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1. Introduction and the main results. Let x be a sufficiently large positive
number, h (# 0) a fixed even number, p a prime and P, an almost prime with at
most r prime factors counted with multiplicity. Set

a=[101-@e-D7% ] G-DE-27".

p>2 2<plh

The work to determine the exact order of magnitude for
#:=|{P,: p+h=P,, p<x}|

is closely connected with the well-known Prime Twins Conjecture. In all papers
published up to date on the lower bounds of #, only the P,’s with no prime
factor less than x'™ (w > 0, fixed) are counted. This leads to an order of
cyxlog™2x for all r, much smaller than the presumably correct order, ie.
cpxlog™*x(loglog x)"~*. On the other hand, the upper bounds of # seem to be

ignored for all r > 2. The purpose of this paper is to improve on these
situations.

We get the following main results.
THEOREM 1. |{P,: p+h=P,, p < x}| < ¢,xlog " *x(loglogx)™!, r=>1.
3

THEOREM 2. Let 6 be a fixed number with 0 <& < 1. For any r >

Kp: p<x, p+th=p,-....p,—y OF py...°D,,
P, > Pr-y > ... > p, > exp(log’x)}|
> 0.965((1—6) ~2/(r—2)") ¢, xlog "2 x (loglog x)" 2.

2. Lemmas. Let o/ denote a finite set of integers, |.«/| the number of
elements in &7, and £ a set of primes. Suppose that |.«/| ~ X, and for square-

free d,

(A 10l = 20X +r,, = {a aed, d]a),

w(d) is multiplicative, 0 < w(p) < p.
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For z> 2, let

P@= 1[I »

p<z.pe®
S(o; 2, 2) = |{a: aed, (a, P(2) = 1}].
LemMa L. |{p: p+h=p, p<x}l« cyxlog™2x.
Cf. eg. [4], p. 177, (7.1).
LemMMA 2. Suppose (A,) and

(Az) Y  o(@p)p =log(logz,/logz,)+0(og™"z,), 2z, >2z, >2.

Then

(1) S(; 2,2) < XV(2) {F(s)+0(log™ D)} +Rp

and

) S(et; P, z) = XV(2) {f(s)+0(log™*D)} —R,,
where s = logD/flogz, Ry =Y a<papmlrd, and

3) Vie)= [] (1-o@)/p) = c(w)e "log™*z(1+0(log™ ' 2)),

pIP(z)

y is the Euler constant, c(@) =[],(1-o (p)/p)(1—1/p)~*. The functions F, f are
defined by the following differential-difference equations:

F(s)=2e"s, f(=0 if0<s<2,

(sSFO) =f(s=1), (S@) =F@=1) is>2.

For this lemma, cf. [5], (6), (7), (8), (9) with x =1, B - 2.' and [.4].’ P 28,
(4.12), (4.16), p. 145, (2.5) with » = 1. Note that the W-function in [4] is just the
V-function in [5] (and here), and that (1, L) of [4], (A,) on p. 205 of [5] are
both implied in (A,) here.

Hereafter, we always take

oA ={p+h: p<x}, 2@={p:prh}, o@=plp-1), pih
It is easy to see that both (A,) and (A,) are satisfied.
Lemma 3. For any given A >0 and any small >0,

)

max max |n(y; d, )=liy/e(d)| « xlog™*x
d<xlii-e y<x (Ld)=1

where
:d, )= Z 1 liy= i—m—
'ﬂ(y; L] — Psylpzl“] £ zlogt’

@(d) is the Euler function.
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This is a consequence of the well-known Bombieri-Vinogradov Theorem.
LEMMA 4. Let o be a fixed number with 0 <a < 1,

n(y; a,d, )= ¥ 1,

ap<y,ap=i(d)
f(a) a real function, f(a) «< 1.
For any given A >0 and any small ¢ > 0,

f@)(r(y; a, d, )=li(y/a)/e(d))| < xlog™*x.

max max | y
d<x12-¢ y<x (Ld)=1 a<x!~%(ad)=1

This is a consequence of the mean value theorem of Ding and Pan, cf. [6].

LemMA 5. For z, = 2,

Y S(#,; P, p<S(H; 2, 2),
1 S ped

Y S,y P, D) <S(H 2, zy)

zy € ped

These follow from the meaning of the sifting function §, or from the
Buchstab identity, cf. e.g. [4], p. 39 (1.10), p. 204 (1.1).

