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1. Introduction. This paper is primarily concerned with the investigation of
large values of certain number-theoretic error terms. The error terms in
question essentially admit asymptotic expansions in terms of (generalized)
Bessel functions, but before we give the general definition, it seems appropriate
to give first some examples. Typical ones are 4(x), the error term in the
classical divisor problem, and P (x), the error term in the circle problem. They
are defined as

Ax) = Y d(n)—x(log x+2y—1)—1/4, P(x)= ¥ r(n)—mx+1,

n<x nEx

where d(n) is the number of divisors of n, y is Euler’s constant, and r(n) is the
number of representations of n as a sum of two integer squares. In general, the
sum )7, f(n) means that if x is an integer, then the last term in the sum is
f(x)/2. By a classical formula of G. F. Voronoi [34] (see also Ch. 3 of [22])

(1.1) A= Z d(m)n=?! f,(n?xn), ' s
folx) = ~x”’(m4\/§)+31<1{4ﬁ)),

where Y, is the ordinary Bessel function of the second kind and. K, is the
modified Bessel function (see G. N. Watson [35] or Ch. 3 of [22] for dcﬁnmon
and properties of the Bessel functions).

The sums in the definition of 4 (x) and P(x) are special cases of the general

sum
(1.2) F,(x) = r(9+1),§;.f(n](x nf,

which may be defined for any arithmetical function f(n) and ¢ > 0 (it is also
defined for ¢ < 0 if x is not an integer). If f(n) = r(n) in (1.2), then G. H. Hardy
[17], [18] proved that, for ¢ > 0,

x1+e x@ (1+0)/2
(13) F,(x)= r(e+2) FgD) E,Zr(n)() J14o(2n/nx),
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where J, is the ordinary Bessel function of order v. Chandrasekharan and
Narasimhan [6] showed that (1.3) also holds for —1/2 < ¢ <0 if x is not an
integer. The series of Bessel functions in (1.3) is absolutely convergent for
0 > 1/2, since

X

1/2
(1.4) J,(x) = (i) cos(x—mv/2—m/4)+0(x" %) (x—- o),

while for —1/2 < ¢ < 1/2 it converges only conditionally. Since

Fo(x)= Y r(n),
nsx
it follows that (1.3) gives an explicit formula for P(x) in terms of Bessel
functions (or an asymptotic expansion in terms of cosines, if one uses (1.4)).
Another classical expansion of similar type is

(1.5) Y ) = Y t(n)(x/n)® ¥ 5 (4n /nx),
n<x n=1

where t(n) is the well-known multiplicative function of S. Ramanujan «(see
T. M. Apostol [1] and G. H. Hardy [19]), defined by

Y tm)x"=x{(1—-x)(1=x})(1-x%..)** (xI<1).

n=1
Note that on the right-hand side of (1.5) there is no main term, but only the
oscillatory Bessel-function terms. This reflects the oscillatory character of t(n),
which is perhaps the best known example of a larger class of arithmetical
functions. This is the class of functions a(n), which are the Fourier coefficients
of a cusp form of weight x =2n (> 12) for the full modular group (see
T. M. Apostol [1]). If ¢ (s) is the Dirichlet series (zeta-function) attached to a(n),
that is, if

o

@o(s)= ) a(mn™* (o = Res> (x+1)/2),

n=1
then E. Hecke showed that ¢ (s) satisfies a simple functional equation. This is
(1.6) (2m) I (s) p(s) = (— 12 (2m) "%~ I (e —5) (% —3),
which plays a fundamental role in the study of ¢(s) (in the case of t(n) one has
x = 12).

In the general case one has (see Chandrasekharan-Narasimhan [6] or
M. Jutila [27])

1
(L7) A, (x)= m Zf a(n)(x—n)®

X (x+g)2
=(—1)?@m)~¢ T a(n) (5) rroldn/nx)

n=1
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for ¢ > —1/2 (for —1/2 < ¢ <0 x may not be an integer, and the series is
absolutely convergent for ¢ > 1/2 by (1.4)). For ¢ =0 and a(n) = t(n) (1.7)
reduces to (1.5).

Asymptotic expansions of the type (1.7) are only special cases of the more
general situation where a(n) is replaced by Fourier coefficients of a so-called
automorphic representation, such as the Maass wave forms. Another pos-
sibility is to insert besides a(n) a suitable exponential factor (see M. Jutila [27]).
However, in order to avoid technicalities, we shall not go that far in our
investigations.

Before we pass to the general case of number-theoretic error terms which
we shall investigate, we finally point out another important example. This is the
function E(T), defined by

T
(1.8) E(T) = [ILG+it)* dt— T (log(T/(2m)) + 2y —1).
0

From a classical formula of F. V. Atkinson [2] (see also Ch. 15 of [22]) it easily
follows that E(T) = O(T"/*log T), so that E(T) may be considered as the error
term in the mean square formula for the Riemann zeta-function on the critical
line ¢ = 1/2, Atkinson was the first to point out certain analogies between
2nA(T)(2n)) and E(T), which were later investigated in more detail by M. Jutila
[26]. However, unlike the previous examples, the function E (T) does not arise
directly in connection with a particular arithmetical function. Its connection
with the divisor function d(n) is only indirect.

Acknowledgment. I wish to thank J. L. Hafner, M. N. Huxley and R. A.
Rankin for valuable remarks.

