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Consider the f; orbits
{Ht,0;, Ht, 0,9, ..., Ht,0,®% "'},
{Ht,0,, Ht,0,®, ...,Ht,0,9%" '}, ..., {Hts 0, ..., Hi; 0,977 '}
We claim that they are distinct. Suppose Ht,o; = Ht,0,9’. Then

. 1,0, = ht,o,
which means wl e

1,000 Va7t = 1,1, (1,0, @ V0 P ) = h.
But 7,0, o7 ' 7; ' €D (B|g) since D (B|q) is normal in D(P|p). So 7, and 7,
are in the same coset, contradicting our choice of 7;’s. Notice that 7, 0; ®/(B)
= 6,(B) = P. So the primes corresponding to these orbits will have degree e;.
To complete the proof we have to show that any coset Ho is of the form

Hrt, 0, % for some i. _
Suppose ¢ (P) N k = P; = 0;(B) N k. Then there exists he Gal (k/k) such that

ho(P) =, (P), ie. o7 ho(P)=P.

o7 ho =1, teD(P|p),
he = 0,1 = 0;10; ' 0;.
Now 6,76, '€ D(P|p). Therefore there is an h’' such that
o167 ' =Hao,®a ',
which means ho = h'o,®" o ' 1,0, = W't 0, P a; 1 g, (since D(B|q) is normal
in D(R|p) = W't 0,9". Hence '

Therefofe

which means

Heo = Ht 0,9
This completes the proof.
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0. Intl"nduction. Let S be a non-empty finite subset of C*. Following
Waldschmidt (see [W2], § 1.3¢)) we define w,, (S) as the minimum degree of an
algebraic hypersurface having a singularity of order > M at any point of S§. We
:re looking for inequalities between w, (S) and w,,(S), M > 1. Trivially, we

ave

(1) 20y () < 0, (5).

In' the opposite sense, using powerful tools from complex analysis, Waldsch-
midt proved

@ Lo < Fou(®

(see [W2], §7.5b)). The last inequality follows from Bombieri-Skoda’s existence
theorem, which in turn derives from some L2-estimates and from existence
theorems for the operator J, due to Hérmander.

Weaker results of the following kind:

@ 2019 < 0w ()

wh“ere ¢, is some constant greater than n, were obtained by Masser and
Wiistholz independently (see [M] and [Wu]). '

Mpre recently, using deep arguments from projective geometry, Esnault
and Viehweg (see [E-V]) have obtained the following improvement of (2):

WE%GJM(S] for n> 1.

A conjecture of J. P. Demailly asserts that one should have

w,(S)+n—1

; %%wM(S) for n 3 1.

- In thi-s paper we give some results of the type (2') in the ring Z [x,, ...,x,]
with explicit bounds for the height of the polynomials.
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Given a polynomial feZ[xo,...,X,] we define its size t(f) as
t(f) = deg f+In H(f), where H(f) is the maximum absolute value of its
coefficients. For a positive integer M we also define @, (S) as the minimum size
of a polynomial feZ[x,,...,x,] such that the hypersurface {f=0} has
a singularity of order > M at any point of § (if no such polynomial exists, we
let @, (S) = + o). Of course, we have the inequality

@Dy (5) = 0y (S).

As in the “geometric” case, we have a simple inequality between @, and @,,:

I“_‘:a.‘(S) < @, () +nlog(1+@, (8)).

We claim that a relation in the opposite direction exists. In fact we shall prove:

TueoREM 1. There exists an effective constant ¢ > 0 depending only on
n such that

1 1
5531(s)~<~.ﬁmu(s)-

A need for results of this kind arises in the study of certain problems
connected with relations between transcendence measures in codimension
1 and approximation measures in dimension n— 1, as we shall show in the last
section of this paper.

Acknowledgement. I wish to thank Roberto Dvornicich for his patient care
in reading this paper and for his precious advice. I am indebted as well to
Sergio Venturini for the present proof of Lemma 5.

1 would also like to thank Marc Chardin, Patrice Philippon and Michel
Waldschmidt for their useful suggestions. In particular, I am indebted to
Philippon for suggesting a new definition for the multiplicity of an ideal at
a point.

1. Auxiliary assertions. For the proof of Theorem 1 we use the theory of
eliminating forms, as developed by Yu. V. Nesterenko (see [N1], [N2] and
[N3]). We work over a ring R which will be either Z or C. For an arbitrary
polynomtial PeR[yy, ---,Yn] We denote by d°P its total degree. We further
denote by A the ring of polynomials in the n+1 variables x,, ...,x, over R. We
define the rank of a prime ideal p of A as the largest integer k for which there
exists a strictly increasing chain of length k of prime ideals contained in p. The
rank of an ideal I = 4 will be defined as the minimum rank of the prime ideals
containing I. In what follows we denote by I a homogeneous ideal of 4 with
I AR = (0) and such that IC [x,, ..., x,] is unmixed of rank n+1-r. If A and
B are polynomial rings over R,o: A—»B a homomorphism and A', B
polynomial rings over A and B, we shall denote by the same g the
homomorphism g: A'—B' defined in the natural way. Similarly, if v is
a valuation over some field K and B is a polynomial ring over K, we shall
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den.ote by the same v the valuation over the quotient field of B defined by
taking for v(P), Pe B, the minimum value of v on the coefficients of P.