Moreover, we need two other deep lemmas, i.e. [2], p. 199 (1.3) and [1],
Theorem 10 (or [3], Lemma 7). But they are too long (with some new concepts

which should be defined previously) to be restated here. The reader may
consult the original papers.

3. Preliminary results for the lower bounds.
PROPOSITION 1. Let & be a fixed number with 0 <6 < 1. For any r = 3,

{p: p<x, p+h=py ...Pr—3 OF Py*..."Pr—y OF Py"..."D,,
P, > Pr—1 > ... > p; = exp(log’x)}|
> 0.965((1—3) ~*/(r—2)!)c,xlog~*x (loglog x)" ~2.
Proof. We divide the proof into five parts.

1. Weighted sieve. Let v = (logx)! %, u =loglogx. We have, for r >3,
h>0 (if h <0, then cancel the second expression in the sequel),

(5) Up+h:p<x, p+h=py....pr—2 OF py*...'Pp—y OF Py"...° D,y
Pr> Pr-1> ... > py 2 x|
2 |{p+h: p<x—h, p+th=p, ..."pr—2 OF Py’..."Pr—y OF Py"...D,

P >Pr-1 > ... >py 2 XY
2S5—8,—85,—0(xlog ?*x)
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where

5= %

x‘f“sm <...(pr—z<.l'u"

(recall S(sy; @, 2)=|{a: aedt,, (a, P2)=1}|, #,=1{a: aed, dla},
gaq = {p pe?, p,{’q}, Pq[z) — npcz.pe!?' P)=

S, =

xUv€py<,..<pp_2<xliM

N (‘dm e Pr-2 ypl‘---'ﬂr— 2> [I/(Pl Cees Pr- 2))”5)

(x/(P1 e Pr— 23S pr 1 <(xf(P1 - pr- 2N
Pr-1<pr<(xf(P1*..."Pr- RS

Pr<pr+1<(x/(p1.pe)}/?

1,

P=p1Prez—hpr+1<pre2<x{{pipPr+1)
pAh, i=1,2,...,r+2, and

S;= Z
xUvLpy<...<pr-2<xlM (x{(pr-e.Pr-2N/3Epr-y <(x{p1.ePr-20)13
1,

Pr-1<pr<(xf(p1*.'Pr - 12 P=picecPrat = hPr<pr+1<xl(P1'..c'Pr)

pth i=1,2,...,r+1l

The reason is as follows. First of all, we may disregard those a’s (@ = p+h)
for which (a, h) > 1; for then necessarily (a, h) = p, so that the number of such
elements a is at most v(h) (v denotes the number of distinct prime fac-
tors) = O(log x), and can be absorbed into the error term. Next, since

Y < Y xpPPsxtTV« xlog 3x,
pzxiv pzxiiv
we need only consider those squarefree a’s (a = p+h) which are divisible by
Py .. Pr-2 With xS py<... <oy <x.

If Q(a)>r+3 (Q denotes the total number of prime factors), 4 must
contain a prime factor less than (x,r‘(pl-...-p,_z}}”s other than p,,...,P,—2.
Therefore by the definition of S(.d,l.___.,,_,; B g (x/(p,--..-p,_z))”s),
such an a is sieved.

If 2(a) = r+2 or r+1, clearly such an a will be numbered in S, or §, and
then subtracted in either case. Hence the remaining a’s are those with
r—2 < Q(a) <r, p(a)# 0 (u(a) denotes the Md&bius function), and g(a) (the
least prime factor of a) > x'/*. So we get (5).
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2. Lower bound of S. To estimate S from below, we apply mainly the
above-cited two deep lemmas from [2] and [1] (or [3]).
By [2], p. 199 (1.3), [4], p. 28 (4.16) and p. 145 (2.5), with

LY I

D lix, D= x";?_‘/(P;'---'P.-—z), z= (x/(pl----'Pr—Z))”s'
Py'---'Pr-2

vey=  [1  (1—e@/p)= [1 (1-o@))

PIPpy. . .p,_5(2) plP(z)
=c(w)e "log 1z(14+0(log™'2),

since c(w) = 2c, (this may be easily deduced from w(p) = p/(p—1), pth),
Py eePr—z < X" and f(s) is continuous, we get

6 S 2xlog 2x(1 +o(1))e"’5f(5 x;)

1
x ) — ———|R

x”"sp[“:.‘.‘(p,-—:(x”” p]""‘pr—l

where

R=

xvEp <. .. <pp-3<xl/™

M <34~ [(py-.pr -2 mIPpy.. pp_ J/P1erPr— 2DV
((x; py*eve Pream, —B)=lix/@(py"... Pr-2m)).