2. The functional equation. We are now going to give the definition of the
general number-theoretic error term (due to Chandrasekharan—Narasimhan
[71), which includes all the previous examples except E(T). The identities (1.1),
(1.3), (1.5) and (1.7) all involve arithmetical functions whose generating
Dirichlet series satisfy a certain type of functional €quation, analogous to (1.6).
In the case of d(n), generated by (?(s), such a functional equation follows
simply by squaring the classical equation

n 2 (s/2) L(s) = w1902 r((1—s)/2)¢(1—s)

for the Riemann zeta-function {(s). K. Chandrasekharan and R. Narasimhan
[61, [7], [8], were the first to establish identities (asymptotic expansions) for
arithmetical functions associated with Dirichlet series satisfying a general
functional equation. As in the simplest case of { (s), the functional equation that
they considered involved gamma factors. Their work was continued by other
researchers, including B. C. Berndt [3], [4], [5] and J. L. Hafner [11]. Our
number-theoretic error terms will be the error terms in the asymptotic formula
for the summatory functions of arithmetical functions whose Dirichlet series
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satisfy a functional equation with multiple gamma factors. The definition of
this type of functional equation, given first by Chandrasekharan-Narasimhan
[7], is as follows:

Let {f(n)} and {g(n)} be two sequences of complex numbers not
identically zero, and let 4,, u, be two strictly increasing sequences of positive
numbers tending to infinity. Suppose the series

0= T 104" W= 3 gl

converge in some half-plane and have abscissae of absolute convergence ¥ and
0., Tespectively. For each v=1,2,..., N suppose that o, >0 and B, is
complex, and let

A(s) = [] I'e,s+8,).
v=]

If r is real, then ¢ and y satisfy the functional equation
(2.1) A(s)p(s) = A(r—s) Y (r—s)
if there exists in the s-plane a domain D that is the exterior of a compact set
S and on which there exists a holomorphic function x(s) (s = o +it, ¢ and
t real) such that
(1) lim y(o+it) =0

fti=

uniformly in every interval —w <0, <0 <0, < ©, and

- i _ J4(s9) () for o > af,
@) xs) = {A(r—s)w(r—s) for 6 <r—a,.

Thus with ¢(s) = Y(s) = n™*{%(s), 4(s) = I'*(s/2), r = 1 we get the functional
equation associated with d(n). If

a

Ls)= ) r(mn~* (o>1),
n=1
then the functional equation associated ~ with r(n) follows for
©(s) = Y(s) =n"*L(s), 4(s) = I'(s), r = 1. The functional equation associated
with a(n) is (2.1) with Y (s) = (—1)"2 @(s), A(s) = I'(s), r = x, where

o) =02m)* T am)n~* (o> (+1)/2)..
n=1
For x>0 and o a real number, the general summatory function of the
arithmetical function f(n) (of order g) is defined as

22 F,(x) X S (x—2,,

B '+ 1);,.5:
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which reduces to (1.2) if 4, = n, and where the dash in the sum indicates that
the last term is to be halved if ¢ =0 and x = A, (if ¢ < O then (2.2) is defined
only if x is not any 4,). If henceforth « = ¥, a;, then for ¢ > 200, —ar—1/2
(see Chandrasekharan-Narasimhan [7] and J. L. Hafner [11]) we have

(2.3) Fo(x) = Q)+ ¥ g(m) s "™ [y (x,).
n=1

In this formula Q,(x) may be considered as a “main term” or “residual
function”. It is defined by the integral representation

_ 1 T(s)p(s)xe*s
9 00 =35 ] Terorn *
where C is a suitable rectangle containing all singularities of ¢(s), so that 0,(x)
can be evaluated fairly easily in case ¢(s) has only poles. The function So(x) is
the so-called “generalized Bessel function”, since in case when ¢=0is an
integer f,(x) can be often expressed in terms of classical Bessel functions. Such
is the case of the classical expansions (1.1) and (1.3). Explicitly one has (see
J. L. Hafner [11])

QY L=t | e

in(200,—ar—4, —1
2“’.Cu‘ur("+9—3+l]A(,-_S)ds (¢ > minQ2uo,—or—4, —1)),

where C,; is the line ¢ = a > 0, a = min(o,—2/a, r/2—1/(2a)), suitably in-
dented to the right to contain all the singularities of the integrand in the right
half-plaqe. In [11] Hafner proves that, for o > min(2ao, —ar—4, —1),

6) o) = £,

and that for any fixed integer m = 0

27 f(o=Y ej(g}xsﬂ_mz"’cos(hx”‘z“’+kj(g})
j=0

+ O(XB“_""'" l}HZﬂl) afi O(xr +g —b)

for b>0 a large constant and

r 1 1
(2.8) . 90 = 5-£+Q(l ‘—g).

Here ¢/(g), k;(e) and & are suitable constants which may be explicitly evaluated.
Thus for most sequences g(n), u, that are encountered in applications the series
in (2.3) converges absolutely for ¢ sufficiently large, which is a fundamental fact,
used in essentially every application of formulas of this type. Hafner [11]
actually shows that (2.3) holds if ¢ > 2ag,—ar—3/2, providing that an
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additional technical condition is satisfied, which occurs for many examples
interesting in applications, including d(n), r(n) and a(n).
Finally we may define (for g = 0)

29) P,(x) = F,(x)—Q,(x)

as the error term in the asymptotic formula for F,(x) (we avoid the case ¢ <0
when P,(x) is undefined for x = 4,). Since F,(x) (as a function of x) is
continuous for ¢ > 0 and all x > 0, and the same is also true for Q,(x) by the
integral representation (2.4), it follows that P,(x) (as a function of x) is
continuous for ¢ > 0 and x > 0. Note that when ¢ = 0 it may happen that
P,(x) is not continuous, because it has jumps for x = A,. Such is the case of
4(x) and P(x) (both are of the form P(x)), where the functions in question have
jumps at integral x which may be as large as exp(Clogx/loglog x).

From (2.9) it follows that P, (x) is a primitive function of P,(x) for ¢ > 0,
which we shall write as

(2.10) [P, (x)dx = P,ey(x) (o =0).

This important property follows from the same property for F,(x) and Q,(x).
In view of sI'(s) = I'(s+1) we have by (2.4)

L TOe@x"**t 1 I(9)gl)xt!