DerFiNiTiON 1. Let U ={ui,i=1,...,r;j=0,...,n} be ¢t of i
pendent variables and let »eesl} a set of inde-

]
Li=Y ux, i=1,..r
Jj=0
be r linear forms. We define the ideal I of R[U] as the set of pol :
- nomials
GeR[uj] for which there exists a natural number M such thalt)oy l
Gx}e(l,Ly,...,L) forj=0,...,n.
T'is a principal ideal (see [N1], Prop. 2). We say that a generator F of I is an
eliminating form of I and we define N (I) as ld"F. If R = Z we define the size
r
t) of I as t(I) = N()+In H(F).
The following factorization formula is available (see [N2], Lemma 2):

PROPOSITION 1. Let F be an eliminating form of 1. Then
N

F=a]] L @)

where acR[u',...,u""'] and =

a = (ap,...,0n) with jeQ’,...,u’) for h=1,...,.N(I),j=0,...,n.

M )
e oret;vvae;rl,}if x,¢p for any prime ideal p of I, we may assume o} = 1 for

.l..et §',...,5 be skew-symmetric matrices in the new variables si;,
1<i<r; 0<k,!<n which are connected only by the relations

S‘u‘i-Sh =0.

We denote by S the corresponding set of in ndent variabl
S-—_— {s‘u,.l Si<r0<k<li<n}. Let6: C[U]—vC[Sfl:%bee the homom(:;‘:
phism given on each u' by u'§'-x. For weC"*!\{0} we further denote by.
0»: C[x]—C the homomorphism which maps x to ®; the composed
homomorphism g,00 will be denoted by 8,,.

If R=Z we define the norm |I||, as

il = leol ™" H (8, F)
where F is an eliminating form of I.

" For any fe A we define its multiplicity m_(f) at we C"* 1\{0} in the usual
way, '

ma(f)=min{a| 3jys ..5J.€[0, ...,n] such that QQ%#O}.
- Jyoe e 0Xg,
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If FeR[U] we define i, (F) as
iy (F) = m, (0F) = glf,nmm[f)

where J c A is the ideal generated by the coefficients of the products of power
of the independent variables sjeS in OF. It is the same as taking

" QF
i, (F) =min{a| 3jy, ++»Ja€[0, ...,n] such that Qwéga—ax_io}'
jl'-- jﬂ

Notice that i, defines a valuation over R(U).

Now we want to make clear some important properties of i,,. First of all, it
would be very agreeable to show that i, (F)=i,(F(@',....u" ™", Tw)) for
“almost-all” skew-symmetric matrices T, if F is an eliminating form. The
geometric meaning of this is that the generic hyperplane section through @ of
some algebraic variety V has the same order of multiplicity at o as V. We begin
with a_simple lemma:

LEMMA 1. Let v,, v, be two valuations over C(U). Assume that the following
assertions hold:

1) for any eliminating form F there exist r—1 vectors v?, ..., eC™ 1\ {0}

such that
vl(‘F']=v£(F(uls vzy---:vr))s i=1! 2;
2) for any aeC"**\{0} we have:
vy (L' (@) = v, (L (@)

Then v, (F) = v,(F) for any eliminating form F.

Proof, Let F be an eliminating form of an ideal 1. We have, with 1),

v(F) = v,(F @, v%,...,0)) = v(G{...G), i=1,2,

where G,, ..., G,eC [u'] are eliminating forms of the prime ideals of codimen-
sion n associated to (I, v?, ...,v"). Thus it is enough to prove Lemma 1 for an
eliminating form of a prime ideal p =« C[x] of codimension n, hence for
a linear form, but this follows obviously from 2). =

For we C** 1\ {0} we define three other functions v;,: C[UI-Nu{+ o},
i=1,2,3: !

" 0LF
,,m(p)=min{a| 31, -sJa€[0, ...,n] such that cmmio}’

V2.0(F) = min{a[ 3je[0, ...,n] such that Ow;{;;‘—)n # 0}, -

va.m(F)=min{a1 3y €O, ..con], Fiy, .o ge[l, ....r] such that

. GF
g )
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where 62, G, g, are the homomorphisms defined as follows:
8: C[U1~C[S, x1,
“‘H{S‘x lf i=1,
So ifi=2..,r
5: CLUI~CIS, x¥, ..., x"],
u-S'x0,  i=1,...,n I
G, C[xY, ..., x">C,
Mo, i=1,...,r.

