start with the following easily proved
result.

d—1
LemMa 3.1. If ged(m, Y

i=0

T-1(B(j, m) = U B(d”’* )

m;) = 1, then

G.1)

is a disjoint union of d residue classes mod md. More generally, if r > 1,

T (B, m)= U .. UB( Z S f.”"dr)

=0 ir=0 m, ...

(3.2)

ir
is a disjoint union of d" residue classes mod md".

From (3.2) we deduce
d=1
Lemma 3.2. Ifged(m, []
i=0
., 1, such that

d'! ) r dl*lri'
A
My, ooy Smy com

m;) = 1, then T™"(B(j, m)) n B(k, m) # O if and

only if there exist i,, ..

(3.3) =k (mod m).

(3.3) can be rewritten in terms of affine transformations on Z,. Let
L,(a, b) denote the transformation j— aj+b(mod m), where a and b are
rationals with denominators relatively prime to m. Then the following is easily
proved by induction.

LeEmMMA 3.3.
(34) L.@.,b)...L,(a,,b)=L_(a,Db),
where
r r I-1
(3.5 a= [] a and b= (]]a)b,.

I=1 t=]

LemMa 34. Let a and b be rationals with denominators relatively prime to
m. Also suppose that the numerator of a is also relatively prime to m. Then

(3.6) L (a, b) = L, (1, 0),
where
3.7 s(a) = lems, (a),
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With p ru-nm'ng over the primes dividing m and where if p"|m

-1 jfa=1 (mod p),
(3.8 _ )P if a
) 5@ {ordp..a if a# 1 (mod p).
Proof We use the identity
r—1
(39) Elll (“? b] = ‘Lm(a" b Z a')’
I g= l (mod p) then a” '=1(mod p"). Also in this case we have

pin—q _

> a' = 0 (mod p". However if a # 1 (mod p), then

I=g
ord,.a =r (mod p")=a"—1=0 (mod p")
r=1
=(a—1) Y a' =0 (mod p")

1=0

= Z a' = 0 (mod p").
1=0

Hence if '=s(a) is defined by (3.7) and p"|/m, then
s—1
2 d
=0

a@=1(modp" and = 0 (mod p").

Hence

s—1
(3.10) a@=1(modm) and Y a' =0 (mod m).
=0

Then (3.9) gives (3.6), completing the proof of Lemma 34,
d—1
If ged (m, [] m)=1, we define

i=0

L. ()= L,,,(-d—. 5) for i=0,...,d—1,

mi mi
then from (3.4) and (3.5) we have
@.11) L.(i)... L,(,)(j) = aj+b (mod m),

Where by (3.5) a and b are given by

G.12) a= & and

i see My

Then using (3.11), Lemma 3.2 gives

b=3 ST

{=1Mq - m“
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-1
Lemma 3.5. Ifged(m, [ m)=1,then T~"(B(j, m))n B(k, m) # @ if and

i=0
.» 1, such that

L) ... L,(i,)(j) = k (mod m).

Also let G, =<L,(0),..., L,(d—1)> denote the semigroup formed by all
products L, (i,) ... L, (i,). Then G,, is a group and the ergodic sets mod m are
Just the orbits formed by the action of the permutation group G, on Z,.

only if there exist i, ..

(3.13)

Proof. The group property follows from Lemma 3.4, while (3.13) shows
that the equivalence classes with respect to Qy(m) are just the orbits formed by
the action of the permutation group G,, on Z,,.