JQ,(x)dx = 2nicl(s+o+1)(e+s+1) 2m‘£ I'(s+o+2) ds = Qg+1 (),
and also
x 1 x ,
gFa(t)dr = m{zﬂ,ﬂ"m"’l“y dt
g _l— ] 3 o o e——— - +1
T T, ) M- Ard = ey L Sk
= Fei—l(x),

which establishes (2.10).
The relation (2.3) may be cast in the form

(2.11) P(x)= Y gmuy "~ f(xp,) (0 > 200, —ar—1/2),
n=1
with the remark that in case of the function a(n) and similar functions where
there is no main term one has P, (x) = F,(x). :
The situation with the function E(T) is, as was pointed out earlier,
markedly different. There is no functional equation resembling (2.1), and there
is no asymptotic series expansion analogous to (2.11). However Hafner—Ivi¢
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[15], [16] proved a sharp asymptotic formula for the integral of E(r).
This is :

212) }.E(t) dt =T+G(T),

2

nEN

@13) 6(M)=27" % (—1)"d(an‘”2(arsinh\/;_E")_
T 1\ '
X (Et-r;+3) sin(f (T, n))

=2 ) dnn~'~ (loé %};)*2 sin (Tlog (—T—)— T+ E)+0{T”4),

n<N’ 2nn
where for any fixed 0 < 4 < A’ we have
T N (N2 N}‘")”2

<N 3 = —4——
AT <A'T, N +3 a2

2n

f(T, n) = 2Tarsinh /g,+ (2nnT+n? nz)”z—;, arsinhx = log(x+./x2+1).

By Taylor’s formula (2.13) simplifies to

3/4 o
(2.14) G(T) = %(2—:—) ' Y, (=1)"d(n)n~ %% sin(\/8nnT —n/4)+ O(T?? log T).
. n=1

Note that, apart from the unimportant oscillating factor (— 1)", the absolutely
convergent series in (2.14) is completely analogous to the one that will appear
in the asymptotic expansion of P, (x) = j': A(t)dt for d(n), given by (2.11), if the
appropriate Bessel functions are approximated by trigonometric functions. The
fact that the series in (2.14) is absolutely convergent is crucial in establishing
sharp omega results for E(T) (see Hafner-Ivi¢ [15], [16]). Likewise, in what
follows, the asymptotic formula (2.14) will enable us to treat 4(x) and E (T) in
a very similar way.

3. Omega results. Statistical results on the occurrence of large values of
A(x), P(x) and E(T) were obtained by the author [20], [21], [22]. The main
goal of this work is to establish two-sided omega results in short intervals for
P,(x) (given by (2.9)), related to a suitable subclass of functions satisfying the
functional equation (2.1), and for E(T). We recall the definition of the omega
symbols: if g(x) > 0 for x 2 x,, then f(x) = 2, (g(x)) means that f(x) > Cg(x)
for some constant C >0 and some arbitrarily large values of x, and
f(x) = Q_(g(x)) if f (x) < — Cg(x) for some arbitrarily large values of x. Finally
f)=0, (g(x)) means that both f(x) = Q, (g(x)) and f(x)=0_ (g(x)] hold,
while f(x) = 2(g(x)) means that |f(x)] = 2, (g(x)). In general, the error term

4 — Acta Arithmetica 56.2
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P,(x) will be a complex-valued function of x, and the methods used in [7], [8],
[13] provide Q, and Q_ results for Re P,(x) and Im P (x). For the sake of
simplicity we shall henceforth assume that the sequences f(n) and g(n) in
Section 2 are real, and moreover we shall impose some (moderately restrictive)
conditions on g(n) and p, which will be satisfied in most important ap-
plications such as d(n), r(n) and (real) a(n). Other conditions of similar nature
could be also assumed, but the following ones are fairly simple and easy to
check in practice. We shall suppose that

(i) g(n) < ,n*** for some K >0 and g(n) » n* for infinitely many n,

(ii) n® < p, < n® for some H > 0, and pS,— & > m*—n" for0 < c < 1/H
and m > n.

For the classical error terms mentioned in Section 1 the best known
omega results at present are:

(3.1)  A(x) = Q, {(xlogx)!/*(loglog x) *1°#4)/4 exp(— B, /logloglog x)}

(B> 0),
C(loglog x)'/*
(32'} A{X) =0_ {x”“ exp (W)} (C > 0),
D(loglog x)*/*
- 1/4
(3.3) P(x)=Q, {x 4 exp ((1ogloglogx)3f4 (D > 0),
(34) P(x) = Q_{(xlogx)'*(loglog x)"8** exp(— E . /logloglog x)}
(E > 0),
3.5) Y a(n) = 2, (x¥*~4logloglog x).
nEx

Of these, (3.1) and (3.4) are due to J. L. Hafner [12], [13], (3.2) and (3.3) were
proved by Corradi-Katai [9], and (3.5) was proved by H. Joris [25] (the a(n)’s
are assumed to be real). These papers also contain references to earlier results
on the same problems. Omega results for the error term P,(x) involving the
functional equation (2.1) were obtained by numerous authors, including
B. C. Berndt [5], Chandrasekharan—Narasimhan [7], D. Redmond [30] and J.
L. Hafner [13]. The results of Hafner appear to be hitherto the sharpest and
most general ones. Instead of our assumptions (i) and (ii), Hafner makes
different assumptions on g(n) and u,, which are (like in our case) fulfilled for
most examples interesting in applications. Under his assumptions he proves
that

(3.6) ReP,(x) = Q. (x*g(x))
with .

r 1 1 i
(3.7) 9& =*2-—E+Q(l —E), o =j§l Oy
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where r is the constant appearing in (2.1), and g(x) is a certain function tending
to oo as x — oo (slower than any power of x). The explicit construction of g(x)is
rather involved, and the reader is referred to [13] for details (this function has
no connection with the g(n) in the definition of (2.1)). The results of [13] are
relevant for

_;’
« 3 "3 2a>"°

as the case x <0 was previously treated by Chandrasekharan-Narasimhan
[7]. One may conjecture that P, (x) < x%**, which reduces to the classical
(hitherto unproved) conjectures 4 (x) < x/#*¢ and' P (x) < x'4** in case of the
divisor and circle problem, respectively. That is, one expects (3.6) to be close to
the true order of magnitude of P, (x).

In [15] Hafner-1Ivi¢ showed that the analogues of (3.1) and (3.2) hold also
for E(T), and one expects E(T) < T'#*¢ to hold by analogy with the divisor
problem (more on this topic in Section 6). The proof depended on the
asymptotic formula (2.14) and was technically more complicated than the
corresponding proof’in the divisor problem, although the basic ideas of the
proof were naturally the same. Similar ideas were used by J. L. Hafner [14] in
deriving sharp omega results in a two-dimensional divisor problem. As in the
case of E(T), there was no functional equation of the type (2.1), but instead
there was a good asymptotic formula for the relevant integral.

