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Modular embeddings for some non-arithmetic Fuchsian groups
by

PauLA CoHeN (Paris) and JORGEN WoLFART (Frankfurt)

0. Introduction. The purpose of the present paper is to shed further light on
results of [Wo 1], [Wo 2], [WW] which concern the following transcendence
question in uniformization theory, first raised by S. Lang [La]:

Let X be a smooth projective algebraic curve of genus g > 1, defined over
the field @ of algebraic numbers. Suppose that the universal holomorphic
covering map

@: E,:={ze(| |Jz] < g} > X

is normalized in such a way that x, = ¢(0)e X(Q) is an algebraic point of
X and the tangent map ¢’(0) is defined over @: is the covering radius g then
a transcendental number?

Up to non-zero algebraic factors, g is uniquely determined as a function of
X, x,, by the above normalization. Of course, it still makes sense to ask Lang’s
question for covering maps with finitely many possibly ramified points of X (Q)
removed.

The transcendence of ¢ can be established in the following cases:

1) X a modular curve, x, a complex multiplication point (henceforth
referred to as a C-M point). This uses work of C. Siegel [Sie2] and is the
subject of [Wo2].

2) X a Shimura curve, x, a C-M point. This falls into the context of work
of G. Shimura [Shi2], and is elaborated on in our Section 5.

3) X a curve with covering group of finite index in a Fuchsian triangle
group having x, as a non-trivial fixed point. Such curves with many
automorphisms are discussed in [Wo 3], [WW] and our Sections 1 and 4.

Moreover, in each of the above cases, the covering radius turns out to be
a quotient of a period of the first kind by a period of the second kind on certain
abelian varieties with complex multiplication. The transcendence of such
quotients follows from theorems of G. Wiistholz [WW, §1]. However, in
contrast to cases 1 and 2, the occurrence in case 3 of these abelian varieties is
a priori somewhat strange, since in general the covering group 4 of X is not
arithmetically defined.

This paper focuses precisely on elucidating this last point: we shall prove
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that there is a Q-rational morphism ¢ of X into a suitable Shimura variety
V which maps x, to a C-M point of V. This gives a reason, consistent with 1)
and 2), for the dependence in 3) of ¢ on periods of abelian varieties with
complex multiplication. The mapping ¥ is induced by an embedding of 4 into
the modular group I’ associated to ¥, hence the description “modular
embedding” in the title, together with an analytic embedding of the covering
space of X into that of ¥, compatible with the action of 4.

It appears that such modular embeddings have previously been considered
only for arithmetic groups. The name was first used in a paper of Hammond
[Ha], but the idea is older, see for example [Kli] or [Fr]. Modular embeddings
for some non-arithmetic groups implicitly occur in [Wo 3]..We hope that the
expanded list of examples treated in this paper has applications beyond the
context of Lang’s question: in particular, in the spirit of Shimura’s work, it may
make available useful models for some deeper arithmetic issues.

The paper is organized as follows: after the preliminaries of Section 1,
Section 2 introduces the main result about modular embeddings, various
analytic proofs of which are provided in Section 3, the Q-rationality of the
morphism i being settled in Section 4. Next, Section 5 reviews the conse-
quences for the covering radius, Section 6 gives some examples and Section
7 offers suggestions for extending the ideas of the present paper to a wider class
of Fuchsian groups.

1. Preliminaries on triangle and modular groups. Let p, g, t be positive
integers satisfying 1/p+1/g+1/t < 1, with g, t possibly infinite. We define
a Fuchsian triangle group 4 < SL,(R) of signature (p, g, 1) to be any group
generated by matrices

-1 0
Ve 700 ¥ — 12 =[ - _JeSthm
satisfying
(1) VpYoVr = 1,

(2)  try, = +2cos(n/p), try,= t2cos(n/q), tryy= t2cos(n/t).

One may realize the images ¥, g, 71, 1 of these generators in PSL,(R) as
fractional linear transformations acting on the upper half plane b. Then
7ps 7g» 71 have fixed points P, Q, T forming the vertices of a closed hyperbolic
triangle F,, with angles n4 = n/p, nu = n/q, nv = w/t. One may suppose P, Q,
T all lie in b, or on the boundary R U {oo} if the corresponding angles are 0. Let
Fg be the triangle with vertices PQ'T, image of F under reflexion in the side
PT. Geometrically, 75, 7o, 7+ are hyperbolic rotations with rotation angle 2n/p,
2n/q, 2n/t. If Q or T is realized as a cusp on db, the corresponding trace
becomes +2 and y, or 7, becomes a parabolic transformation. Since
hyperbolic triangles are uniquely determined by their angles up to hyperbolic
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motions, 4 is uniquely determined by its signature (p, ¢, t) up to conjugation in
SL,(R) and a possible extension by —1,.

Notice that the signature (o0, oo, o0) is excluded only for practical
reasons; in this case 4 is SL,(R) conjugate to the principal congruence
subgroup I'(2) of the elliptic modular group, and the interpretation of the
covering radius by means of a modular embedding is immediate. We remark in
passing that one is led to consider euclidean triangle groups if
1/p+1/g+1/t =1 and spherical triangle groups if 1/p+1/g+1/t> 1.

Returning to the hyperbolic case, standard geometric arguments show that
in the above discussion P, Q, T can be chosen as algebraic numbers. In
particular, 4 is SL, (R) conjugate to a subgroup of SL, (k) where k = k is the
totally real number field Q(cos(n/p), cos(m/q), cos(m/t)).