The next result shows that the second part of the definition of equiv-

alence in (2.3) follows from the first and is a consequence of Lemmas 3.3
and 34.

d—1

- Lemma 3.6. Suppose ged(m, d [| m)= 1. If T™"(B(j, m)n B(k, m) # @,
i=0
there exists an integer s such that
T"=D(B(k, m)) ~B(j, m) # O.
The next result is fundamental to the proof of our Theorem.
d=1
LEmMA 3.7. If ged(m, d [| m) =1, then
i=0
L?n_ ! U) E,;._ 4 (l) Lm UJ Lm (0 = Lm “‘ Ai.l’/ml‘ ml)'
where s; = s(d/m) and A, is defined by
(3.15) Al’.l=rl(d_mi)_ri(d"_mf)-

Proof. Leta=d/m,b=r/m,u=d/m,v=r/m,s=sandt=s, Then
the product in (3.14) has the form

Lot (u, v) B, a, b)L, (u, v) L, (a, b) = L, (a. B),

where by (3.5) and (3.10) @ = aua*~ ' u'~' = 1 (mod m). Also by (3.5) and (3.10)
we have

(3.14)

s—=2 =2
B=b+vat+b Y aau+v Y u aua*~’
r=0

e=0
=b+va+b(—a"""Yau+v(—u""Yaua*"' (mod m)
=btva-bu—v=v(@—1)=bu—1)=4,/mm,.

From Lemma 3.7 we deduce
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d—1

LemMMma 3.8. Let ged(m, d [| m)=1. Then if
i=0

(3.16) 4= ged

o<i<isd-1

Ai,ls

there exist integers xy = 0 such that
(.17) [T (OB 0 L@ Ly @) = La(1, 4).
Osi<isd-1
Proof. Since ged(m, m;m) = 1, one has
yamm 4,

A=ZJ’.’!AHEZ

Now choose Xy = yam;m+tym with t, large enough so that. all x,; =0.
Then since I, (1,b) =L, (1, rb), by (3.14) and (3.18) the left side of (3.17)
€quals

(3.18) (mod m).

Xy Ay
Ll1, =
o<i<isd-1 MMy

Remark 3.1. Equation (3.17) expresses L,(1,4) as a product of

Y xu(s;+s,) transformations L,,(i).
O<i<iga—y

)——-L,,,(I,A).

d—1 y
Lemma 3.9. Ifged (m, Ad [] m;) = 1, then Z is the only ergodic set mod m.
i=0
Moreoper Qr(m) is a primitive matrix.
Proof. Let B(j, m) and B(k, m) be arbitrary residue classes mod m and

d-—1
ged(m, 4d [] m) = 1.
i=0
Then there exists t >0 such that j+td4 =k (mod m). Also

Ly (1, 4)(j) = Ly (1, t4)(j) = j+t4 = k (mod m).

Hence by Lemma 3.5, B(j, m) and B(k, m) are equivalent mod m. T_o prove
that Q,(m) is primitive we let ¢ be any integer 0 < t < m— 1. Then using (3.9),
One has

(3.19) Ly(1, t4) = Lu(1, 4) (L () ()™~ 7%,

I1

O<i<i=d-1

NOW substituting (3.17) for L, (1, 4), we obtain an expression for L, (1, td) as
4 product of

th“(s,+s,]—|—2(m— 1 =) x;(s;+5) = (M= DY x;(s5;+5)
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transformations L, (i). Hence by Lemma 3.5, since j+t4 = k (mod m), we have
Tm=Exatsct)(B(j, m)  B(k, m) # @,
and hence every element of (Q (m))™~ VExuGsits) g positive.

a-1
We now prove part 2(a) of the Theorem. If ged(m, 4 [[ m) =1 but
i=0
ged(m, d) # 1, write m = m, m,, where m, is a product of primes not dividing
d and m, is a product of primes dividing d. Then by Lemma 3.9, Z is the only
ergodic set mod m;, and hence by Lemma 2.8, Z is the only ergodic set
mod m; m, =m and part 2(a) of the Theorem is now proved.
We now prove part 2(b) of the Theorem.

d—1

LemMMA 3.10. Let ged(m,d [ m)=1 and ged(m, A) =36 > 1. If § is an
i=0

ergodic set mod 9, then S is also an ergodic set mod m. Moreover if M,(S) is
primitive, so is M,,(S).