The preceding results have the shortcoming that there is no localization of
the values for which e.g. (3.6) is attained. The form of localization given by
Theorem C of [13] is not effective. The approximation theorems of Dirichlet
and Kronecker that are used in the proofs would lead to very poor localization
results (intervals for which the omega result in question is attained at least
once). What we seek is a slightly poorer result than (3.6), but with good
localization. Our main result in this direction is

THEOREM 1. Let P,(x) be defined by (2.9) and let (i) and (ii) on g(n) and Uy
hold. Then for fixed p >0 there exist two constants B, C > 0 such that Sfor
X 2 Xo every interval [x, x+Cx'~"®®] contains two values x,, x, for which

(3.8) P,(x,) > Bxfe, P,(x,) < —Bx%,
where 0, is given by (3.7).

Recall that, for ¢ > 0, P,(x) is a continuous function of x, so that in this
case (3.8) implies the existence of a zero of odd order of P,(x) in
[x, x+Cx' =129, For Py(x) such a zero does not necessarily exist, but only
a change of sign in the aforementioned interval. Hence for o > 0 there are at
least C, T*/®® changes of sign of P,(x) for 0 < x < T, T> T,,, where C, > 0 is
a suitable constant. This corollary was also obtained by J. Steinig (Th. 4.1 of
[32]) with an explicit value of C,. His method, which requires ¢ to be an
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integer, was based on a refinement of a classical method of G. Poélya. It is
different from ours, and does not seem to be able to yield (3.8).

4. The necessary lemmas. The proof of Theorem 1 depcnds on a simple
mean-value estimate. This is

LemMA 1. Let a> 1, A, B be given real constants and

(4.1) f@©)= 3 g)p, “cos(A(tp,) "+ B),
n=1
where g(n), u, are real andsatisfy (i) and (ii) of Section 3 with H < a, u > 0 and

Hu > 1+K. Then there exists a constant C e 0 such that uniformly for
1<G<T

T+G

4.2) [ f2(t)dt = CG+O(T! "1,
T

Proof. The condition Hu > 1+ K ensures that the series in (4.1) is
absolutely convergent. Therefore it may be squared and integrated termwise,
and the left-hand side of (4.2) equals

T+G

4.3) Z gi(n) py j cosz(A(tp,)”"+B]dt

n=

@ T+G

+0{ Y 1g0m gl (unp) ™| [ exp(iAr*e(ude+ubi)dt]}.
T i _

mn=1m#n
The first integral in (4.3) is

T+G

% I {1 + COS(?.A (t#,‘)uﬂ + ZB)} dt = % G+ O(Tl =1/a g 1fn).
T
Here we used the elementary estimate (see Lemma 2.1 of [22])
B
(44) “' giF(x) dx| < 4m-1 '
A

if F(x) is a real, differentiable function such that F'(x) is monotonic on [4, B]
and |F'(x)] 2 m > 0. Therefore

Z g* (s > I cos?(A(tu,)' "+ B)dt = } Z g*(n) py 2 G+ O(T* ~Ve)
n=1 n=1
uniformly in G, and the last series is absolutely convergent. By (ii) (with ¢ = 1/a)
and the mean value theorem we have, for m > n,

l/a

ul _I‘ulll..fn > mﬂf¢+nﬂfu = {m_n)MH,‘a— l'
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where n < M < m and H/a < 1. Hence, using again (4.4) and (i) it follows that
the sum-in the O-term in (4.3) is majorized by
Tl—l,fa E mx 'l-an-I—z(mn)— Hu(”:'fa_p;.{a)—l
1=n<m

ml+r—ﬂn+ 1—-Hfa

@ Tl—l,‘n Z nx+a—ﬂu
i<n<m m-=n
@ mK+l+z-Hu—H,.fa
- Tl_—l‘rn Z nx+s—m 2
n=1 n<m<2n

& m
+Tl—l!¢ Z nx+s—H|| Z
=1 m>2n m-=n

m-—n
K+1+e—Hu—Hfa

Tl 1fa ( i ZK.+ 1+2e—2Hu—Hfa log(n + 1)

+ z "K+a—Hu E mx+¢—ﬂu-—H{¢)
3

n=1 m>2n

since 1/(m—n) < 2/m for m > 2n. By hypothesis Hu > 1+ K, hence
2Hu+H/a—2K—1-2e>2+Hfa—1-2¢> 1
for 0 < ¢ < H/(2a), implying

Y, p2Ktita-2Hu-Heloomy 1) <1 (0 <e < H/(2a)),

n=1
and similarly

oo

- *] .
Z nxﬂ—ﬂ'u Z mK+e-—Hu—B;a Z K+e—Hu K+s Hu—Hla+1 él

n=1 m>2n n=1

Thus we have shown that the error term in (4.3) is O(T" ~'/) independently of
G, so that (4.2) follows with

C=% Z g2 uy >0,

since g[n) is not identically equal to zero by hypothesis.
From Lemma 1 it follows that |f(¢)] > B for some te[T, T+ DT* ] and
suitable B, D > 0, if we take G = DT'~12 T> T,. But we can take advantage

of the fact that the series in (4.1) is absolutely convergent and deduce even
more. Namely we have

LeMMA 2. Under the hypotheses of Lemma 1 there exist two constants B,
D > 0 such that for T> T, every interval [T, T+ DT*~ '] contains two points
ty, t; for which

@.5) ft)>B, [(t;)<—B.
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Proof. Both inequalities in (4.5) are proved analogously, so the details
will be given only for the second one. Suppose that f(t) > —e for any & > 0,
and te[T, T+DT' '] for T2 T,(e) with arbitrary D > 0. If C,, Csy i
denote absolute, positive constants, then for D sufficiently large and
G =DT'"'" we have from (4.2)

T+G
C,G< | fAdt=Y [ fAv)dt+Y [ f2(t)de,
T k Iy I
where the I,’s denote subintervals of [T, T+ G] in which f(t) > 0, and the J,s
denote the subintervals where f (t) < 0. In each J, we have f2(¢) < £2, and since

fOI< Y lgm)lp*=C,,
n=1
we have

C,G<C,Y [ f(t)dt+Ge?

k I
T+G

=C, | S@)dt+C, Y § (—f (1) dt+ Ge?
T 1 Jy
T+G

<C, | f(O)dt+C,Ge+Ge?.
T

But using (4.4) it follows that
T+G T+G

| f0dt= 3, gou | cos(A(w)*+ B

o0
< Tl ~1/a Z ig(n)l p"—n— 1/a < C'S T! = l..'a,

n=1

hence
(4.6) C,GLC,T'" "+ C,Ge+Ge’.