The field k is crucial in what follows. Results of Takeuchi [Tal, Props.
2, 3] show that its ring of integers contains the traces of all elements of 4, and
that in the algebra M,(R) of 2 x 2 matrices over the reals, any subgroup 4, of
finite index in 4 generates an order ¢ of a quaternion algebra B defined over
its trace field k, = Q(tr4,) c k, tr4, = {try| ye d,}. Realizing the quater-
nionic reduced norm of B as the matrix determinant, we can consider 4, as
a subgroup of the group I' of units of ¢ with reduced norm 1.

General facts about quaternion algebras ensure the existence of an
R-algebra isomorphism

1: BeR - A=M,(R)® ... DM,(R)Y®HD ... ®H

where A comprises r copies of M,(R), and n—r copies of the hamiltonians H,
with componentwise algebraic operations, and n = (k,:Q]. If k; denotes the
projection of 4 onto the jth summand, then ¢; = k;o1 is an embedding of B in
M,(R) for j=1,...,r and in H for j=r+1,..., n extending the n field
embeddings of k, into R. We can assume ¢, is the identity map and write
y;=0;(7), y€B. There is an induced action of I' on b" given by

yr=(ty, .. 1) B (1), - 0(2)

where y,(1;) denotes the fractional linear transformation of 7;by y;,j =1, ..., 1.

This action of I' is discontinuous, and I is even a modular group for
a suitably chosen family of polarized abelian varieties [Shi 1, 2]. Indeed, let
K be an imaginary quadratic extension of k, contained in B and extend the
embedding o;: k,— R to an embedding &;: K— C and its complex conjugate
€J =1, ..., r. Then by work of Albert [A], Siegel [Sie 1] and Shimura [Shi 1]
there is a family of principally polarized abelian varieties X, parametrized by
tely, of complex dimension 2n and with endomorphism algebra

EndgT=Q0®EndI oK
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and generalized complex multiplication type

r n

b= (&+E+2 ¥ ¢,
i=1 j=r+1
The type ¢ encodes the induced action of K on the complex vector space of
holomorphic 1-forms of ¥. This action determines 2r one-dimensional eigen-
spaces on which ;K and &K act by scalar multiplication, j=1, ..., r, and
n—r two-dimensional eigenspaces on which &, K, ..., ¢, K act by scalar
multiplication. Two, members of this family of abelian varieties are isomorphic
exactly when their corresponding parameters in b" lie in the same orbit of I', or
at worst a group commensurable with I, if for example ¢ is not a maximal
order. The orbit space I'\l)" therefore parametrizes the isomorphism classes of
the abelian varieties in the family, and can itself be equipped with the structure
of a complex space. Suitably chosen I'-automorphic forms define a holomor-
phic embedding of I'\B' into a complex projective space. If '\’ is not compact,
which can only be the case if r = n, this embedding extends in a natural way to
the cusps of I and the compactification I_“\'i)_" may be identified with a complex
projective variety V, the so-called Shimura variety associated to I'. Moréover,
the embedding can be chosen in such a way that V is defined
over Q.

2. The main result. We are now ready to formulate the main result of this
paper:

THEOREM. Let A, be a subgroup of finite index in a Fuchsian triangle group
4, and X = A \b the corresponding algebraic curve. Let I' be the norm-unit
group of the quaternion algebra B = ko[ 4,], where k, is the trace field of A, and
V= TI\b" its Shimura variety. Then there is an injective, non-singular, complex
analytic embedding, F: b — Y, where r divides the number of unramified infinite
places of k for B, compatible with the inclusion of groups 11 4,5 T, so that

Fly(x)) =1(0) F(x), teb, yed,.

Moreover, there is a continuous extension of F to include the cusps of 4,, whose
images are again cusps of I'. Finally, F induces on X a Q-rational morphism

y: X=V.

If in addition 1(4,) = {yeI'|yF(b) = F(h)} the quotient map y is a Q-ra-
tional immersion. For example this condition holds if 4, = 4 is a maximal
triangle group, or in certain cases by replacing I" by a subgroup of finite index,
a process which fails in general as, for example, when I" has only congruence
subgroups but 4, has non-congruence subgroups.

Notice that the new contribution of the theorem is that it holds for
non-arithmetic triangle groups. Indeed, 4 is arithmetic exactly when one may
choose r =1 in the theorem: K. Takeuchi [Tal] has shown that this is
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possible for 85 signatures. Then, X = V is a Shimura curve, or a modular curve
if A4 has cusps and thus is commensurable to SL,(Z), so that the existence of
a4 modular embedding is immediate.

3. Construction of the modular embedding. By standard arguments, it
suffices to prove the Theorem of Section 2 in the case where 4 = 4, is
a maximal triangle group (in particular, see [WW, Props. 4, 5]). We have to
construct a complex analytic mapping:

F=(fi,..,.[): b = Iy
T = (i), ..., £,(2)
satisfying for all t in b, and y in 4

A3) L0 =yf0), j=1,...,r.

Since y, =7, f, commutes with 4 and therefore maps every corner of the
associated triangle onto itself, so by Schwarz’ lemma f is the identity map. This
leaves us with the construction of f,,...,f,, We shall present here three
different but related methods of construction.

