190

R. Laun

[16] R. Sita Rama Chandra Rao and G. Sri Rama Chandra Murty, On Mirsky's generalisation of a problem of Evelyn-Linfoot and Page in additive theory of numbers, J. Reine Angew. Math. 309 (1979), 92-99.

[17] G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 1966.

Eingegangen am 14.10.1988

(1879)

ACTA ARITHMETICA LV (1990)

On the greatest prime factor of $\prod_{k=1}^{x} f(k)$

by

P. ERDős (Budapest) and A. SCHINZEL (Warszawa)

In memory of Trygve Nagell

Let P(n) denote the greatest prime factor of n. T. Nagell was the first to give a non-trivial lower bound for $P(\prod_{k=1}^{x} f(k))$, where f is an arbitrary irreducible polynomial of degree greater than 1. In [5] he proved

$$P(\prod_{k=1}^{x} f(k)) > c(f, \varepsilon) x(\log x)^{1-\varepsilon}$$
 for all $\varepsilon > 0$.

In 1951 the first named author improved considerably the above inequality by proving that for $x > x_0(f)$

(1)
$$P(\prod_{k=1}^{x} f(k)) > x(\log x)^{c(f)\log\log\log x} \quad \text{with } c(f) > 0.$$

In the same paper [1] he has also claimed that

(2)
$$P(\prod_{k=1}^{x} f(k)) > x \exp((\log x)^{\delta(f)}) \quad \text{with } \delta(f) > 0.$$

Our efforts to reconstruct the proof of the latter estimate have been unsuccessful. Instead we have proved the following

THEOREM 1. Let $f \in \mathbb{Z}[x]$ be an irreducible polynomial of degree l > 1. There e_{xists} an absolute constant $c_1 > 0$ such that for $x > x_1(f)$

$$P(\prod_{k=1}^{x} f(k)) > x \exp \exp \left(c_1 (\log \log x)^{1/3}\right).$$

In the sequel we shall denote the *n*th iterate of $\log x$ by $\log_n x$, the number of solutions of the congruence $f(k) \equiv 0 \pmod{m}$ in the interval $1 \le k \le x$ by

 $\varrho_x(m)$, the number of divisors of an integer n in a set S by d(n, S) and we shall put:

$$\varrho_m(m) = \varrho(m).$$

 $c_1, c_2, ..., x_1, x_2, ...$ will denote positive constants, in general depending on f, p will denote primes.

Theorem 1 is an immediate consequence of the following two theorems.

THEOREM 2. Under the assumptions of Theorem 1 the number N(x) of positive integers $k \le x$ such that

$$d\left(f(k), \left[\frac{x}{2}, x\right]\right) \geqslant 1$$

satisfies for $x > x_2$

$$N(x) > \frac{x}{\log x} \exp(c_2(\log_2 x)^{1/3}),$$

where c2 is an absolute constant.

THEOREM 3. Under the assumptions of Theorems 1 and 2

$$P(\prod_{k=1}^{x} f(k)) > x \exp\left(\frac{\log x}{lx} N(x)\right)$$

for $x > x_3$.

The proof of Theorem 3 follows closely the proof of (1) given in [1]. It is clear from this theorem that in order to prove (2) it would be enough to show that

(2a)
$$N(x) > \frac{x}{(\log x)^{1-\delta(f)}} \quad \text{for } x > x_4.$$

In this connection it is interesting to note that G. Tenenbaum [7] has obtained the asymptotic equality

$$H_f(x, y, 2y) = x/(\log y)^{1-\delta+o(1)}$$

where the left-hand side is the number of positive integers $k \le x$ such that $d(f(k), [y, 2y]) \ge 1$; x, y tend to infinity in the domain $y \le x^{c_0}$ $(c_0 < 1)$ and

$$\delta = \frac{1 + \log \log 2}{\log 2}.$$

Note added on April 27, 1989. Recently G. Tenenbaum has established by a different method the inequality (2a), which implies (2) via Theorem 3. For the proof of Theorem 2 we require four lemmata.

LEMMA 1. If $x \ge m$ we have

$$2\frac{x}{m}\varrho(m)\geqslant \varrho_x(m)\geqslant \frac{1}{2}\frac{x}{m}\varrho(m).$$

Proof. We have for $x \ge m$

$$\frac{x}{2m}\varrho(m) \leqslant \left[\frac{x}{m}\right]\varrho(m) \leqslant \varrho_x(m) \leqslant \left[\frac{x}{m}\right]\varrho(m) + \varrho(m) \leqslant \frac{2x}{m}\varrho(m).$$

LEMMA 2. If $z \ge 2y$, $y > y_1$ we have

$$2\log\frac{\log z}{\log y} \geqslant \sum_{v \leqslant p \leqslant z} \frac{\varrho(p)}{p} > \frac{1}{2}\log\frac{\log z}{\log y}.$$

Proof. We shall use the prime ideal theorem in the form

$$\sum_{p \le y} \varrho(p) \log p = y + O(ye^{-c_3\sqrt{\log y}})$$

(see [4], Satz 190).