If we take G = DT~ ', D > C,/C, and ¢ sufficiently small, then (4.6) yields
a contradiction which proves the second inequality in (4.5), and the first one is
proved analogously.

5. Proof of Theorem 1 and some applications. To prove Theorem 1 we start
from (2.11) and use (2.7) with m = 0, supposing that g is fixed and satisfies

G1) ¢ > max(2eo,—ar—1/2, 0).
Then we have, for suitable constants A, B, E,

(5.2) P,(x) = Ex® Z g(n) u;7 2+ 0ecos (A(xp,,)"‘z“’+B)+O{x°'_”{2"’}.

n=1
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By definition o, is the abscissa of absolute convergence of ) ;> , g(n)u, °, and
moreover the condition on ¢ in (5.1) ensures that 6,—r—g+0, < 0. Hence the
series in (5.2) is absolutely convergent, and for p satisfying (5.1) the assertion of
Theorem 1 follows immediately from Lemma 2 and (5.2). For other values of
¢ = 0 we proceed recursively, deducing the truth of the assertion for g from the
truth of the assertion for g+ 1. If M is such an integer that (5.1) is true with
o replaced by @ = p+ M, then it will follow that the assertion of Theorem 1 is
trueforp—1,9—2, ..., 83— M = g. Now to see that the truth of Theorem 1 for
¢+ 1 implies the same for g, note that for 1 < G < T (2.10) gives
T+G

(.3 Pos1(T+G)—Pys1(T)= [ P,()dt (¢ >0).

Since P, (x) is continuous and Theorem 1 holds in this case, it follows that
P,.1(x) always has a zero in [x, x+Dx! 1297 for D > 0 sufficiently large.
Suppose P,(t) <ét’ for all te[T, T+G], G=DT' "?® and any given
¢>0. Then choose T (= Ty(e) and D such that P,.;(T)=0 and
P, 1(T+G) > B(T+G)***. By (5.3) we infer that

(5.4) B(T+G)s** < eGQ2T)%.

Since by definition

_r__l_d E l — 1—1/(2a)
6, =3 4a+g(1 2:;)’ G=DT 1

it follows that
Opr1 =6,+1-1/20),

and consequently (5.4) is impossible if ¢ is sufficiently small and T> T,(e).
By the preceding discussion it follows that P,(t,) > Bt% for some suitable
B>0, t,e[T, T+CT' 120 C=C(g) >0 and ¢ >0. The inequality
P,(t;) < —Bt% is proved analogously.
As an illustrative application of Theorem 1 consider
4,(x) = Y d,(n)—Res*(s)x*s~ 1 —27%,
' m€x s=1

where k > 2 is a fixed integer and d,(n) is the number of ways n can be written
as a product of k factors. Thus d,(n) = d(n) and 4,(x) = 4(x). The estimation
of 4,(x) is known as the (general) Dirichlet divisor problem (see Ch. 13 of [22]
and Ivic-Ouellet [23] for recent results). For k > 3 there is no explicit series

representation for 4,(x) analogous to (1.1), but nevertheless (2.11) holds for
o = o(k) sufficiently large -(for k =3 one may take p > 0). We have

THEOREM 2. For k > 2 fixed there exist constants B, C > 0 such that for
T> T, the interval [T, T+ CT*~Y*] always contains two points t,, t, which
satisfy
(5.5) By(t) > BEET D 4, (1)) < —Big ™ ew,
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Proof. For ¢ =Res> 1
2:1 dy(mn™* = {X(s),
so that to d,(n) there corresponds the functional equation (2.1) with
46) = I*s/2), = ia»=kf2, By=0, r=1, ¢(s)=y(s)=@En "2,
v=1

g,=0f=1, K=0,H=1 (() and (i) of § 3).
In the notation of (2.9)

4,(x) = Py(x) = Fo(x]—Qo(x)
with

Fo) = ¥ dy(n),  Qo(x) = Res{*(s)x*s™'—27* = xP,_,(log x)—2~*,
nEx =1

where P;_,(t) is a polynomial in ¢ of degree k—1, whose coefficients may be
explicitly evaluated. Moreover

gl L k=l |1 k-t

2 4a 2k’ 2a k
so that (5.5) follows from Theorem 1. As mentioned in the discussion of the
general case, (5.5) is slightly weaker than the best omega result of the type (3.6)
(in this case g(x) will be bounded by a log-power, as given explicitly by
J. L. Hafner [13]), but the strength of (5.5) lies in producing large positive and
large negative values of 4,(x) in short intervals.

A result analogous to (5.5) for k = 2 holds also for P(x) (circle problem)
and A(x) = )< a(n) if the a(n)'s are real (in this case K = *x—1)Y2,H=11in
(i) and (ii) of Section 3). Namely, the interval [T, T+C J'T'] contains two
points t,, t, satisfying

P(t,) > Bti"*,  P(t;) < —Bt}/*
and two points t,, t, satisfying
(56) . A(ts) > Bry?~1%  A(t,) < —Bry2— 14,

Several other applications of Theorem 1, such as the general divisor problem in
algebraic number fields (functional equation for the Dedekind zeta-function),
the number of lattice-points in many-dimensional ellipsoids (functional equa-
tion for the Epstein zeta-function) etc, can be obtained by following the

detailed discussion of these problems given by e.g. J. L. Hafner [13] and
D. Redmond [30].
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6. The mean square of the Riemann zeta-function. In this section we shall
discuss in detail the occurrence of large values of E(T) in short intervals. For
T> 0 the function E(T) is continuous (it has in fact also derivatives of any
order). Thus from @, and Q_ analogues of (3.1) and (3.2) for E(T) (proved by
Hafner-Ivi¢ [15], [16]), it follows that E(T) has an infinity of zeros. From
(2.12) and (2.14) it transpires that E(T) has the mean value =, so that it seems
more natural to investigate the zeros of E(T)—r than directly the zeros of E(T)
itself. This viewpoint was adopted by Ivié-te Riele [24], where a detailed study
(both theoretical and numerical) of t,, the nth zero of E(T)—n, is made.
Likewise, let u, be the nth distinct zero of G(T) (defined by (2.12)). The existence
of an infinity of u,’s follows by continuity and the fact that G(T) = Q. (T4,
proved by Hafner-Ivi¢ [15]. We can rewrite (2.14) as

3/4
G(T) = %(%) F(T)+0(T* log T),
(6.1)

f(T)= E (—=1)"d(m)n">"*cos(\/8nnT —(3m)/4).