1. Geometric construction. Fix a j between 2 and r and denote g;(4)
by 4° and g (y) = 7; by y°. The normalization of 4 chosen in Section 1 dictates
that o; act on the y’s by Galois conjugation of their matrix entries. In
particular, the image of each generator y, y,, 75 of 4 is a generator yg, 73 or
7% of A%, the ellipticity of a given order, or parabolicity, being respected.
Thereby,

tryp = +2cos(mm/p), tryp = +2cos(ns/q), tryg = +2cos(nu/t),

with0O<m<p, 0<s<gq, 0 <u <t satisfying (m, 2p) = (s, 29) = (u, 2t) = 1.
In this way, the fixed points P°, Q°, T° of 7%, 75, 77 in b or on its boundary
define a hyperbolic triangle of the same type as before, but with angles enlarged
by integral multiples.

The hyperbolic triangle is a simply connected region whose boundary is
analytic except at its three vertices, Therefore, by Riemann’s mapping theorem
with boundary, there is a bi-holomorphic mapping f of the interior of the
hyperbolic triangle F, = PQT to the interior of the hyperbolic triangle
F§ = P°Q°T° which is holomorphically extendable to the sides and con-
tinuously extendable to the vertices of the triangle where:

4 SP)y=pr, f@Q=¢° [f(T)=T°.

Suppose we reflect F in the hyperbolic side PT as in Section 1 to obtain
a second triangle F. Then R = Fy U Fy is a fundamental region for 4. The

boundary points of R are congruent in pairs under 4: in fact yp(P) = P,
1p(0) = @', y(T) = T. y(Q) = Q'. Moreover each of the three elliptic transfor-
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mations yp, o, Y- Which generate 4, is a product of two hyperbolic reflections
in sides of the triangle F,. The function f can be analytically continued across
the open arc PT in such a way as to map points which are conjugate under
reflection in PT to points which are conjugate under reflection in P° T°. One
therefore has a corresponding region R® = Fg U F§ where F§ = f(Fp) is the
image of F§ under reflection in the line P? T°. The images of R under the
discrete group 4 cover b by a system of non-overlapping hyperbolic triangles
fitting together without lacunae. Therefore, repeating the principle for reflec-
tion in the hyperbolic side PT (Schwarz’ reflection principle) successively to all
images under 4 of the sides of the fundamental domain R, one obtains
a continuation of f to the universal cover of i = h—4({P, Q, T}). This
continuation gives a well-defined analytic function on k' itself, since the
compatibility of the values of f around a given element of the orbit of P, Q,
T under 4 is assured by the fact that the angles of Fg at P°, Q° T are
respectively multiples by m, s, u of the angles of F, at P, Q, T. Moreover, due to
the fact that every element of 4 is a product of hyperbolic reflections in
appropriate sides of images of R under 4, the reflection principle also shows
that foy = y°of for all yed.

To complete the'continuation of f, we observe that f is holomorphically
extendable to the images in ) of P, Q, T under 4, as these are removable
singularities, giving values respectively of multiplicity m, s, u: cusps, if any, are
applied continuously in the appropriate topology to the parabolic fixed points.
The resulting function is the f; required, since we clearly have:

fp@)=v"fr) for ye4, teb.

2.Construction using linear differential equation. Again fixing
Jj between 2 and r, the groups 4 and 4° = 4;, as we have introduced them

above, are explicit realizations of monodromy groups of linear differential
equations

Lw)=0 and Ljyw)=
of second order with coefficients in C(z) and regular singularities at 0, 1, co.
They are hypergeometric differential equations, that of 4 being for the
parameters
) =3il=Ad—p—v), b=i1-A+p—-v), c=1-2
and that of 4; being for the parameters a;, b;, c; obtained from a, b, ¢ by

'replacing A by mA, p by su, and v by uv. Both Land L; have two linearly
independent solutions each, whose respective quotients D and D° give

conformal mappings of the upper half plane ) on the open hyperbolic triangles
PQT and P°Q°T° with

DO)=P, D°(0)=
D(0)=Q, D’(c0)=Q",
D()=T, D°(1)=T",
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The function D°D~! gives explicitly the mapping f from the triangle
F, = PQT to the triangle F§ = P° Q° T* whose existence was deduced from the
Riemann mapping theorem with boundary in Section 1. Once again the fact
that the angles mnA, stu, unv of F§ are integral multiples of the angles 4, my,
nv of F, allows one to complete the construction as in the first method.

3. Construction in terms of abelian varieties. In this construc-
tion we deal explicitly with the subtler aspect of exactly which families of
abelian varieties are selected by the embedded curve in the theorem.

In particular, we select a complex one-dimensional subfamily of the
abelian varietes T, introduced in Section 1 for the interpretation of I' as
a modular group. Then 4 is just the subgroup of I' fixing this subfamily, and
the values of the triangle functions introduced in the second construction serve
as the coordinates of those t describing the subfamily. We first recall
a construction carried out in [Wo 3], §§ 2, 4 and 5. Consider the same
hypergeometric differential equation L as in the second construction. A basis of
solutions of L can be given as period integrals of a smooth projective model
X(N, z) of the curve

YW= x4 1—x)P(1—2x)¢

where N is the least common denominator of the rational parameters a, b,
¢ and

(6) A=(1-b)N, B=(b+1-¢)N, C=aN.