Proof If ged(m, 4) =9, then é =xm+yA for some y>0. Then
6 = yA (mod m)and L,(1, ) = B, (1, 4)eG,,. Hence if B(j, 6) and B(k, ) are
equivalent mod 4, we have L,(a, b)(j) = k (mod 6) for some L,(a, b)eG;.
Then L,(a,b)(j)=k—t6 (modm) for some t=0. Hence I,(i, d)x
L, (a, b)(j)=k (mod m) and B(j, m) and B(k, m) are equivalent mod m.

The conclusion concerning primitivity is derived in the same way as in
Lemma 3.9, using (3.19).

d—1

If ged(m, [] m;) =1 and gcd(m, 4) = & but ged (m, d) # 1, an argument

i=0
similar to that preceding Lemma 3.10 shows that the conclusion of Lemma 3.10
still holds. Consequently part 2(b) of the Theorem has now been proved.

Remark 3.2. There exist mappings T and ergodic sets S mod m

for which M,,(S) is not primitive. For example if T is the mapping defined
by

Tx/2 if x is even, -
@) Pirke {(?x/+3)/2 if x is odd,
then
100
0:3)=(001
010
Hence the ergodic sets mod 3 are S = B(0, 3) and 8% = B(1, 3)u B(2, 3), as

1
M,(SP) = I:? 0] is an irreducible Markov ma_trix, periodic with period 2.
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Remark 3.3. Itis an easy exercise to prove that B(j, m) is an ergodic set
mod m if and only if

(3.21) r, = j(m;—d) (mod m)
for 1=0,...,d—1. Also (3.21) implies that m divides all 4; and hence 4.
Conversely, if m divides 4 and for every prime factor p of m we have p (m,—d)

for some I, then (3.21) holds for some j and consequently B(j, m) is an ergodic
set mod m. Also G, is commutative if and only if m|4.

Remark 3.4. It is not difficult to prove that Conjecture 1 holds if m and
n are relatively prime to mg ... my—,: This follows from (2.3), Lemma 3.5,
Lemma 3.6 and Lemma 28.

4. Examples.

ExampLE 4.1. If T is the Collatz mapping T (x) = x/2 for even x, (3x+1)/2
for odd x, we have ry = 0,r, = —1, my = 1 and m; = 3. Then 4o, = —! and
4 =1, Hence if 3 4m, our Theorem implies that Z is the only ergodic set
mod m and that Q,(m) is primitive. If 3|m, as remarked earlier, the claf‘.ses
B(3t, m) are all transient. Also it is easy to verify that Z\ B(0, 3) is T-invariant
mod m. It remains to prove that this set is ergodic mod m. The following
lemma is easily proved using the last two parts of (1.3).

Lemma 4.1. Let T be the Collatz mapping. If 3|m and 3 X j, there exists J',
3%J, such that

4.1 T=4(B(j, m) 2 B(, 2* m/3).
Repeated application of Lemma 4.1 gives
LEMMA 42. If 3'|lm, t > 1 and 3 ¥j, then there exists j, 3 ), such that
4.2) T-4(B(j, m) 2 B(J', 2% m/3").
Now suppose 3 4J, 3.t k and that m = 3'n, where 3 ¥ n. From (4.2) we have
(4.3.} T~@*"(B(j, m)n B(k, m) =2 T~"(B(J, 24 n)) N B(k, 2% m)
= T~ (B(J, 2* n) " B(k, 2 n) " B(k, 3.
Then by the primitivity of Q;(2*n), there exists r such that
T-"(B(j, 2*n)) n B(k, 2*n)
is a nonempty union of residue classes mod2**"n. Hence by the Chinese
Temainder theorem, as ged (2% n, 3) =1,
(4.4) T (B(f, 2 n) ~ B(k, 2% n)~ B(k, 3) # ©.
Then (4.3) and (4.4) show that T-4*"(B(j, m) ~ B(k, m) # .

