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On the splitting of primes in an arithmetic progression, II
by

M. BHAsKARAN (Duncraig) and S. VENKATARAMAN (Madras)

1. Introduction. Let k be a number field and suppose peQ is tamely
ramified in k: p = P{' P$... P, pfe;. In this paper we show that there exists
a set of rational primes with positive density in an arithmetic progression
whose splitting in k depends on the ramification indices and residue class
degrees of the P,;’s. This is an extension of the result in [1].

2. Some preliminary results

LemMa 1. Let k be a number field and suppose K is the narrow class field of
the normal closure k. Let P be a prime in K and suppose I = I (PIP N Q) is the

inertia group of P over Q. If Q is any prime unramified in K such that [%]E I,
then q = Q n Q splits into positive principal prime divisors. (This means that the
prime ideals have generators whose images under all real embeddings of k are
positive.)

This is proved for (Hilbert) class field in [4] (also in [2]).

This easily carries over to narrow class-fields.

THEOREM A. Let k be a normal number field in which a prime p ramifies with
ramification index e, = p"e}, p{¢,. Let a be a primitive root modulo p'. Then
there is a t,, 0 <ty <r, with the following property: The set of primes
q = a(mod p') which have degree €,p' and which split into positive principal
prime ideals in k has positive density.

Proof. Let P be a prime ideal lying over p in the narrow class-field K of k.
Let I = I(P|p) be the inertia group of P over p and T the fixed field of the
inertia group. Let ¥V, be as usual,

V, = {eeGal(K/Q)| o(a) = a(mod P?)}.

Then V, is a normal subgroup of I and I/V, is cyclic. Let K’ be the fixed field of
V,. Since V, is the p-Sylow subgroup of I, K'/T is a cyclic extension of degree
ey Let { denote a primitive p'-th root of unity. Since T and Q(() are linearly
disjoint,

Gal(T ()/T) = Gal(Q(0)/Q).



342 M. Bhaskaran and S. Venkataraman

Let 7, denote the automorphism such that t,({) = {*, 1,€ Gal(Q({)/Q). Since
7, generates Gal(Q(0)/Q), 7,|Q, generates Gal(2,/Q) (2, = K'n Q({);.

K'

Kig)

/\ 7\
NSNS

Now TnQ, = Q. Let g, be an embedding of T2, which restricts to identity
on T and equals 1,\!2 on Q,. Then ¢, generates Gal (TQ,,/ T). There is a generator
o, of Gal(K'/T) whlch reslncts to a,. Now choose an embedding o of K’ ({) which
resmcls to 6, on K’ and to 1, on Q({). Then o€ Gal (K’ (0)/Q). The set of primes
QinT wh:ch have degree one over Q has density one. So the set (say) 4 of degree
1 primes in T which have ¢ as Frobenius automorphism has positive density.
Now we have to prove that the primes Q € A4 are such that ¢ = Q n Q satisfy the
condition ¢ = a (mod p"). This follows from the fact that the Frobenius automor-
phism of g in @ ({) is 7,. Now suppose U is a prime in K’ lying over Q€ 4. Then
[ (/;Q] restricts to g,,. So the order of the Frobenius automorphism O (]:EU@:D
(= degree of U over Q n Q) is divisible by e,. But since Q N Q splits completely
into positive principal prime factors in k and Q has degree 1 over Q, the degree of

=0nQis O(I:K/Q:D =¢,p', 0 <t <r. Since there are only finitely many

values of t and ¢’s have positive density, there is a ¢, for which the corresponding
g’s have positive density.

Remark 1.Ifk, is a field such that k is its normal closure, then the primes
of positive density in the above theorem have principal prime ideal factors in k.
This follows from Lemma 1.

Main theorem

THEOREM 1. Suppose p is an odd rational prime which is tamefy ramified in
a number field k: p = P{* P$*...P%*, pXe, where P, (i=1,...,s) are prime
ideals of k of residue class degree f;. Tken there exists an infinite set of rational

primes q of positive density in the arithmetic progression a (mod p') (a being
a primitive root mod p') which split in the following manner:

L]
a=1111¢s
i=1j=1
where each Q;; is of degree e, and is a positive principal prime ideal.
Proof. Since p is tamely ramified in k it is tamely ramified in k. It is tamely
ramified in K too. Therefore, with notation as in the previous lemma,
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we see that V= {1} and I(P|p) is cyclic and K = K'. Let Q be a prime in A and

M a prime in K lying over Q. Then the Frobenius automorphism of M with

respect to Q is the generator of the inertia group I (P|p). Consider M~k = B.
Then the Frobenius automorphism of B over 8 N Q is the generator of the
inertia group I(P|P n Q), where B = Pnk.Fixaqg=Q N Q, Qe A. Then the
decomposition group of B over g =Inertia group of P over p, ie,

D(QSl!BnQ) = I(B|p). Let fla]@) denote the residue class degree of a prime
ideal a in k over Q. Then

D(3Blq) 1(Blp)
f @Bk =| 4
since [DBIBAK)|  [I(BIBAK)|.