The differential form to be integrated is dx/y which is of the first or second kind
if z#0,1, oo, and an eigendifferential for the action x»* induced by the
automorphism
x: (x,9) — (x, {31y, Ly=e*",

of the curve. In fact, we can then choose the x*-eigenbasis of H°(X(N, z), Q)
using differentials of the form g(x)dx/y™ where g denotes monomials in x, 1 —x,
1—zx, and m lies between 0 and N—1. Let S be the subset of these
eigendifferentials belonging to eigenvalues which are in the group of primitive
Nth roots of unity, (Z/NZ)*. Let « and f be integration cycles on X(N, z) such
that all »™(a), x™(f), m =0, ..., N—1 generate a subgroup of finite index in
H (X(N, z), Z); this is possnble for example by taking Pochhammer cycles
around 0 and 1, 1/z and oo, respectively [K1]. Then up to isogeny the Jacobian
Jac X(N, z) contains as an essential factor an abelian variety T which as
a complex torus has the description C*™)/A, where ¢ is Euler’s function and
A the period lattice of the first kind given by

A= {(0,) [ w+0,0) [ W)wes| u, vEZ[EN]}
a B
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with embeddings ¢,: Q({y)— C sending (, to (§ the »*-eigenvalue corre-
sponding to w. Therefore, End, T o Q({,) and T has generalized complex
multiplication type Y s 0, The multiplicity of the eigenvalues (¥ is given by

()22

where (&) denotes the fractional part &« —[«] of « € R. The possible values of r,,
are 0, 1, 2 and one has r,+r_, = 2. Since 0_, = G,, the complex multi-
plication type ) ,.s0,, is in fact of the form

d HIN)2

2E+EH)+2 ) ¢

j=1 j=d+1
discussed in Section 1, d being here half the number of one-dimensional
eigenspaces of H°(T, Q). If we S generates such a one-dimensional eigenspace,
the quotient |, w/f, w as a function of z is a hyperbolic triangle function D, (z),
and in the two-dimensional case it will be a spherical triangle function,
Moreover, if w and w' belong to complex conjugate embeddings ¢, and o_,,
the D (z) and D,.(z) will be related by fractional linear transformations.

If we replace A by the homothetic lattice

{(on()+ 0,0 (©) Dy (2))wes| u, vE Z[{y]}

it turns out that the spherical D (z) are unimportant for the classification of the
T's, so our family of abelian varieties will be parametrized by coordinates
t = (D,,(2))wer Where R is a subset of S containing exactly one representative of
every pair w, w which corresponds to the multiplicity one embeddings ¢, and
o_,.. For a suitable choice of o, f and R one may always be sure that 7 isin b,
and the monodromy group A will be the subgroup fixing the family
T constructed here, within the whole modular group for all abelian varieties
with endomorphism algebra Q({y) and complex multiplication type Y cs0,,.

As F. Klein [KI, § 19] pointed out, 4 can be considered as acting on the
integration paths of the integral representation of the hypergeometric func-
tions, and so simultaneously on all components of 7, compare for example
§ 5 of [Wo 4] (the homology group of [Wo 4] § 5.3 has to be replaced by the
fundamental group). In particular, if g,, corresponds to w, 4 acts on D (z) by
the fractional linear transformations comprising a,(4). Since 4 changes only
the basis of the homology and not the curve X (N, z), it is clear that 4 has the
required fixing property.

On completing this construction, d may be a multiple of the number of
unramified infinite places of k for B. This is due to the fact that the totally real
field k may be properly contained in Q(cos(2n/N)). For every we R there will
then be ¢(N)/2n, n = [k:Q] different’ w'e R such that the corresponding o,,
agree on k. This in turn means that the ¢,,(4) are the same and that the D,.(z)
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in question coincide. With r = 2nd/¢(N), our family of abelian varieties is
therefore essentially parametrized by a complex analytic one-dimensional
subset of ', again fixed by the action of 4 introduced in Section 1. In terms of
the abelian varieties, the T constructed here split up to isogeny into ¢ (N)/2n
isomorphic factors whose endomorphism algebras contain a complex multi-
plication extension K of k, K < Q({,), and whose ¢(N)/2n-fold complex
multiplication type is the restriction to K of the complex multiplication type
Y wes ., of T. We can choose a subsystem of r triangle functions D, (z), we R,
such that the corresponding g, are pairwise different on k; a look at the action
of 4 on them shows that we get exactly the same r triangle functions as by the
2nd construction.

4. Rationality of the quotient map. The rationality of the quotient map  of
the Theorem follows immediately from the Proposition stated below, whose
proof relies on the following lemma.

LeMMA. Let 4 be a Fuchsian group of finite covolume acting on the unit disc
E,, and let g be a bounded holomorphic function on E,, vanishing on some orbit
A(zy). Then g vanishes identically.

Proof. The orbit A(z,) is given by a sequence {q,},n of points in the unit
disc with the property that ) (1—|a,|) diverges ([Le], Thm. 2.3.4). Then as
a consequence of Jensen’s formula, g(g¢,) =0 for all neN implies g =0
(compare [Co], XI § 1, Exercise Sa).

We now show:

ProprosiTiON 1. Let 4, I' be two discontinuous groups of finite covolume
acting respectively on E,, E\, r = 1, such that the projective varieties given by the
compactifications of their quotients, V, = E /A, V, = E}/I" are defined over Q.
Suppose there exists a morphism p: V,—V,, and a point v,eV,(Q) with

p(v,) € V,(Q). Then p is defined over Q.