By partial summation we obtain

$$\sum_{p \le y} \frac{\varrho(p)}{p} = \log \log y + c_4 + O(e^{-c_3\sqrt{\log y}}),$$

hence

$$\sum_{y \le p \le z} \frac{\varrho(p)}{p} = \log \frac{\log z}{\log y} + O(e^{-c_3\sqrt{\log y}})$$

and since for $z \ge 2y$ the main term dominates the error we get the desired bounds.

Lemma 3. Assume that f is primitive. If P runs through all integers composed of n distinct prime factors we have for $y \ge y_2$

$$\sum_{y/4 < P \leq y} \frac{\varrho(P)}{P} < \frac{c_5 l^n (\log_2 y + c_6)^{n-1}}{(n-1)! \log y}.$$

Proof. Since $\varrho(m)$ is multiplicative, we have $\varrho(P) \leq l^n$. On the other hand, for the number $\pi_n(x)$ of positive integers $\leq x$ composed of n distinct prime factors we have the inequality (see [3])

$$\pi_n(x) \leqslant \frac{c_7 x (\log_2 x + c_6)^{n-1}}{(n-1)! \log x}.$$

Hence

$$\sum_{y/4 \le P \le y} \frac{1}{P} < \frac{4}{y} \pi_{\mathsf{n}}(y) \le \frac{c_5 (\log_2 y + c_6)^{\mathsf{n} - 1}}{(\mathsf{n} - 1)! \log y}.$$

On the greatest prime factor

Remark. The formulation of Lemma 3 and its proof have been corrected following a suggestion from G. Tenenbaum.

LEMMA 4. Let c > 0, $r = [c(\log_2 x)^{1/3}]$, A(c) be the set of all integers in the interval [x/2, x] of the form

$$pq_1 \cdots q_r$$

where $p, q_1, ..., q_r$ are primes and for i = 1, 2, ..., r

(3)
$$\exp\left(\frac{1}{2(2r+7)}(\log x)^{1-i/2r}\right) < q_i < \exp\left(\frac{1}{2(2r+7)}(\log x)^{1-(i-1)/2r}\right).$$

The number $N_0(x)$ of positive integers $k \le x$ such that

(4)
$$d(f(k), A(c)) > 2lr!(2r+7)^{r+1}$$

is $o(x/(\log x)^{r+2})$.

Proof. We shall assume throughout that x is sufficiently large and without loss of generality that f is primitive. Then if $pq_1 \cdots q_r \in [x/2, x]$ and q_i satisfy the inequalities (3) we have $p > x^{1/2}$. On the other hand for $k \le x$

$$|f(k)| < c_8 x^l,$$

hence f(k) can have at most 2*l* prime factors greater than $x^{1/2}$. Therefore, (4) implies that f(k) has more than

$$R = r!(2r+7)^{r+1}$$

divisors in A(c), of the form $pq_1^{(\sigma)}\cdots q_r^{(\sigma)}$, where p is fixed.

Consider the family of sets $\{q_1^{(\sigma)}, \ldots, q_r^{(\sigma)}\}\$ $(1 \le \sigma \le R)$. By the theorem of Erdős and Rádo [2] the family contains a Δ -system of cardinality 2r+7. Let the common intersection of any two distinct sets of this Δ -system be $\{p_1, \ldots, p_\delta\}$, where $0 \le \delta < r$. Let s be the integer defined by

$$2^{s-1} < \frac{x}{pp_1 \cdots p_{\delta}} \leqslant 2^s.$$

By the condition $pq_1^{(\sigma)} \cdots q_r^{(\sigma)} \in A(c)$ f(k) has at least 2r+7 pairwise coprime divisors in the interval $(2^{s-2}, 2^s]$, each divisor consisting of $r-\delta$ distinct prime factors all in the interval

$$\left(\exp\left(\frac{1}{2(2r+7)}(\log x)^{1/2}\right), \exp\left(\frac{1}{2(2r+7)}(\log x)\right)\right)$$