To estimate R, we should note that, among its multiple sum, a fixed
L=p,"... p,—,m may be counted more than once. This is because, among all
the prime factors of L, we may take r—2 of them to be p,, ...,p,~, while
L/p,"..."P,-2) to be m; and there may be more than one way for the suitable
choice (i.e. satisfying all the summing conditions — x'/* < p; <... < p,—, < x'/

m <3 py .. o=z M| Ppye_py o (X/P1..pr-2))"") — in the multiple

sum). But the number of ways for such a choice is at most

Q(L) O (log x) —a
(r—2) <<( % )« log" “x
because of L < x*7~¢, Hence L may be counted at most O(log’~*x) times.
Therefore, by [1], Theorem 10 (or [3], Lemma 7) with a = —h, 1(q) = 1 if
g=p,....pr—om and O otherwise, and 4 >r+1, we get
(7) R<«<log 2x 2. M) (r(x; g, —h)—lix/g(q)) < xlog™*x.

q<x¥7-¢ (q. —h)=1



242 Kan Jiahai

As for the main term, by [4], p. 227, (2.9), 5 (5 x;) = 3.5¢"log (13/7);
while by an elementary combination and the Prime Number Theorem,

®) 2

xMv€py<...<pr_g<xt/u P1"e"Pr—2

21 Znd) londe)
/{r_z)! :”"ﬂp-cx”up xlv€p<xliu pz

= (1+o(1))(log (w/w)) ~*/r—2)!—0(1)
= (1+o0 (1)) (log (v/w)) ~>/(r—2)!.

Hence it follows that

9 S=(1+0(1))7log(13/7)c,xlog™*x (log (v/u)) ~*/(r—2)!—0 (xlog 3x)
> (1+0(1))4.3332¢,xlog ™2 x (log (v/u) ™ */ir—2)! — O (xlog~*x).
3. Estimate of S,. Consider the sets
E={e:e=p; ...y, xM<p, <...<p_, < xIM
(X/@y e Pre2)"* € Proy < (/P Pr-2)) ™,
D1 <P, < (X/y" . Pe=1)) s By < Prws < (X/(Dy-..oD))""%},
Z ={l: l=ep—h, ep<x, ec8}.
Clearly |8 « x***¢~2M and e > x**, ee&. Moreover,
{i: 1e 2, | € X)) & xN¢FTO~D

and S, < the number of primes in #. It follows that
(10) S, < S(L; @, x¥5)+ 0 (x¥4+ 0= D),

To estimate S(Z; 2, x*%), we apply Lemma 2 with

X= 2‘ li(x/e), w(d)=d/ed), pnd)#0, @ h=1,
D =x127% z= x5,
Since F is continuous, from (4),
F(s) = (14+0(1))F(5/6) = (1+0(1))2¢?(5/6) .

Hence from (1), (3) with c(w) = 2¢,, we have .

(11) S(&; 2, x*%) < (1+0(1))8¢, X log™*x+R, +R,
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where
X =Y li(x/e),
ect
Re= ¥ | ¥ ( Y 1-li(x/ee@)
d=D,(d,h)=1 eef (ed)=1 ep<x.,ep=hi{d)
R, = Y, li(x/e).

d<D,d.m)=1 o (d) eed (e,d)> 1
Since x¥5 < e < xr*VIr+2) o, it follows that
Re= Y | z f@( X 1—li(x/a)/¢ (@)
d<€D,(dh)=1 x3/3 41::;:’11"""‘ 2) ap<x,ap=h(d)

where f(a) = ) ¢=seee 1 « 1. Hence by Lemma 4 with 4 =3, R, « xlog™3x.
As for R,, note that for squarefree g, d(q) = 2"® (d(g) denotes the number
of divisors of g, v(g) denotes the number of different prime factors of g),