Proof. Let U(v,), U(p(v,)) be small neighbourhoods of v,, p(v,) which we
lift to neighbourhoods U(0), U(0) of the origins of E,, E.

If p is not defined over @, we consider small deformations p of p which
arise from the action of Gal (C/Q) on the coefficients. These leave invariant V,
(defined over Q) and all algebraic image points of p in V,(Q).

The deformed embedded curve p¥, < V, lifts to an embedded deformed
subvariety FE, < Ej, and by the above choice of lifting and the fact that v,
p(v,) are algebraic, we can assume F is holomorphic and coincides with F on
the orbit 4(0). Applying the Lemma to the components of F—F, we have
F=F, and so pP=p.

5. Implications of the modular embedding for the covering radius. We now
examine the implications of the Theorem of Section 2 for the original question
of S. Lang about covering radii, refered to in the Introduction.
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We begin by returning to the preliminary remarks of Section 1 about the
families of abelian varieties associated to certain quaternion algebras. We keep
the same notations and for simplicity take k = k.

Now, for any embedding ¢: K B there is a common fixed point t,€b" of
the image, and the member T, for this fixed point 1, is isogeneous to a sum
V, @ V, of abelian varieties with complex multiplication in the sense of Shimura
and Taniyama, of complex dimension n, with endomorphism algebras End, V;,
i=1, 2 containing K and of complex multiplication type

(M 6, = z Cj’ ¢, = Z f;+ z éj'
j=1 j=1 j=r+1
If we denote the complex multiplication type of such an abelian variety V' by
Z =)"-,0}, all non-zero periods of an algebraically defined eigendifferential
w;€ H®(V, Q) for o; are algebraic multiples of a positive real number we call
np(o;, X) (for information on these numbers see in particular [Shi2]).
By Riemann’s period relations, each

(8) 0; =:7p(¢;, fi’l)P(Ej- $.), J=1,...,r

is a quotient of a period of the first kind by a period of the second kind and is
therefore a transcendental number (for a proof of this see [WW]), and by
Shimura's period relations ([Shi 2], Thm. 1.2), ¢; depends only on {; and
¢ = ¢, +¢,, always up to a factor in Q*. A simple application of the results of
[Shi 2, Theorems 7.1, 7.6] on derivatives of automorphic functions yields:

PROPOSITION 2. There are generators of the ring of I'-automorphic functions
on Iy, regular at 1y = (tqy, ..., Toy), having series expansions

f(‘r) = Z LT ——— l:[ (Qj-ﬂ)vj

Vipeer¥e 20 j=1 Ti— %oy
with algebraic coefficients c,,,..,..

In particular, we have the following immediate corollary of the above
discussion, of the type proposed by S. Lang.

COROLLARY. Let V= E/I" be a Shimura variety, with I' commensurable with
the unit group of a maximal order of a quaternion algebra, realized as acting on
the product E = E, x ... xE, ofr 2 1 discs of radius ¢, and centre the origin,
j=1,...,r. Let the corresponding holomorphic (possibly ramified) covering map
@y: E—V be normalized so that ¢y(0) is a complex multiplication point, and
©'y(0) is defined over Q. Then the radii g,, ..., o, are transcendental numbers.

In particular, for r = 1 we obtain the example of Shimura curves, when

X = V. mentioned in the Introduction (Case 2). We are now ready to analyse
Case 3 of the Introduction. Under the assumptions of the Theorem of Section 2,
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consider a 4-fixed point Pely of order p. Then t, = F(P) is a I'-fixed point of
order p, and so k-1 and y, generate a subfield K = k({,) = B fixing 7,. In this
way, T, is a complex multiplication point to which the above corollary applies.
If we choose the covering domains of X and V'so that P, 7, are represented
at the origin with the modular embedding now written F: E,»E
=E,, x ... xE, for the g, ¢;; j=1, ..., r required for the condition that d,
d,, be algebraic at 0, 0, then the g;, j=1,...,r are determined by the
preceding discussion and we have a commutative diagram:

E,55E=E, x...xE,

lw lﬁ’v
X v 14

Moreover, dy is algebraic at ¢ (0) by the Theorem, and therefore dF is defined
over Q at 0c E,. But, in the course of the proof of the Theorem, we saw that the
first component of the modular embedding written in terms of i could be taken
as the identity, so that in the present representation the first component of F is
(e4/0) 1g,. By the commutativity of the above diagram, ¢ and g, must coincide
up to an algebraic factor, so that in particular g is transcendental. The
preceding discussion of the nature of the p s =1yt provides the
elucidation of Case 3 promised in the Introduction. (See also [WW1].)

One knows that the above radii g;, j=1, ..., r must be expressible in
terms of beta-functions at rational arguments. We briefly record the relevant
formulae here, although they already appear implicitly in [WW] for j = 1, and
for j=1,...,r in [Wo 3].

" Using ~ to denote the equivalence of two real numbers up to multi-
plication by a non-zero algebraic number, it follows for example from [WW,
p- 11] that with the origin of the covering disc a fixed point of order p, the
condition that the derivative of the covering map at the origin be algebraic
forces the disc to have radius:

o)
© o~ ~—r s
B(l——,—(l+—+—+—))
p 2 P q t
1./11 1 11 11 1 11
S )
n \p 2 p q t p 2 p q t

By the discussion of § 3.2, the remaining radii ¢;, j = 2, ..., r can be given in an
analogous way if 1/p, 1/g, 1/t are replaced by appropriate multiples m/p,
s/q, uft.

