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ACTA ARITHMETICA
LV (1990)

On the greatest prime factor of [] f(k)

k=1
by
P. Erpds (Budapest) and A. ScHINZEL (Warszawa)

In memory of Trygve Nagell

Let P(n) denote the greatest prime factor of n. T. Nagell was the first to
8ive a non-trivial lower bound for P(I] f(k)), where f is an arbitrary
k=1

il"(‘rClucible polynomial of degree greater than 1. In [5] he proved
P(T] f(K) > c(f; &) x(logx)* =*  for all &> 0.
k=1

In 1951 the first named author improved considerably the above in-
®quality by proving that for x > x,(f)

{1y P[] £(K) > x(log xr/s™osisx  with ¢(f)> 0.
k=1
In the same paper [1] he has also claimed that
@) P([] f(®) > xexp((log)*?)  with 5(/) > 0.
k=1

Our efforts to reconstruct the proof of the latter estimate have been
Unsuccessful. Instead we have proved the following

_ THEOREM 1. Let fe Z[x] be an irreducible polynomial of degree | > 1. There
®Xists an absolute constant ¢, >0 such that for x > x,(f)

x

P([T f (k) > xexpexp(c, (loglog x)'/3).
k=1

In the sequel we shall denote the nth iterate of log x by log, x, the number
Solutions of the congruence f (k) = 0 (mod m) in the interval 1 < k < x by
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0.(m), the number of divisors of an integer n in a set S by d(n, S) and we shall
put:
2m(m) = o(m).

€y €y +-v5 Xy, X3, ... Will denote positive constants, in general depending onf
p will denote primes.
Theorem 1 is an immediate consequence of the following two theorems:

TueOREM 2. Under the assumptions of Theorem 1 the number N (x) of
positive integers k < x such that

5]

x
log x

satisfies for x > x,

N(x) >

exp(c,(log, X)),

where c, is an absolute constant.

TueoreM 3. Under the assumptions of Theorems 1 and 2
x log x
P(I1 f(K) > xcxp(-j— N(x))
k=1 X
for x> x,.
The proof of Theorem 3 follows closely the proof of (1) given in [11. It is

clear from this theorem that in order to prove (2) it would be enough to sho¥
that

(2a) N(x) >

= f
W or X > X4.

In this connection it is interesting to note that G. Tenenbaum [7] ha$
obtained the asymptotic equality

H(x, y, 2y) = x/(log y)* ~%*°")

where the left-hand side is the number of positive integers k < x such that
d(f (k), [y, 2y]) 2 1; x, y tend to infinity in the domain y < x* (¢ < 1) an
1+loglog2
=TS 22
log2
Note added on April 27, 1989. Recently G. Tenenbaum has establis?”

ed by a different method the inequality (2a), which implies (2) via Theorem 3
For the proof of Theorem 2 we require four lemmata.
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Lemma 1. If x > m we have

X 1x
2—o(m) = o.(m) = 5 —eo(m).
m 2m

Proof We have for x=m

b X x 2x

— <|— < < | = < — .

2m9(m} [m]e(m) 0x(m) [m} e(m)+e(m) < — o(m)
LemMA 2. If z= 2y, y > y, we have

1 11
Neg bl T L oyt
logy y<psz P 2 logy
Proof. We shall use the prime ideal theorem in the form
Z e(p)logp = y+0(ye“="m)

Psy

(See 47, Satz 190).
By partial summation we obtain

5 o(p)

—— =loglogy+c,+O0(e ~esviony),
pP<y

hence

|
Z Q_[P) o }og_og_z + o(e _CS@)
y<p<z P 1

and since for z > 2y the main term dominates the error we get the desired
unds.

LeMMA 3. Assume that f is primitive. If P runs through all intcyers composed
% n distinct prime factors we have for y >y,

cs I"(log, y+cg) ™!
(n—1)!logy

Proof. Since g (m) is multiplicative, we have g (P) < I". On the other hand,

Or the number =, (x) of positive integers < x composed of n distinct prime
Ctors we have the inequality (see [3])

¥ e(P)

yld<P<y

e, x(log, x+c¢)" ™!

M) < (n—1)! logx

Henoe

cs(log, y+ce) !
(n—1)!logy

L =< %n,(y) <

w4'ﬂ’€r‘P
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Remark. The formulation of Lemma 3 and its proof have been corrected
following a suggestion from G. Tenenbaum.

LeMMA 4. Let ¢ > 0, r = [c(log, x)*/], A(c) be the set of all integers in th®
interval [x/2, x] of the form
P4,y 4,
where p, q,,...,q, are primes and for i=1,2,...,1

I 1—if2r l 1—(i—1)/2r
(3) exp (—-—2(2r+?)(log x) ) < g; < exp (42(2r+7) (log x) .