and all but one less than

$$\exp\left(\frac{1}{2(2r+7)}(\log x)^{1-1/2r}\right).$$

Hence

$$s \geqslant \frac{(\log x)^{1/2}}{2(2r+7)\log 2} = s_0$$

and

(6)
$$N_0(x) \leqslant \sum_{s=0}^{r-1} \sum_{s \geqslant s_0} \sum_{s \geqslant s_0} P_x (P_1 P_2 \cdots P_{2r+7}),$$

where the sum \sum^* is taken over all sets of 2r+7 pairwise coprime integers $P_1, P_2, \ldots, P_{2r+7}$ in the interval $(2^{s-2}, 2^s]$, each integer consisting of $r-\delta$ distinct prime factors of the size described above. For every such set we have

$$P_1 \cdots P_{2r+7} < x^{1/2} \exp\left(\frac{r-\delta-1}{2}(\log x)^{1-1/2r}\right) < x,$$

thus by Lemma 1

$$\varrho_{x}(P_{1}\cdots P_{2r+7}) < 2\frac{\varrho(P_{1}\cdots P_{2r+7})}{P_{1}\cdots P_{2r+7}}x = 2x\prod_{\nu=1}^{2r+7}\frac{\varrho(P_{\nu})}{P_{\nu}}$$

and by (6)

$$N_0(x) \leqslant \sum_{\delta=0}^{r-1} \sum_{s \geqslant s_0} \sum^* 2x \prod_{\nu=1}^{2r+7} \frac{\varrho(P_{\nu})}{P_{\nu}} \leqslant 2x \sum_{\delta=0}^{r-1} \sum_{s \geqslant s_0} \left(\sum \frac{\varrho(P)}{P}\right)^{2r+7},$$

where P runs through all integers P in the interval $(2^{s-2}, 2^s]$ consisting of $r-\delta$ distinct prime factors. By Lemma 3 we obtain

$$\sum \frac{\varrho(P)}{P} \leqslant \frac{c_5 \, l^{r-\delta} (\log \log 2^s + c_6)^{r-\delta-1}}{(r-\delta-1)! \log 2^s} \leqslant \frac{c_9 \, l^{r-\delta} (\log s)^{r-\delta-1}}{(r-\delta-1)! \, s},$$

hence

(7)
$$N_0(x) \leq 2x \sum_{\delta=0}^{r-1} \left(\frac{c_9 l^{r-\delta}}{(r-\delta-1)!} \right)^{2r+7} \sum_{s \geq s_0} \frac{(\log s)^{(r-1)(2r+7)}}{s^{2r+7}}.$$

For $s > s_0 - 1$ we have

$$\log s > \log(s_0 - 1) > \frac{2r + 7}{2r + 5}(r - 1) > r - 1.$$

Therefore, on this halfline $(\log s)^{(r-1)(2r+7)}/s^{2r+7}$ is decreasing, since $\log s > r-1$ and

$$\frac{(\log s)^{(r-1)(2r+7)}}{s^{2r+7}} < \frac{d}{ds} \left(-\frac{(\log s)^{(r-1)(2r+7)}}{s^{2r+6}} \right),$$

since

$$\log s > \frac{2r+7}{2r+5}(r-1).$$

On the greatest prime factor

It follows that

$$\sum_{s \ge s_0} \frac{(\log s)^{(r-1)(2r+7)}}{s^{2r+7}} \le \int_{s_0-1}^{\infty} \frac{(\log s)^{(r-1)(2r+7)}}{s^{2r+7}} ds$$

$$\le \frac{(\log (s_0-1))^{(r-1)(2r+7)}}{(s_0-1)^{2r+6}} = \frac{\exp O(r^2 \log_3 x)}{(\log x)^{r+3}}$$

and by (7)

$$N_0(x) \leq 2x(c_9 l e^l)^{2r+7} \frac{\exp O(r^2 \log_3 x)}{(\log x)^{r+3}} = o\left(\frac{x}{(\log x)^{r+2}}\right).$$

Proof of Theorem 2. For $k \le x$ by (5) f(k) has less than $c_{10} \log x$ prime factors. Thus we have in the notation of Lemma 4

(8)
$$d(f(k), A(c)) < {c_{10} \log x \choose r+1} < {c_{10}^{r+1} \over (r+1)!} (\log x)^{r+1}.$$

From Lemma 4 and (8) we obtain

(9)
$$\sum^{+} d(f(k), A(c)) = o\left(\frac{x}{\log x}\right),$$

where in $\sum_{k=1}^{\infty} k$ runs through all positive integers $k \leq x$ with

$$d(f(k), A(c)) > 2lr!(2r+7)^{r+1}$$
.