In fact with N=1lcm.(p, g, t) and A, B, C as in § 3.3 there is an
me(Z/NZ)* with (using also [Wo3], § 6)
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_/mA i mB i mC m(A+B+C)
'm=\N N N N
A + B > 1
m— m—
N N
such that

0 (0 (A5 1

and that with j = m = 1, we recapture (9). For a more detailed discussion the
reader is advised to compare Section 3.3 with [Wo 3].

We remark in passing that classical expressions for the series expansions
of triangle functions about elliptic fixed points (as in [Car], § 392, p. 145) in
terms of hypergeometric functions (or their reexpression in terms of be-
ta-functions as above) with rational parameters, show on inspection that the
radii g, are exactly those for which the function D,,, now defined as mapping
the unit disc into the interior of a hyperbolic triangle with angles mi, sy, uy
inside E,, has a power series around the origin with rational coefficients,
a property shared by the function f;: D,,0D,,": E,, = E,,j=1,...,r. With
this type of observation for example, one can furnish another proof of the
rationality of the map y of the Theorem.

We end this section by recalling that in [WW, § 4] it is observed that for
triangle groups 4 with cusps, corresponding to pointed curves X, the covering
radii found there can always be written as a square of a period of the first kind
divided by =n. Here, 4, and therefore the algebra B has unipotent elements, so
B®,R cannot have factors isomorphic to the Hamiltonians. The complex
multiplication types in question must be of the form ¢,, ¢, = ¢,, and
Shimura’s derivatives become:

Q; an(éjv ¢l)p(2j9 al) an(éjs ¢1)2; j= 19 LERS | r

A. Selberg has shown that in this case I' is commensurable to the Hilbert
modular group belonging to k. Here the family of abelian varieties can be
simplified considerably. All T, not only those at the complex multiplication
points, are isogeneous to a product of two isomorphic factors with real
multiplication by k, and these factors can serve as members of a new family
again with modular group I.

6. Examples

1. Let the signature (p, g, t) be (5, 0o, o). Up to conjugation, 4 is generated
by the parabolic matrices

11 10]°
e={g1| ™ 1={a4q
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with a=(=3+./5)2. So Q =0, T=0, and P will be a fixed point of
order 5 of

Y= j:(?q '}"r]_l‘

The group 4 is non-arithmetic [Ta 1] and is contained in the Hilbert modular

group of the real quadratic field k = Q(ﬁ]. The algebraic conjugation
g: a—a of k induces a group homomorphism 4 — 47, where the image 4° is
10
generated by 95 =y, and 77 = I:& e
In the construction of the modular embedding t+(z, f (7)) h? we have to
find a function f analytic on b, satisfying

S1)=7y7f(x) for all teh, yed.

This will be given by the analytic continuation of the conformal mapping
of the left half of the fundamental domain for 4 onto the hyperbolic triangle
P2 Q" T with angles (3n/5, 0, 0). According to Section 2, f'= D,oDy' where
D,, D, are the respective triangle functions for the angles (n/5, 0, 0), (3n/5, 0, 0).
The corresponding parameters for the hypergeometric differential equation
with monodromy group 4 are (a, b, ¢) = (2/5, 2/5, 4/5), and the curve involved
in the construction via abelian varieties is a smooth projective model X (5, z) of

y: = x3(1—x)* (1 —zx)?.

As expected by the remarks on triangle groups with cusps (Section 5), the

dimensions of the Q({)-eigenspaces of our family of abelian varieties, given by
the Jacobians of X (5, z) are

e (-

for all me(Z/5Z)*.
By our remarks of Section 5 for the identification of which D; occur in the
construction we have to choose such me(Z/5Z)* with r,, = 1, always true in

A B 3
thi d — = ie. = =
is case, an <mN>+<mN>::~ 1, ie 2<m5> >1,som=1, 3 and we
recover again the angle triples (n/5, 0, 0), (3n/5, 0, 0). The radius of the covering
disc with origin a fixed point of 4 of order 5, for X = A\his g ~ -l—B(l/S, 2/5)%,
n

and the covering radii of the Shimura variety ¥ with origin the corresponding
points are given by (10),

1
e1~=B(1/5, 2/5) and 92~:—rB(3/5, 1/5)2.
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The beta-values are the periods of algebraically defined differentials of the first
kind on a simple abelian variety of complex dimension 2, complex multi-
plication by Q({s) and complex multiplication type {l, 3} (this notation is
explained in [Wo 3], and here corresponds to the embeddings mapping {5+ (s,
Cs*"gg)

The above triangle group is not maximal; it is contained in the Hecke
group of index 10, i.e. the triangle group of signature (10, 2, o). Here for the
fixed points of order 10, one obtains again the range {1, 3} for m and, using
classical relations for beta functions, the same covering radii. The modular
embedding is more complicated than the previous one as the field Q (cos(n/10))
is of degree 4; the abelian varieties are JacX (10, z), X(10, z): y'°
= x3(1—=x)®(1 —zx)®. Once again 4 is embeddable in the Hilbert modular
group of Q(\/g]. :