The number N,(x) of positive integers k < x such that
4) d(f(k), A(0)) > 2Ir!2r+7y "1
is o(x/(log x)"*?).

Proof We shall assume throughout that x is sufficiently large and
without loss of generality that fis primitive. Then if pg, *** q,€[x/2, x] and 4i
satisfy the inequalities (3) we have p > x'2. On the other hand for k <*

) If (k)| < cgx',

hence f (k) can have at most 2! prime factors greater than x'/?. Therefore, @
implies that f(k) has more than

R=rlQr+7y*!

divisors in A(c), of the form pg{" --- g/, where p is fixed.

Consider the family of sets {g{”, ..., ¢{} (1 < o < R). By the theorem of
Erdos and Rado [2] the family contains a 4-system of cardinality 2r+7. Let
the common intersection of any two distinct sets of this A-system D¢
{Pys.--» Ps}, where 0 < 5 <r. Let s be the integer defined by

Pt e B,
PPy " Ps
By the condition pg{” - g€ A(c) f (k) has at least 2r+7 pairwise coprif®®
divisors in the interval (2°~2, 25], each divisor consisting of r—J distinct pril‘ﬂa
factors all in the interval

1 /o1
(e"p (2(2r 7y lox) u)’ cxp (2(2r +7)lo8 x]))

and all but one less than

1 1-1/2r
exp (2 [2r+7)(log x) ;
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Hence
12
s= ___(lix)__ =5p
2(2r+7)log2

and

p=1
©) No)< L Y T*eu(Py Py P,

s=0s52sp
Where the sum Y * is taken over all sets of 2r+7 pairwise coprime integers
P 1 Py, ..., Py iy in the interval (2572, 2%], each integer consisting of r—4
distinct prime factors of the size described above. For every such set we have

r—o6-1
Py Pyyq <x'? e"p(

(logx)*~ ”2') = 3%

thus by Lemma |

e(Py =" Pay4q) 227 e(P)

(P, " Pyieq) <2 x =2x
e:(Py e Py -+ Py vl;ll P,

and by (6)
2r+7 Q(Pv) r—1

r—1 P 2r+17
No)< Y T X" 2x =1P—-‘~*’=2x2 Z(E%) ,

d=0s5230 d=0s52s0

Where P runs through all integers P in the interval (2° 2, 2] consisting of r—9
distinct prime factors. By Lemma 3 we obtain

o(P) ¢ I ?(loglog2°+¢g)y °7! & oI %(logsy * 7!

L7p < (r—3—1)log2* (r=o—-1)!s '
heﬂ(}e
r—1 ] 2r+7 (r=1){2r+7)
(7 _colf™ (logs)"” ™" 7
) No(x) < 2x ,g‘o((r—é—l)! LT

For s> so—1 we have

+7

+5(1‘—1])1»’—1.

2r
-1
logs > log(s,—1) > o

Therefore, on this halfline (logs)”~ V@ *7/s***7 is decreasing, since
logs > r—1 and

lO s(r—l){2r+7] d 10 s}(r—l]tlr-i-'l']
(log PL . ;

g2r+7 E g2r+6
Sinm
2r+7
r—1).
logs > 2r+5( )
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It follows that

(Iogs)(r‘— 1)(2r+7) o0 (logs)(r—”[Zf-i'?}
ZZ T < I leS
S=50 Sp—
& {logi(s, <= 1)) —1ier*m _exp 0(r*log;, x)
S (SO_ l)2r+6 (logx}r+3

and by (7)

2r+7€XpO(r* logy x)- *
No(x) < 2x(cole') “Oogdr*® o logxy 2/’

Proof of Theorem 2. For k < x by (5) f (k) has less than ¢, log x prim¢
factors. Thus we have in the notation of Lemma 4

¢10log x ciot s
(8) d(f(k), A(c)) <( 1:+1 )< (r:m(logx) .
From Lemma 4 and (8) we obtain
& B X
o) S+ d(f k), A) = o(logx)’

where in ) * k runs through all positive integers k < x with
d(f (k), A(c)) > 2Ir!(2r+7y*".
On the other hand, by Lemma 1
(10) S df, 4@)= ¥ ezl y 29
k=1

aeAlc) zaeal(c) a
We evidently have
@) _ < oa)s 0@) < eld)e olp)
ns;{c} a Zl QI ZZ QZ Zr qr Zr+l p ’

where the sum ):i is taken over all primes g, in the interval 3) (1 <i<r) and
the sum Eﬁ , is taken over all primes p in the interval