¢(q) > q/d(q). Hence
Ry, Y d(@fg Y  x/(elog(x/e)

gq<D ecf (e,q)> 1
«xlog™'x } d(g)/q 2 1/a
4<D a<x(r+ DT (a,) 2 x 1/
=xlog™'x ) dgg Y 1m 2 1/b
9D m|g,m=x1/v b<xi{r+1/(r+2)im (b,q)=1
«x 2 dg/g Y 1m
q=D mig,m=x1/v

< x'7M Y d?(g)/qg < x* " (log D)** « x* ' (log x)* « xlog™*x.
q=D
(Here we have used the inequality ) ;<. d"(¢)/q « (log x)*", which can be proved
by induction.)
It remains to calculate X. By the Prime Number Theorem and Stieltjes
integration, '

1 Lu Yy (L=ty=—tr-2)/4
X=(1+o(M)xlog™'x | | ... |

1jv 1y fe-3 (L—ty—...— 1 -2)/5
(-t —...—tp=1)/3 (1—t1—...—1,)/2 dt,,.,'...'dtl
i r byt (1=t — oo —84y)
= (1+0(1))(x1log ™ x(log (v/w)) ~*/r—2)!)
1/4 (1—a)f3 (1—a—b)/2 dedbda

Numerical calculation by computer shows the last triple integral is < 0.0149.
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Combining all these estimates, by (10), (11) we have
(12) S, <(1+0(1))8:0.0149¢,xlog™%xlog" ™2 (v/u)/(r—2)! + O (xlog ~*x).
4. Estimate of §,. This is similar to 3. Consider the sets
& ={e:e=p;...p, X< py<...<pp-y <x'M
(/- Pr=2)) " < Py < (/P Pe=2)) ",
Pr-1 < P, < (x/(py '---'Pr—l))m},
P ={l: l=ep—h, ep < x, eed'}.

Clearly || « x*3*¢=2/M and e > x5, eed’. Moreover, |{I: le &£,
1 < x¥5)| « x23*¢=2M and §, < the number of primes in .#". It follows that

(13) S, S S(&; 2, x¥°)+0(x¥3+r-2),

By the method of 3, we get
(14 S(&£; 2, x*%) < (1+0(1))8¢, Ylog ™ 'x+R\+R)
where

R, R, < xlog™3x

and )
1/u 1fu Lu (1-t1—...=tr-2)/3
Y=(1+o())xlog”'x | [ ...
v 1y tr—3 (L=ty—...— 1, =2)/5
(I=rg—...—tp-1)f2 d!r‘...'dll
Ir-1 tl""-t?(l_tl_"'_tl‘)

1/3 (1 —a)/2 d’b da
= -1 =i = S T T T
= (14+0(1))(xlog™ ! xlog" ™2 (v/u)/(r—2)!) 1{5 ! ab(1—a—b)

< (140(1))0.4061 x log ™ x log" ™2 (v/u)/(r—2)!.
Hence we have
(15) S, <(1+0(1))8-0.4061c,xlog™*xlog"~*(v/u)/(r—2)!+ O (xlog ~>x).

5. Completion of the proof of Proposition 1. By (5), (9), (12), (15) (recall
v=(logx)'"% 0<d <1, u=loglogx), for r >3, we get

(16) {p: p<x, p+h=py...Pr—2 OF Py*...°Dy—y OF Py*..."D,,

P, > Pr-1 > ... > p; > exp(log’x)}|
2 (140(1))0.9652¢c, x log ™2 x (log (v/w)) 2/r—2)!— 0 (xlog™*x)
> 0.965((1—=08) ~2/(r—2))) ¢, xlog ™ *x (loglog x)y 2.
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COROLLARY 1. Let & be a fixed number with 0 < § < 1, and let q(a) denote
the least prime factor of a. Then for any r = 3,

l{P,: p+h=P,, p<x, q(P,) > exp(log’x)}|
> 0.965((1—0) ~2/(r—2)") ¢, xlog 2 x(loglog x)" 2.
COROLLARY 2. For any r =3,
{P,: p+h=P,, p<x}|>(0965/(r—2)!)c,xlog™2x(loglog x)y ~2.

4. Results for the upper bounds.

PrOPOSITION 2. Let v(a) be the number of different prime factors of a. For
r=z1,1<i<r,

{P,: p+h=P,, p<x, v(P,) =i} « ¢,xlog™2x(loglogx)'*.