Now consider the non-arithmetic Hecke group 4 of signature (5, 2, 00).
Here again k = Q(cos(n/10)), and what is more the modular embedding of 4 in
the Hilbert modular group of k can be reduced to a simpler modulac

embedding, where k is replaced by Q(ﬁ). This time one has:
(a, b, ¢) = (3/20, 13/20, 4/5),
X (20, 2): y* =x7(1—x)'"(1—zx)3,
me{l, 3,7, =9} < (Z/20Z)*

giving rise (by a simple application of [Wo 3], (16), (17)) to four triangle
functions, but only two distinct ones. Therefore the image F (b) of the modular
embedding lies in a 2-dimensional symmetric subdomain of h*. This subdomain
parametrizes those 4-dimensional abelian varieties T with End, (T) 2 Q({20)
which split into two isomorphic factors T, and T,, both with End, T, 2 Q({s),
i =1, 2. On this 2-dimensional subvariety, the modular group is the Hilbert
modular group of Q(\/g). Notice that the subgroup {1, —9} of (Z/20 Z)*
= Gal(Q({20)/Q) is the fixing subgroup of Q({;), and stabilizes the C-M type
{1, —3, 7, —9}, the orbit corresponding to the coinciding triangle functions.
Of course, one obtains exactly the same covering radii as for (5, 00, @) with
double multiplicity. )

It would be interesting to know if the curves y(X) defined by these

modular embeddings on the Hilbert modular surfaces V for Q(ﬁ) are linearly

equivalent to Hirzebruch-Zagier cycles.

2. For our second example, we mention a class of compact curves X to
which our modular embedding procedure applies: The Fermat curves of
exponent p > 3 are quotients of fj by the commutator subgroup of a triangle
group A with signature (p, p, p). According to Takeuchi [Ta 1, 2], 4 is
arithmetic so that the Fermat curve is a Shimura curve, exactly for p = 4, §, 6,
7.8, 9, 12, 15. The first nontrivial p = 10 leads to a two-dimensional Shimura
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variety V. For p even one obtains N =2p, A=p+1, B=p+1, C = p—3, and
for p=10 one has r,=1 exactly when +m=1 or 3. All the other
me(Z/20 Z)* satisfy r, =0 or 2, so correspond to embeddings of 4 in the
hamiltonians. To m =1 and 3 correspond the angles n/10, n/10, 7/10 and

3n/10, 3n/10, 3n/10. The covering radii of X and V with point of order 10 at the
origin are

0~0, ~iB(1/IO, 9/20) B(1/10, 7/20)

and
92~£B(3/10, 7/20) B(3/10, 1/20).

The first beta-factors are periods on the abelian variety W, of complex
multiplication type ¢, = {1, 3,7, 9} and the second beta-factors are periods on
the abelian variety W, of complex multiplication type E;= {1, 3, =7, =9),
both for the field Q({0), ,, of course being the multiplicity of m in ¥, +,.

At the end of this section we shall make some remarks about improving

the non-injectivity of the morphism y: X — ¥ of Fermat curves into Shimura
varieties.

3. Sometimes, there are modular embeddings

F=(fi,...,.f,): b=V

associated to homomorphisms h: 4G I” so that
F(yt)=h(y)F(r) all teh, yed

where h is not given by the natural embeddings of Section 3 nor by obvious
combinations invoking permutations of the coordinates of Iy’ These new F may
lack the identity component of the natural embeddings, and may become
singular in the elliptic fixed points.

More specifically, consider a homomorphism h obtained by blowing up
the angles in P, Q, T by factors m, s, u not coming from an algebraic embedding
ks R, in such a way that one preserves the group relations. Then one has the
same principle of construction for F as in the proof of the Theorem.

Take, .for example, the triangle group of signature (10, 10, 10) of example
2 above. Choose a hyberbolic triangle P’, Q', T within b with angles 3r/10,
n/10, n/10 such that their fixing transformations y,., yo-, y7- satisfy

tryp = +2c0s(3n/10), tryg = +2cos(n/10), try; = +2cos(n/10),
Y Yo VT = VpYo¥r = %1

and yp., yg-, yr-€SL, (Q(cos(n/lﬁ])). Again, these generate a quaternion alge-
bra B over Q(cos(n/10)), different from the one used in example 2,
and are contained in a group I of units of reduced norm 1 in some order of B.



108 Paula Cohen and J. Wolfart

Defining
h(yp) = 7p h(?q) =%, h(7)=7r

one has an injective homomorphism h: 4 I'. It turns out that r =3, n =4,
and that the three embeddings of B into M,(R) which describe the action of
I' on b extend the embeddings of Q(cos(n/10)) into R with, respectively,
cos (n/10)—scos(r/10), cos(7xn/10), cos(9m/10).

One way to calculate these is to use (5) and (6) for the determination of the
curve

X(N,z2): y*°=x3(1-x"(1-2x)°,

so that r, =1 exactly for tm=1, 7, 9.

One can continue to find the explicit shape of the components f}, f3, f3 of
the desired F as in Section 3: they are composed of the inverse of the triangle
function with angles n/10, n/10, n/10, and of triangle functions with angle
triples (3m/10, n/10, rt/10), (=/10, —3m/10, —3n/10) and (7n/10, —n/10, —m/10).

Of course, this type of modular embedding is not interesting for
information on the covering radius of X, but perhaps for the construction of
some more algebraic cycles on V.