X X
2, -+ q, i
It follows from Lemma 2 that

elg) _ 1
yY==> 2 log; x

(I1<is<rn),

e(p) 1 log 2 log 2
LoD > El"g(”logfxfqu q.)) ” Zlogx’
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Therefore,

57 24

aeA(c) a

log; >\ log2
"\ 2log x

dnd by (10)

x log2 x f[log,xY
T d(k, A©) > = ( e )

log x
Since » = o(log, x), it follows from (9) that
x (log2 x)'
6logx\ 4r )’
Where Y.~ is taken over all positive integers k < x such that

d(f (k), A(c)) < 2lr!@r+T7y %

(1) Y d(f k), A0)) >

From (11) we obtain

1 % (logzx)’
12ir!(2r+7) ' logx \  4r

logr
oo exp(r(log3x—3103r+1—1038+0(—¥5+)))
log x >

N(x) >

Choosing ¢ < 3/¢/8 (the choice ¢ = J/1/(8¢?) is optimal) we obtain the theorem.

Remark. If instead of the theorem of Erdds and Rado we use their
“Onjecture r!(2r+7)*" is replaced throughout by (2r+7)"" and the above

1 MO
Proof for r = |:c'( O8; x) ] gives
log, x

X log, x ”2]
T X for x > x,,
N(x) > logxexp (c“ (log; x) 08, 4

Where ¢;, 1s an absolute constant. )
We proceed to the proof of Theorem 3. Denote by U the set of all integers
“ of the interval (x/logx, x] for which f(u) has no prime factor satisfying

x <p<cepx, Where ¢i3' = 2¢q.

x
3 > X—Cp3—-
LEMMA §. card U 13]0gx
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Proof. Clearly

cardU=[x]—|: = :|— E (Q,(P)—QL(P))

lng x<pscyax log x

X x
> x—I—ng—l—!rr(clzx) > x_cnlogx

For k < x put

(12) If (k) = A, B,, where A,= [] p% B, =|f(KI/A,
ol
and let
(13) P([] f() = P,.
k=1

LEMMA 6. For all uelU
xl'
A _
kZ 2(log x) P

Proof. Since by the definition of U: x/logx < u < x we have for x > ¥s

(14) L x N ) <cont
2\logx g

Further, f (u) has no prime factor in the interval (x, ¢, x]. Therefore bY
(12) and the choice of ¢;, B, can have at most /[—1 prime factors, multiplé
factors counted multiply. By (13) all prime factors of f(u) are at most P, thu

B, <P,
Hence
P P
" B, 2(log x)! 17!

LEMMA 7. Let ueU be such that f(u) has a divisor in [x/2, x]. Then

xl‘ ’

A Sogy PLT
Proof. By the definition of U all prime factors of B, are greater than ¢z *
Since f(u) = 0 (mod d) for some de[x/2, x] we have by (12), (14) and th¢

choice of ¢,

B, <2cgx'" ' =(cypx) ",
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Thus B, can have at most | —2 prime factors, multiple factors counted multiply.
Thus by (12) and (13)

Ve

A= "B 7 2logxy P2

Lemma 8.

X
Y log A, < xlogx+ciax.
k=1
Proof, see Nagell [6], pp. 180-182.

Proof of Theorem 3. The number of ue U for which f (1) has a divisor
N [x/2, x] is at least equal to N(x)—(x—card U), hence by Lemma 5 is at least
(x)~ ¢yx/logx. From Lemmata 5, 6, 7, and (8) we now obtain

xlogx+ciax

> ) logA, > (x——c”l
uell

)(Hogx'— llog, x—(I—1)log P,—log2)

i )log P,

ogx

X
ogx

+(N(x]—0131

> Ixlog x—Ixlog, x—(I—1)xlog P,—x—cy3lx
X

log P
log x e

X
+ep3(l— I)l—-—og-}clog,Px+N(Jc)]ong—(:13

> Ixlog x—Ixlog, x—(I—1)xlog P,—(c,31+ 1) x+ N(x)log P..
HEHCe

“5} (1— l)xlog5 > N(x)log P, —Ixlog, x—(cy31+cra+1)x.
X

By Lemma 2 for x > x, there is at least one prime pe[x/2, x] with o(p) > 0,
€nce P_ > x/2. On the other hand, by Theorem 1 xlog, x = o(N(x)log x).

X

hus for x > Xq
1
Ixlog, x +(cy3l+c1a+1)x <?N(x)logx—N(x)log2
and the inequality (15) gives

(I—I}xlog% > #N(x)logx.

I
P_> xexp (% N(x)),

Which was to be proved.
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