Clearly f(T) is a continuous function of the form considered in Lemmas 1 and
2 of Section 4 with g(n) = (—1)"d(n), p,=n, K =0, H =1, u = 5/4,a=1/2.
Lemma 2 shows that every interval [T, T+C ﬁ'] contains for T> T, points
Ty, T, such that f(t,) > B, f(r,) < —B. From (6.1) it follows then that
G(t,) > Bt} and G(r,) < —Bt3" in every interval [T, T+Cf T7] for some
values 7, 7, from that interval. By continuity G (t) must vanish at least once in
the same interval, implying u,,, —u, < u!/2. If we define

i log(uy+ 1 —u,)
then we have shown that g < 1/2. If we further define
6.3) % = lim ?pbi?(';;{i)

then analogously x < 1/2, or more precisely t,.;—t, < ti/? (this has been
obtained in a different way by Ivié-te Riele [24]). Namely we have

L}

T+H
(6.4) G(T+H)-G(T)= | (E(t)—m)dr,
T
and since we can choose T and H (< C./T) in such a way that
G(T+H) = G(T) =0, it follows that E(t)—n must vanish at least once in
[T, T+ H]. On the basis of numerical evidence and some heuristic arguments
we conjecture that x = 1/4. If true, this must be deep, since it implies the
hitherto unproved bound ((1/2+it) < t®*¢, Now we prove f=1/2 by



150 A. Ivié

showing that f§ < 1/2 cannot hold. We start from (6.4), choosing T and
H (< T**®) in such a way that G(T) > T¥*, G(T+H) = 0. Then we have

T+H

(6.5) T34 f |E(:}|d:<gH”=( [ E*(t)dt)"/>.

By a recent result of T. Meurman [28] (proved also independently by
Y. Motohashi)

(6.6) }Ez(t) dt = CT¥>+ F(T), F(T)=0(Tlog*T), "
2

where C = 20*(3/2)/(3./2n{(3)). Inserting (6.6) in (6.5) we obtain
TS!Z < H(HT112+F(T+H)_F(T')) < T2ﬂ+28+ ”2+T1 +ﬂ+2a'

But if § < 1/2, then for £>0 sufficiently small the above estimate is impossible,
so that f =1/2 has to hold. In fact, the above proof shows that

un +1= un = Q(u}fz (Iog uu) E s)’
and if the hypothetical estimate F(T) = o(T) holds as T— co, then even
Upyp1— U, = Q(“l'll!z)'

In that case the maximal order of u,,, —u, is precisely determined, up to the
values of the constants involved. The preceding discussion may be sum-
marized in

TurorReM 3. There exist constants B, C >0 such that every interval
[T, T+ Cﬁ] Jor T= T, contains numbers 1, T,, T3, T4 for which

E(zy) > Bt}’*, E(z,) < —Bt}*, G(1y) > Bt3*, G(r,) < —Brd*,

so that every interval [T, T+ Cﬁ ] contains a zero of E(T)—n and a zero of
G(T). Moreover, if u, is the n-th zero of G(T), then

— 1
lim sup bg(:;#%) =3

7. Fourier coefficients of cusp forms. We recall that (5.6) provides the
localization of large values of A(x) = ) <, a(n), and that these results are only
by a factor of logloglog x weaker than the best omega result (3.5) for A(x).
Henceforth we suppose the a(n)s to be real and we proceed to derive some
further results on mean values of A(x), which seem to be new.

Frorn (1.4) and (1.7) with g = 0 we have

1) A= —ﬂ,—zx*“ 14 3" a(nn~2 4 cos (4. /xn— /) + O(x2 1),

n=1
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This formula is analogous to the classical formula of Voronoi for 4(x), namely

(72) A= 2‘”2 S dnyn- 3f4cos(4nﬁ n/4)+0(x—m)

n=1

which follows from (1.1) and the asymptotic formulas for ¥, and K, . Also by
a deep result of P. Deligne [10]

(7.3) a(n) < n*= Y72 d(n).

For practical purposes one often uses a truncated form of (7.2) (see Ch. 3 of
[22])’ namely

(7.4) A(x) = 2‘, x4 Y d(n)n~%* cos(dn./xn—m/4)

nEN
+O0(x'2*eN"12) (1< N <x),

where the error term is uniform in N. An analogue of (7.4) for A(x) also exists,
and a proof is sketched by M. Jutila [27]. This is

(7.5) A(x) =

a(m)n=*2~ 14 cos(n ., /xn—n/4)

nEN
+O(xx12+aN—112) (l < N & X).
The results on mean values of A(x) are contained in
THEOREM 4. We have
£ 1
AZ " Xx+l,|r]. Fo 2 —x—1/2
_!' (x)dx=C +B(X) (C 7 ..Z;. (mn )
with
3
(16)  B(X)=0(X*log®X), B(X)= Q(X" “4@5’5]3&),
log X
and

7.7 Jjr,cl‘f‘(a:)4.qr:: & T4 1+,

Proof. (7.6) is the analogue of

[ £269dx = CXY2+RCYD) ( = 6—,1& )) ﬂ'z(n)n'm) '

n=1

with
R(X) = 0(X log® X),
(78) (X) = 0(X log® X)
R(X) = Q{X3*(log X)~ .”4 (loglog X}‘g"’,“?“’f‘exb(-t)\/bglongX}}.
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The O-result in (7.8) is due to K.-C. Tong [33], and the Q-result to Ivié-Ouellet
[23] (a somewhat weaker Q-result for R(x) is proved by Ivié in Ch. 13 of [22]).
Recently T. Meurman [28] obtained a simple new proof of the O-result in (7. 8)
by working with (7.2). Applying Meurman’s method to (7.1) one will eventually
obtain the O-result in (7.6), as was pointed out by M. Jutila [27]. To prove the
Q-result in (7.6) note first that, uniformly for x* < H < x,

x+H

(1.9) Ax)=H™' [ A()dt+0(x*" 12 Hlogx).