On the other hand, by Lemma 1

(10)
$$\sum_{k=1}^{x} d(f(k), A(c)) = \sum_{a \in A(c)} \varrho_{x}(a) \geqslant \frac{x}{2} \sum_{a \in A(c)} \frac{\varrho(a)}{a}.$$

We evidently have

$$\sum_{q \in A(c)} \frac{\varrho(a)}{a} = \sum_{1} \frac{\varrho(q_1)}{q_1} \sum_{2} \frac{\varrho(q_2)}{q_2} \cdots \sum_{r} \frac{\varrho(q_r)}{q_r} \sum_{r+1} \frac{\varrho(p)}{p},$$

where the sum \sum_{i} is taken over all primes q_i in the interval (3) $(1 \le i \le r)$ and the sum \sum_{r+1} is taken over all primes p in the interval

$$\frac{x}{2q_1\cdots q_r}\leqslant p\leqslant \frac{x}{q_1\cdots q_r}.$$

It follows from Lemma 2 that

$$\sum_{i} \frac{\varrho(q_i)}{q_i} > \frac{1}{4r} \log_2 x \qquad (1 \leqslant i \leqslant r),$$

$$\sum_{r+1} \frac{\varrho(p)}{p} > \frac{1}{2} \log \left(1 + \frac{\log 2}{\log (x/2q_1 \cdots q_r)} \right) > \frac{\log 2}{2 \log x}.$$

Therefore,

$$\sum_{a \in A(c)} \frac{\varrho(a)}{a} > \left(\frac{\log_2 x}{4r}\right)^r \frac{\log 2}{2\log x}$$

and by (10)

$$\sum_{k=1}^{x} d(f(k), A(c)) > \frac{\log 2}{4} \frac{x}{\log x} \left(\frac{\log_2 x}{4r}\right)^r.$$

Since $r = o(\log_2 x)$, it follows from (9) that

(11)
$$\sum_{k=0}^{\infty} d(f(k), A(c)) > \frac{x}{6 \log x} \left(\frac{\log_2 x}{4r}\right)^r,$$

Where $\sum_{i=1}^{n}$ is taken over all positive integers $k \leq x$ such that

$$d(f(k), A(c)) \leq 2lr!(2r+7)^{r+1}$$
.

From (11) we obtain

$$N(x) > \frac{1}{12lr!(2r+7)^{r+1}} \frac{x}{\log x} \left(\frac{\log_2 x}{4r}\right)^r$$

$$> \frac{x}{\log x} \exp\left(r\left(\log_3 x - 3\log r + 1 - \log 8 + O\left(\frac{\log r}{r}\right)\right)\right)$$

$$> \frac{x}{\log x} \exp\left(c(\log_2 x)^{1/3} (-3\log c + 1 - \log 8) + O(\log_3 x)\right).$$

Choosing $c < \sqrt[3]{e/8}$ (the choice $c = \sqrt[3]{1/(8e^2)}$ is optimal) we obtain the theorem.

Remark. If instead of the theorem of Erdős and Rádo we use their conjecture $r!(2r+7)^{r+1}$ is replaced throughout by $(2r+7)^{r+1}$ and the above proof for $r = \left[c'\left(\frac{\log_2 x}{\log_2 x}\right)^{1/2}\right]$ gives

$$N(x) > \frac{x}{\log x} \exp\left(c_{11} \left(\frac{\log_2 x}{\log_3 x}\right)^{1/2} \log_4 x\right) \quad \text{for } x > x_4,$$

Where c_{11} is an absolute constant.

We proceed to the proof of Theorem 3. Denote by U the set of all integers of the interval $(x/\log x, x]$ for which f(u) has no prime factor satisfying

$$x , where $c_{12}^{l-1} = 2c_8$.$$

LEMMA 5. card
$$U > x - c_{13} \frac{x}{\log x}$$

On the greatest prime factor

Proof. Clearly

$$\operatorname{card} U = [x] - \left[\frac{x}{\log x}\right] - \sum_{x
$$> x - \frac{x}{\log x} - 1 - l\pi(c_{12}x) > x - c_{13}\frac{x}{\log x}.$$$$

For $k \leq x$ put

(12)
$$|f(k)| = A_k B_k$$
, where $A_k = \prod_{\substack{p^{\alpha} || f(k) \\ p \le x}} p^{\alpha}, B_k = |f(k)|/A_k$

and let

(13)
$$P\left(\prod_{k=1}^{x} f(k)\right) = P_{x}.$$

LEMMA 6. For all $u \in U$

$$A_k > \frac{x^l}{2(\log x)^l P_x^{l-1}}.$$

Proof. Since by the definition of $U: x/\log x < u \le x$ we have for $x > x_5$

(14)
$$\frac{1}{2} \left(\frac{x}{\log x} \right)^l < |f(u)| < c_8 x^l.$$

Further, f(u) has no prime factor in the interval $(x, c_{12} x]$. Therefore by (12) and the choice of c_{12} B_u can have at most l-1 prime factors, multiple factors counted multiply. By (13) all prime factors of f(u) are at most P_x , thus

$$B_u \leqslant P_x^{l-1}$$
.