Proof. By Lemma 1, we need only consider the case of r > 2.
Let py, ...,p; denote the i different prime factors of P, in Proposition 2,
py<...<p;, and let 6 be a fixed number with 0 <J < 1. Set

(17)  {P,: p+h=P, p<x, v(P) =i}
=|{P,;: p+h=P, p<x, v(P)=i, P, <x%
+{P,: p+h=P,, p<x, v(P)=1i, P> x*}|"¥ # ,+ #,.
Clearly
(18) #, <x®« xlog™3x.
By the sieve method we have
(19 #,=|{p+h: p<x, p+h=P, v(P) =i, P,>x*}|
< ¥ S prennis Proverops X+H)2 T,

Pr1<..<pi<(x+hB(pi-...Pi-1):pi = x0T

This is because, for ae o (recall & = {p+h: p< x}) witha=p,-....p;m,
v(ia)=1i, and p, <... < p;, we have

p; <(x+h)/(p,-....pi-1) and (a, Pp,. ., (x+h)=1.
Moreover,
P> P, >x'=p, > x.

Hence such an a must be numbered in )@, and (19) follows.
For 1 <j <i, hereafter let (p,, ...,p; denote

1/(i—
Py <-... {PJ{((x"'h)/(Pl'---'pj_l)) Ki=j+1)

(this last inequality follows from p,-...-p;-; pj Y™V < p, ....p; < x+h).
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"By the meaning of the sifting function § and Lemma 5,
20 Y9« S(L py....0 Poreecopizss P)

(if i =1, see (29) below)

< z

(PioeeaPt—1hP1 .oopi-1 Sx1/2-8

+ 2

(P1aseerPi= 1hPLo e Pi= 1 > X128
where ¢ is a fixed number with £ <& <1/2.
To estimate ) ,, let
o(py*...'pi-1)
Py eviPi-t
z=x", V()= I1

Flrnau-w_l(l)

S promiesi Prcccmiess X

S(dn'---'n- 1 9}’!‘---'?!- 2 Pi- l) =2 Zl +E’1

X= lix, D =x""p, ... pi-1),

(1-o(@)/p)

in (1).

Note that D > x*~* provided p,-...-p;—y < x'?7*%, hence log™'3D
«log='3x, s =logD/logz > (¢ —&)r/8, F(s)« 1 (since F is decreasing). In
addition, from (3) and w(p) = p/(p—1), here we have

Ve = T1 (-0 [T (1-6-")"
«c(w)e "log™ z(140(log™'2)) < ¢, log™ ' x.

Therefore by Lemma 2,

21 ¥, «cxlog™2xY " +R
where .
24. _ z o(py... pi-1)
(PhaeesPi= 1hPa e Pi— 1 SxM2-E Py -+"Pi-1 ’

fm(x;py e Pi- sy —R)—lix/@(py ... pi— ym).

R= %

P1oevenPi- m<x'/2-5i(py-...-pi - 1)
p;-...-n-,éxb)"" m|Pp,.....pj- 1 (x7)

By an elcmentaiy argument and the Prime Number Theorem,

v -1 i-1
@ ¥ 4( 3 “’—p)) /(5—1)! < ( Y L) /(i—l)!
pS<xifi-e P p<x p—l

« (loglog x)' 1. :
Similarly to the argument for (7) (cf. the explanation before (7)), by Lemma
3 with A=i+1, ;
(23) R «log 'x'Rp « log' 'x-xlog™“*Vx « xlog™2x. -
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From (21), (22), (23),
(24) Y1 <« c,xlog™2x(loglogx)i~!.

Now we turn to the estimation for )7;. By the meaning of the sifting
function S and Lemma 5 again, similarly to (20), we may generally have

(25) 8€L+1+B+1, 1<j<gi-2
where
ZJ = Z s(‘dn-...-m-;; 9]?;-...‘1’1-;’ x“"z"'m"l;“l)),
(ProeeasPi= )P ecpi- ySx12-E
2<j<gi—-1,
Zj = E i S(dﬂt'---'rl-J; 9’!‘---1’!—1-1’ Pl—j)s
ProPi- ghpreopi- y>xti2-2
Igj<i-1.
Hence
, i-1
(26) BT A< & T DAY
j=2
By the method of estimating }",, we can get
27 Y < cyxlog=2x(loglogx)™, 2<j<i-1.
As for
Y= ) S(t,,; 2, py),