Namely by (7.3)

x+H x+H

AX)—H™' [ A@)dr=H"' | (A(x)—A())de

x+H
SH 'x*"92 (Y dm)dt

x x<n=t

x+H ; L
SH™ 'x%~v2 | Yy d(n)dt < x>~ Hlogx.

X x<nsx+H

Here we used the fact that, uniformly for x* <y < x,
Y dn)<ylogx,

x<n<x+y
which follows from a general result of P. Shiu [31] on multiplicative functions
in short intervals.
Suppose now that the Q-estimate in (7.6) does not hold, that is,

= =1 4(‘03103103 X}3
(7.10) B(X) = o X*~ T) (X ).

Choose for X the sequence of points where the 2 -result in (3.5) is attained.
Then from (7.9) and the Cauchy-Schwarz inequality we have, for any & > 0 and
X ? X 0(8}:

X+H

C, X*2~141ogloglog X < H~2( j A2(t)de)' 2 + C, HX*?~ 12 1og X

3/2
< C,y X¥12- 114 4 g~ 112 xtx- sjay2 {0gloglog X)* +C,0 HX*?" 12 jog X .

(log X)*'2
Take now
1
g = syvelogloglog X ¢ >0).

log X
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Then we obtain, for X > X,
1C, X2~ 4 ogloglog X < ed~1/2 X*/2~1/410gloglog X
+C, X*2~ Y4 ]ogloglog X,

or
C,2<es 12 4C,6

for some absolute constants C,, C,>0, which is impossible e.g. for
6 =Cy/3Cy), e = $6'2C,. This proves that (7.10) cannot be true, hence the
Q-estimate in (7.6) must hold.

As a consequence of the O-estimate in (7.6) and (7.9) one easily obtains

x+H

AX)=H"! | A()dt+0(Hx*""logx)

x

x+H
<H Y2( [ A%(f)dt)'+ Hx*~V2]ogx

x

< H™V2(Hx*—1/2 4 x* log® x)*/2 + Hx®™*~ "2 ogx
<€y 12 302 10g512 5 | Hxx=DI2 o x
< D413 102 o

for H = x']og x. Thus the order estimate (analogous to the classical bound
A(x) < xR log? x)

(7.11) . A(x) € x*~D2F13 1562 x

follows easily from the mean-square formula for 4(x). In analogy with the
conjecture 4(x) < x'*** one expects

(1.12) | A(x) € X~ 12+ 116 48

to hold. Note that (7.12) is true in a mean power sense by (7.7), and from (7.7)
and Holder'’s inequality it follows that

x .
(7_13) _[IA(x)l’dx < Xl +e+B((x—1)/2+1/4) (0 < B < 8).
1

This means that the crucial estimate is (7.13) with B = 8, which we proceed to
prove now. Write the truncated formula (7.5) as

(7.14) A(x)@X"“"”’[x”‘l Y. a(nn® =¥ n=3/4cos (4r., /xn—n/4)| + H)

REXiteg-2

for X* < H < X*2, X < x < 2X. Now we are going to employ the large values
technique, smularly to what was done by the author in [20], [21], [22] for the
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estimation of large values of 4(x). Namely, therein it is shown that if ¢, ..., tg
are points from [T, 2T] for which [4(t)] > V> 0 and |t;—1t| > V (i # j), then

(7.15) R <€ THTYV 2 I8 y=12)

which easily leads to power moment estimates for 4(x). But note that (7.14) is
analogous to (7.4) with N = X'**H™? since (7.3) holds, and therefore the
application of the Halasz—Montgomery inequality used in the proof of (7.15)
will remove a(n)n™ ~*? in the same way that it removed d(n) in the case of
4(x). Thus eventually the same exponential sums as in the case of A(x) will
remain, and these will be estimated by the technique of exponent pairs. The
only substantial difference between (7.14) and (7.4) is that (7.14) contains
X®*=132 on the right-hand side, so that 4 (x) is in a certain sense by a factor of
X®~1/2 “larger” than A4(x). If we impose the spacing condition |;—t] > 1
(instead of |t;—¢tf > V (i # j)), then (7.15) becomes

(7.16) - R<TTV 24T¥Ay-1Y)

In fact, (7 15) and (7.16) with their respective spacing conditions lmply one
another in view of the relation

A(x+H)—A4(x) = O(|H|logx) (x* < |H| < x),

which is proved analogously to (7.9). Hence if we suppose that x, x,, ..., xp
are points from [X,2X] such that |[A(x)| =V and |x;—x;|>1 for i#j,
V satisfies

(7.17) X*x-D2+1jd4e 4 g Yx-12¥1 342

then by the above mentioned analogy between 4(x) and A(x) we shall obtain
(7.16) with V replaced by VX~*/2 and T replaced by X. Thus

(718) R QXZ(X" V—3+X15J’4+“(*-1H2 V_“),
with the remark that the upper bound for ¥ in (7.17) must hold in view of
(7.11). Suppose now 2 < B < 11, and write

2X

[lA@IPdt =1, +1,,

X
where in I, we have |A(f)] < X®~"2*14+e and to prove (7.13) it will be
sufficient to prove the corresponding estimate for I, and I,. Trivially

(719) Il --.<., Xl +:+B({u-—1),‘2+1,f4}’

which is the desired upper bound. It remains to estimate I,, where we have
|[A(t) > X~ V2+la+e Divide I, into O(log X) subintegrals I, (V), where in
each I,(V)

V<A@ < 2V,
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and V satisfies (7.17). By (7.18) each I,(V) is estimated as
1,(V) < RVE < X*(X* VB~2.4 X15/4+116= 102 B-11)
< Xg{Xx+{B—2}({x—l};2+ ”3]+X15"4+1”"_”’2”3—11}(1*-l}!2+1f4])
= X:(Xl+{n—2);3+p{x- 1}12+X1+8;4+n{x—1);z).