Hence

$$A_{u} = \frac{|f(u)|}{B_{u}} > \frac{x^{l}}{2(\log x)^{l} P_{x}^{l-1}}.$$

LEMMA 7. Let $u \in U$ be such that f(u) has a divisor in [x/2, x]. Then

$$A_u > \frac{x^{l}}{2(\log x)^l P_x^{l-2}}.$$

Proof. By the definition of U all prime factors of B_u are greater than c_{12}^{x} . Since $f(u) \equiv 0 \pmod{d}$ for some $d \in [x/2, x]$ we have by (12), (14) and the choice of c_{12}

$$B_u < 2c_8 x^{t-1} = (c_{12} x)^{t-1}$$
.

Thus B_u can have at most l-2 prime factors, multiple factors counted multiply. Thus by (12) and (13)

$$A_u = \frac{|f(u)|}{B_u} > \frac{x^l}{2(\log x)^l P_x^{l-2}}.$$

LEMMA 8.

$$\sum_{k=1}^{x} \log A_k < x \log x + c_{14} x.$$

Proof, see Nagell [6], pp. 180-182.

Proof of Theorem 3. The number of $u \in U$ for which f(u) has a divisor $\ln [x/2, x]$ is at least equal to N(x) - (x - card U), hence by Lemma 5 is at least $N(x) - c_9 x / \log x$. From Lemmata 5, 6, 7, and (8) we now obtain

 $x \log x + c_{14} x$

$$\geq \sum_{u \in U} \log A_u > \left(x - c_{13} \frac{x}{\log x}\right) \left(l \log x - l \log_2 x - (l - 1) \log P_x - \log 2\right) + \left(N(x) - c_{13} \frac{x}{\log x}\right) \log P_x$$

>
$$lx \log x - lx \log_2 x - (l-1)x \log P_x - x - c_{13} lx$$

+ $c_{13}(l-1)\frac{x}{\log x} \log P_x + N(x) \log P_x - c_{13}\frac{x}{\log x} \log P_x$

$$\log x$$
 $\log x$

$$> lx \log x - lx \log_2 x - (l-1)x \log P_x - (c_{13}l+1)x + N(x) \log P_x$$

Hence

(15)
$$(l-1)x\log\frac{P_x}{r} > N(x)\log P_x - lx\log_2 x - (c_{13}l + c_{14} + 1)x.$$

By Lemma 2 for $x > x_6$ there is at least one prime $p \in [x/2, x]$ with $\varrho(p) > 0$, hence $P_x \ge x/2$. On the other hand, by Theorem 1 $x \log_2 x = o(N(x) \log x)$. Thus for $x > x_7$

$$lx \log_2 x + (c_{13}l + c_{14} + 1)x < \frac{1}{l}N(x)\log x - N(x)\log 2$$

and the inequality (15) gives

$$(l-1)x\log\frac{P_x}{x} > \frac{l-1}{l}N(x)\log x,$$

i.e.

$$P_x > x \exp\left(\frac{\log x}{lx} N(x)\right),\,$$

Which was to be proved.

References

- [1] P. Erdős, On the greatest prime factor of $\prod_{k=1}^{x} f(k)$, J. London Math. Soc. 27 (1952), 379-384.
 [2] P. Erdős and R. Rádo, Intersection theorems for systems of sets, ibid. 35 (1960), 85-90.
- [3] G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number the Quarterly J. Math. 48 (1917), 76-92.
- [4] E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea 1949.
- [5] T. Nagell, Généralisation d'un théorème de Tchebycheff, J. Math. Pur. Appl. (8) 4 (1921) 343-356.
- [6] -Zur Arithmetik der Polynome, Abh. Math. Seminar Univ. Hamburg 1 (1922), 179-194.
- [7] G. Tenenbaum, Sur une question d'Erdos et Schinzel, the volume: A tribute to Paul Erdos to be published by the Cambridge University Press.

Received on 21.2.1989 and in revised form on 28.4.1989

(1910)