We end this section by reconsidering the morphism : X — V of Fermat
curves into Shimura varieties as advertised in example 2.

Let 4 be of signature (p, p, p) and consider the modular embedding
F constructed in the Theorem. As pointed out in Section 3 the question if the
quotient map is an immersion may be reformulated as follows: does there exist
a subgroup I" of finite index in I" such that the commutator subgroup [4, 4],
which is the fundamental group of the Fermat curve, is the fixing subgroup of

F(b):
{yer’| yF(h) = F(h)}?

For most congruence subgroups I of I', this is not the case, since by
results of Macbeath [Ma] that for all prime ideals T in the rationality field of
A which do not divide p, the projective group 4 mod T is all of PSL,(F) where
F is the finite residue class field, so that [4, 4] mod T is no smaller than
Amod .

In the case where p is even, for example, one can get a better result with
the ideas developed in example 3, if one chooses not the identical embedding of
A into a modular group, but rather one which doubles exactly one angle of the
three original angles m/p. Then using Macbeath’s singular triples one can
construct a much finer I”, in the sense that F will then induce a 2-to-1 quotient
map ¥ of the Fermat curve onto a curve in I/l

7. Concluding remarks. It is an open question whether our methods and

results apply to a larger class of Fuchsian groups 4 of finite covolume in I],_and
contained in arithmetically defined groups I' acting on b, at least if 4
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is commensurable to a group with an elliptic fixed point, which would be
a candidate for a complex multiplication point. On the one hand for any group
homomorphism: 4—4;: y+sy,, it is possible to find functions f;: h—C such
that f(yr) = 9,f;(r) for all teh, yeA. For instance, one may take suitable
“fonctions zéta-fuchsiennes” in the sense of Poincaré, or quotients of two
linearly independent solutions of the Riemann-Hilbert problem for the
homomorphism of the covering group of a Riemann surface onto any other
group 4; < GL, (C) which serves as a realization of the monodromy group. On
the other hand, it appears quite difficult, and as yet unclear to us, to settle the
problem of constructing the f; in such a way that fj(h) = b. In particular, it is
not possible for arbitrary homomorphisms 4 —+ 4, and it is not possible to find
such f; in the case where 4, is a Fuchsian group of the same signature as 4, but
giving a Riemann surface 4;\h non-isomorphic to 4\, as there would then be
a nontrivial quotient map between them. It is clear therefore that some more
arithmetic properties have to be invoked such as the fact that 4, is related by
Galois conjugation to 4, or the existence of elliptic fixed points whose images
are determined by the homomorphism 4 — 4, and which in turn determine the
f; uniquely, using arguments of the sort in the Lemma of Section 4.

The aspects of modular embeddings presented in this article have been
specifically motivated by considerations from transcendence theory and
techniques from quaternion algebras which are necessarily Galoisian in nature.

A quite different problem has been tackled by Kra [Kra] who is interested
in locally homeomorphic maps of the unit disc onto a subset of the complex
sphere compatible with a homomorphism of a Fuchsian group acting on the
unit disc to a group of Mobius transformations.

Clearly, the maps corresponding to the homomorphisms we consider are
not locally homeomorphic, in particular not at the elliptic fixed points. The
work of Kra shows that this fact corresponds to the non-discreteness of the
Galois conjugates 4° of our Fuchsian group 4.
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Mesures de transcendance pour les quotients
de périodes d’integrales elliptiques
par
NORIKO HIRATA-KOHNO* (Nara)

1. Introduction et résultats. Soient g, @* deux fonctions elliptiques de
Weierstrass d’invariants algébriques, associées @ deux réseaux Q, Q* de
C respectivement. Soit ¢ l'anneau d’endomorphismes de g, c'est-d-dire
'anneau des nombres complexes ¢ tels que o2 soit contenu dans Q. On sait
que @ est ou bien 'anneau des entiers rationnels Z, ou bien un sous-anneau
d’indice fini de l'anneau des entiers algébriques d’un corps quadratique
imaginaire k. Si @ # Z, on dit que @ admet des multiplications complexes.
Soient w € 2, w* € 2*, des périodes non nulles de g et de @* respectivement, et
w,, w, €8 deux périodes de g, linéairement indépendantes sur le corps des
nombres réels R.

Dans ce papier, on donne des minorations des formes linéaires a co-
efficients algébriques, ou bien de deux périodes de g, ou bien d’une période de
¢ et de 2mi, ou bien d’une période de p et d’une période de p*. Ces
minorations améliorent les résultats antérieurs. Une minoration de formes
linéaires beaucoup plus générales de points algébriques de I'application
exponentielle de groupes algébriques commutatifs sera traitée dans un autre
article de l'auteur [H 2], qui permettra de raffiner I'estimation de P. Philippon
et M. Waldschmidt [P-W 1].

1.1. Les deux théorémes principaux. Pour énoncer les résultats précis,
rappelons la définition de la hauteur h de Weil logarithmique absolue: pour
o = (&, ..., ty) € Py(Q), si K est un corps de nombres contenant a, ..., &y, on
définit h par

o) = i S IK.:0.Jlog Max {ay: 0 < < N}

ot v décrit I'ensemble des places de K et [K,:Q,] est le degré local de telle sorte
que la formule du produit s’écrive pour yekK, y # 0,

Y [K,:Q,]loglyl, = 0.

* Ces recherches sont subventionnées par une bourse du gouvernement frangais.
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