For B <8 we have (B—2)/3 < B/4, hence
(720) IZ(V) @ Xl +Bj4+B(x—1)/2+¢ (2 & B S 8)

Consequently (7.19) and (7.20) imply (7.13) for 2 < B< 8, whilefor 0 < B <2
this follows easily from Hoélder’s inequality and the mean-square formula
for A(x).

Although (7.3) holds for all n, on the average |a(n)|n* ~*¥2 is smaller than
d(n), whose average order is logn. Namely, if one sets

(7.21) § a*(n) = Ax*+D(x) (4> 0),

then by a classical result of R. A. Rankin [29]

(1.22) D(x) = O(x*~%5),

and the value of 4 may be written explicitly. I conjecture that
(7.23) D(x) = O(x*~5%/*%),  D(x) = Q(x*~%%),
although proving even

(7.24) D(x) = O(x*~1/2*%)

would be very interesting. Rankin’s proof of (7.22) is based on a convolution
argument due to E. Landau and the functional equation (see pp. 180182 of
G. H. Hardy [19] for the special case of the function (n), corresponding to
x=12)

_LI(1—=8)TI(x—s)

7.25 Z(s)=4 — 4(5) =2+ 20—,
(7.25) (5) = 4()Z(1—5), A(s) = (2m) T T +x—1)
Here for Res > 1

(7.26) Z(5)={(2s) f(s+x—1) = i (8 (R

say, where

o«

fs)= Y a*>mn~* (Res> x).

n=1

Note that (7.25) is a functional equation of the type (2.1) withr = 1, x = 2, and
moreover by Stirling’s formula for the gamma-function

3 il 1
|4(s) = (EE) (l +0(?)) (s=o0+it, t 2 t,).
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If we set, with a suitable g > 0,
Y 6= Bx+C(x),

n<x
then by applying a general theorem of E. Landau Rankin deduced that
(7.27) C(x) = 0(x*73),

which easily leads to (7.22). The estimation of C(x) bears resemblance to the
estimation of 4,(x), since d,(n) is generated by (*(s), and one has the functional
equation

t 2—4co 1
049) = X 41 -9), lx“(S)I=(£) (1+o(?)).

Thus |4(s)| and [x*(s)| are asymptotically equal, and (7.27) essentially corre-
sponds to 4,(x) < x****. The last bound may be considered as the trivial
estimate for 4,(x), since it may be obtained by trivial estimation of the
truncated formula for 4,(x), analogous to the truncated Voronoi formula for
A(x) (see (3.23) of [22]). But using

fleaz2+intde < T+
1]

one obtains easily (Ch. 13 of [22]) 4,(x) < x'/2**, which is (still!) the sharpest
known estimate for 4,(x), and which corresponds to (7.24). The reason for
which one cannot at present obtain (7.24) lies crudely in the fact that Z (s) is not
the square of a “nice” Dirichlet series, while {*(s) = ({*(s))? is. Hence at present
there is no analogy between the above fourth power moment for the
zeta-function and

T
[1Zz(2+ir)de < T,
0

since the latter is not known to hold yet. However from (7.25) and Theorem
1 we can obtain (in this case « = 2, r = 1) by specialization some results on
C(x) and thus indirectly- on D(x). This is

THEOREM 5. There exist two constants A, B > 0 such that for T> T, every
interval [T, T+AT?**] contains two points t,, t, such that

(7.28) C(t,) > Bt}’®, C(t,) < —Bt}®.
Moreover,

X
(7.29) [ C2(x)dx < X2+,

1
and .for D(x) defined by (7.21) we have

i ;
(7.30) [D*(x)dx < X2+,
1
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Proof. The estimates in (7.28) are a direct corollary of Theorem 1 with
@ = 2,r = 1, ¢ = 0. The mean-square estimate (7.29) follows by using the metod
of Lemma 13.1 of [22] and the fact that

2T
(7.31) [1Z(o+it)?dt < T*** (12<0<1).
) )

One obtains (7.31) by using the mean value theorem for Dirichlet polynomials
(Theorem 5.2 of [22]) and the fact that by the functional equation (7.25) one
can write Z(o+it) for ¢ > 1/2 as a sum of Dirichlet polynomials of length
< T? (the technique of the “reflection principle”, expounded in Ch. 4 of [22]).
One expects (7.28) to be fairly sharp, so that we may conjecture C(x) = Q(x*/8)
and C(x) = O(x*®*®) to be true. This conjecture heuristically explains the
reasons for believing that (7.23) might also be true. Moreover it shows that
(7.29) can be replaced by

X
j‘CZ(x) dx < X'U4+e’
1

and probably an asymptotic formula for this integral should also exist.

It remains to prove (7.30). From Z (s) = {(2s) f (s +x—1) one obtains that
(7.29) holds if C(x) is replaced by C,(x), which we define as the error term in the
asymptotic formula

Ux):= Y a*(mn' ™ = ax+C,(x),

nEx

where a > 0 is a suitable constant. This assertion follows similarly to the proof
of (7.29) by the technique of Lemma 13.1 of [22], since for 1/2 < o < 1 we have,
by (7.31),

T 2T
§If @+x—1+i)2de = | |LQ20+2it)|"2|Z(c+it)? dt
T T

ar
<Qo-1)"2 [ |Z(c+it)*dt <,,T**".
T
Partial summation gives

Y a*(n) = U(x)x"_‘—(x—l)fU(t]t"_zdt
n€x 1

= (/%) x*+ Co+x* "1 Cy (x)—(c—1) | C, (1) *~ 2 dt
1
for some constant C,. Comparing with (7.21) (4 = «/x) we obtain
D(x) = Co+x* "1 Cy(x)—(x—1) [ C, () *~ > dt.
1

5 — Acta Arithmetica 56.2
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This gives

2T 2T 2T 1
| D2(t)dt < T+ | T 2C2(0)dt+ | (w2 C,(u)du)? dt
T T T 1 "

2T r
< T2x+s+ J' th—:!ICzl'(u)du dt < T2x+c_
T 1

Replacing T by X2~/ and summing over j =1, 2, ... we obtain (7.30).
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