Hence M, (Z\ B(0, 3)) is primitive and consequently Z\ B(0, 3) is an
€rgodic set mod m.
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More generally, if T is the mapping T, (x) = x/2 for even x, (3x+k)/2 for References
odd x, where k > 0 is relatively prime to 6, we have r, =0, r, = —k, m, = 1 = ; ; ;
and m, = 3. Then 4,, = —k”aﬁd 4=k and an argument similar to the [ B.L Foxand D.M.Landi, An algorichm for identifying the ergodic subchains and transien

states of a stochastic matrix, Communications of the ACM, 11 (l%g}, 6.19—621_.
(21 D.L Isaacsonand R. W. Madsen, Markov chains: theory and applications, Wiley, New

York 1976.

previous one goes through, with j in Lemma 4.2 having the additional
property that B(j’, n') is equivalent to B(j, n’) with respect to Q. ("), for any '

not divisible by 3. The ergodic sets mod &, where |k, 6 > 1, are by Lemma 3.5 [31 J.C.Lagarias, The 3x+1 problem and its generalizations, Amer. Math. Monthly 92 (1985),
the orbits of the group of permutations on Z, generated by the mappings j— 2j 3-23. X o
and j—4j (mod l:;‘5) acI:}tingpfm ¥4 e ’ L [4] K. R. Matthews and A. M. Watts, A generalization of Hasse's generalization of the
& i
Syracuse algorithm, Acta Arith. 43 (1984), 167-175. . .

ExXAMPLE 4.2. Here T is the mapping T (x) = x/2 for even x, (5x — 3)/2 for (] — — A Markov approach to the generalized Syracuse alﬂﬂ;{ﬁm}q lb'd-v‘?r k“?g% 29-42.
odd x. Then 4 = 3 and by our Theorem, Z is the only ergodic set mod m and (61 M. Pearl, Matrix theory and finite mathematics, McGraw-Hhll, New :
Q+(m) is primitive, if gcd (m, 15) = 1. If 5 ¥ m and 3|m, then ged (m, 3) = 3 and 5

: E : : TICS
the ergodic sets mod m are B(0, 3) and B(1, 3)u B(2, 3); also by Lemma 3.10, Unﬁgggﬂ)g;m:;rsﬂian
the corresponding matrices are primitive. If 5|m, the lemma corresponding to St Lucia, QId., Australia 4067
Lemma 4.1 is
: . . - Received on 8.3.1988

5 .’LEMh;Ar:.::. Let T be the above mapping. If S|m and 5 }j, there exists ', and in revised form on 15.11.1988 (1798)

J', such tha
4.5) T~%(B(j, m)) = B(J, 28 m/5).

Moreover, j can be chosen so that 3|j if and only if 3|j'.

There is also a result analogous to Lemma 4.2. The final result is that if
5lm and 3 ¥ m, then Z\5Z is the only ergodic set mod m. If 15|m, then
(Z\5Z)"3Z =3Z\5Z and (Z \ 5Z) " (Z \ 3Z) = (Z \ 3Z)\ 5Z are the ergodic
sets mod m.

ExampLE 4.3. Here T is the mapping T (x) = 3x/2 for even x, (3x + 1)/2 for
odd x. Then 4 = 1 and Z is the only ergodic set mod m if 3 ¥ m. Also M, (S) is
primitive. If 3|m we need the following resuit.

LEMMA 4.4. (a) If T(j)= T(k) (mod 3n), then j = k (mod 2n).
(b) Also if t =1 we have

(4.6) T*(B(j, 2'n)) = B(T*(j), 3'n).

Now suppose m = 3'n, where 3t n Then T'(Z) is a T-invariant set
mod 3'n by Lemma 3.6. Also Lemma 4.4(a) shows that the residue classes
B(T(j), 3'n) are distinct, for j=0,...,2'n—1. It follows that

4.7) T~ (B(T"(j), 3'n)) = B(j, 2'n).

Then an argument similar to that following Lemma 4.2, but using (4.7) instead
of (4.2) shows that if r = i(Q (m)), then M5, (T"(Z)) has all its elements positive
and T'(Z) is an ergodic set mod 3'n.

In conclusion, the authors would like to record their deep gratitude to Dr.
A. M. Watts for his programming assistance and their thanks to the referee for
improving the presentation of the paper.
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