P1<x'/2p,>x1/2-a

by Lemma 5, Lemma 2 (with X =lix, D=x!'2"% z=x!2~¢ thys
s =1(1L/2 —&/(1/2—¢), F(s) « 1, V(2) < ¢,Jog™*x) and Lemma 3 (with 4 = 2),
we have '

28) Yi-1 S S(of; P, xM? ) « ¢, xlog 3 x+R,,
«cxlog™2x+0(xlog™2x) « ¢, xlog™2x.
If i =1, the same method will give
(290 YW« ¥ S(o,,; 2, py) < S(A; 2, x*') « ¢, xlog™2x.

xérEpy<x+h

By (26), (27), (28),

(30) Y1 «c,xlog™2x(loglogx)~2, i>2.
From (20), (24), (30),
(31) YO « ¢,xlog 2x(loglogx)'~%, i>2.

Finally, combining (17), (18), (19), (29) with (31), Proposition 2 is proved.

5 — Acta Arithmetica 56.3
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TueoreM 1. |{P,: p+h=P,, p<x}|« cyxlog™%x(loglogx)y ™', r>1.
Proof. Since

{P,: p+h="P, p<x}l= T {P,: p+h="P, p<x, v(P) =1},
i=1

by Proposition 2, Theorem 1 follows.
5. More precise results for the lower bounds.
THEOREM 2. Let & be a fixed number with 0 < & < 1. Then for any r 2 3,
I{p: p<x, p+h =Py .cProy OF Py wPps P> Pr—1> oo
...>p, = exp(log’x)}|
> 0.965((1 — 8y~ 2/(r—2)!) c,xlog ™2 x (loglogx) 2.
Proof. From Proposition 2 we have
(32) Kp: p<x, prh=py...p-afl cy.xlog“x(loglog_x)"h, r=3.
From Proposition 1 and (32), Theorem 2 follows.
COROLLARY 3. For all r = 3,
Hp: p<x, PR =Dy e By OF Py'eveDps By > Py > o> Pl
> 0.965((1 -8 ~2/(r—2)!) = 0.965/(r—2)..
Proof. In Theorem 2 let 5 —0*.
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On an estimate for the orders of zeros
of Mabhler type functions

by

Kumiko NisHiokA (Nara)

Nesterenko [6] gives a very good measure of the algebraic independence
for the values of functions of Mahler type.

NESTERENKO’S THEOREM [6]. Let f, (2), ..., f,,(z) be power series in z with
coefficients in an algebraic number field K, which converge in some neighborhood
U of the point z =0, which satisfy the equalities

(@) =0 f(D+b@), a(2),beK@), i=1,...,m,

where d is an integer, d > 2, and which are algebraically independent over C (z).
Suppose that a is an algebraic number, acU, 0 < lel <1, and the numbers
a, o, o, ... are distinct from the poles of the functions a;(z) and b(z). Then there
exists a function ¢ (s) such that, for any H and s > 1 with H > ¢(s) and Jor any
polynomial ReZ[x,, ..., x,] whose degree does not exceed s qnd whose

coefficients are not greater than H in absolute value, the Jollowing inequality
holds: '

©) R(fi @, ..., fu(@)| > H ™",
where y is a positive constant which depends only on o and the functions f,, ..., f,.
The above function ¢ (s) is ineffective in the parameter s. In order to make
it effective, we prove an estimate for the orders of zeros of such functions. By
using our estimate, Becker {1] shows that the right side of the estimate (0) can
be replaced by exp(—ys™ (log H +52™*2)) for any H and s > 1. (See also Becker
and Nishioka [2].) .
For a formal power series f(z), we denote by ord f(z) the order of zeros of
f(z) at z=0.

THEOREM. Let f(2), ..., f,(2)e C[[z]] be formal power series with coef-
ficients in a field C of characteristic 0 and satisfy

— Al (z’fl(z}! 530 61§ fm(z})

5 Ao(2, £1(2), ., £u(2)

where d>2 is a rational integer and Az, x,, ...,x,)eC[z, Xy sravig g

(0 < i< m) are polynomials with deg, A, < s and tot.deg A, < £. Suppose that

(1<ism),
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