D(B|B n k) = D(B|q) n Gal(k/k) = I(B|p) n Gal (k/k) = I(B|P N k).
Here, if Pk = P,, then f (B k|q) =e,. Consider now ¢ (B). Since

D(c(B)lg) = oD (Blg)o~* = aI(Blp)o ! = I(o(B)Ip).
if 6(P)nk is P, then

- f(e(B)n kiq) = e;.

H=Gal(k/k) and &= &(Blg)= I:_k;/'TQ]
Consider the orbits of the cosets of H in G under the action of &:
{HQ:’H91¢“--,H9|¢"'_!};
{Hg,, Hg,®, ..., Hg, ™'}, ...,{Hg,, ...,Hg, ™ '}.
We know that g splits as ¢ =%,...8, in k where B,=g,(8)nk and

m; =f (B;lg) (cf. [3], Theorem 33) Now choose a,, g,,...,0, such that

o:(P)nk = P,. For a fixed i, let a,(P) = i? and ¢,(B) = B. We know that
f{ Nk|Q) =e;. Let us consider

D(Rlp)
DBIgDBIB Al

lD(éBlp)‘:l DBlp)  ||Ip@BlgDBIB k)
D@Blg) |DBlPgDFIF 0| D(Blq) &

DB|9D(PIPnk) _ D(BIPnk) D(PIP k)
D(Blq) =D@)nDFBk) DBBnk)

it follows that

Since

D(ﬁﬂp} _lp D nk
SO " p@ig)  [pEEan| =/ Pk~
Let 7, ...,7 be a set of coset represcntatwes of
D(BIp)
1) D(BIP k)
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Consider the f; orbits
{Ht,0;, Ht, 0,9, ..., Ht,0,®% "'},
{Ht,0,, Ht,0,®, ...,Ht,0,9%" '}, ..., {Hts 0, ..., Hi; 0,977 '}
We claim that they are distinct. Suppose Ht,o; = Ht,0,9’. Then

. 1,0, = ht,o,
which means wl e

1,000 Va7t = 1,1, (1,0, @ V0 P ) = h.
But 7,0, o7 ' 7; ' €D (B|g) since D (B|q) is normal in D(P|p). So 7, and 7,
are in the same coset, contradicting our choice of 7;’s. Notice that 7, 0; ®/(B)
= 6,(B) = P. So the primes corresponding to these orbits will have degree e;.
To complete the proof we have to show that any coset Ho is of the form

Hrt, 0, % for some i. _
Suppose ¢ (P) N k = P; = 0;(B) N k. Then there exists he Gal (k/k) such that

ho(P) =, (P), ie. o7 ho(P)=P.

o7 ho =1, teD(P|p),
he = 0,1 = 0;10; ' 0;.
Now 6,76, '€ D(P|p). Therefore there is an h’' such that
o167 ' =Hao,®a ',
which means ho = h'o,®" o ' 1,0, = W't 0, P a; 1 g, (since D(B|q) is normal
in D(R|p) = W't 0,9". Hence '

Therefofe

which means

Heo = Ht 0,9
This completes the proof.
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0. Intl"nduction. Let S be a non-empty finite subset of C*. Following
Waldschmidt (see [W2], § 1.3¢)) we define w,, (S) as the minimum degree of an
algebraic hypersurface having a singularity of order > M at any point of S§. We
:re looking for inequalities between w, (S) and w,,(S), M > 1. Trivially, we

ave

(1) 20y () < 0, (5).

In' the opposite sense, using powerful tools from complex analysis, Waldsch-
midt proved

@ Lo < Fou(®

(see [W2], §7.5b)). The last inequality follows from Bombieri-Skoda’s existence
theorem, which in turn derives from some L2-estimates and from existence
theorems for the operator J, due to Hérmander.

Weaker results of the following kind:

@ 2019 < 0w ()

wh“ere ¢, is some constant greater than n, were obtained by Masser and
Wiistholz independently (see [M] and [Wu]). '

Mpre recently, using deep arguments from projective geometry, Esnault
and Viehweg (see [E-V]) have obtained the following improvement of (2):

WE%GJM(S] for n> 1.

A conjecture of J. P. Demailly asserts that one should have

w,(S)+n—1

; %%wM(S) for n 3 1.

- In thi-s paper we give some results of the type (2') in the ring Z [x,, ...,x,]
with explicit bounds for the height of the polynomials.
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