The following proposition, which is due to P. Philippon, shows that these
functions take the same values as i, on the eliminating forms.

PROPOSITION 2. For any eliminating form F

V1,0(F) = v3,4,(F) = v3 o (F) = i (F).

Proof. Let F be an eliminating form of I. First we prove the equality

Viw (F)d= V2,0 (F). For this we apply Lemma 1 forj = 0, ..., n to the valuations
V1.0 4N

. *F
Vi = —
2,0, (F) m{al G“B{u}}“io}'
Assertion 1 is obviously satisfied. Further we observe that
Vi.0 (L} @) = {0 et

1 fe=ow,

0 if a # o,
V2wl (@) =<1 if e=w and @, #0,
o fe=owandw=0,

where « = f means that a, e C"**\{0} define the same point i jecti
3 point in the projective
space. Hence Lemma 1 leads to o

vl,n’(-F) = "z.m(F) = l'l:lin v!.nJ(F)'
J=0,...,n
To prove v;,4(F) > i, (F), we recall that Proposition 1 of [P2] implies

0°F o
xi‘ﬂa(u}),e (a of | f€Jgjis - ja€l0, ,,,,,,])

xh...axj.

for some integer M > 1.

The inequality v3 ,(F) = v, o(F) derives immediately from P iti
2 of [P2), as explained there. ’ roposttion

Finally, the relation i, (F) > v3,(F) is obvious. m
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CoROLLARY 1. For any eliminating form F we have

io(F) =iy (F@,...,u"", Tw))

for a generic skew-matrix T.

Now we may define the multiplicity of I at w.

DEFINITION 2. Let @eC"*'\{0} and I be as in Definition 1. Let F be an
eliminating form of I; we define the multiplicity i,,(I) of I at w as i, (I) = i, (F).

Remark. It is easy to see that i, (I) = 0 if and only if w is in the projective
variety generated by I. It is also possible to prove that i ,(I) = 1 for a prime
ideal I if and only if the projective variety generated by I is smooth at @
(see [A], Lemma 2.2).

The following lemma shows the equivalence between i, ((f)) and the usual
notion of multiplicity of an algebraic hypersurface at a point.

LEMMA 2. Let feR[x,, ...,X,] and @€ C"**\{0}. Then i,((f)) = m, (/).

Proof. Let us assume w, # 0, and let 4y, 4,, ..., 4, be the cofactors of
Xgs X1 +-+»X, in the matrix

Xg Xy X,

ub ui - up

up uj - Uy
Clearly F () =f (4, .--»4,) is an eliminating form of (f) (see [N3], Lemma 2).

Moreover, 0,4, = Ax; for some AeC[sy, X, ....%,] with A(w)#0 (see
[N3], p. 432). Hence

i ((N) = in(F) = m, (A ) = m (A7) my(f) = m,(f). w
ar»s:i\hgl Ph

where p}, ..., p; are the prime ideals associated to I. We define the resultant
Res(F,g) of F and g as

Let

NI
Res(F, g) = a** [] 9(@").
h=1
Lemma 4 of [N2] ensures Res(F, g)e R[u!,...,u""']. Moreover, Res(F, g)
= bE%!...E® where beR and E,, ..., E, are eliminating forms of the minimal
prime ideals p,, ...,p, of (I, g) such that p "R = (0) for [ =1, ..., 5 (see [N2],
Lemma 6). We define Res(], g) as the corresponding intersection of symbolic
WErS
po Res(I, g9) = V... pl.
The following propositions show the behaviour of the quantities
N, i, (I), t(I) and |[I||, with respect to the primary decomposition and the
resultant operation.
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'F’RO.POSITION 3. Let I=Q,n...nQ, be an irreducible primary decom-
position in which for 1 < s we have Q"R = (0) and Qs+ N...nQ,N R = (b),
be R\{O'}. Furthermore, for | < s suppose that p, = ./Q, and e, is the exponent
of the ideal Q,. Let E,,...,E, be eliminating forms of p,, versP;. Then F
= bEY'...E{* is an eliminating form of 1. Hence

) N(D= 3 eNG);
(i) (=Y ei.0).
I=1

Moreover, if R =2,

I=1

Gii)  loglbl+ ¥ et(p)—cN(I) < t(I) < log|b|+ Z e,t(p)+cN (I);
1=1

(iv) log IL’JI+!Zl ellpllo—cN (1) < |1, < loglbl+ }’ e llp;ll+cN (D)
= I=1

where c is some positive constant depending only on n.

Proof. For (i), (iii) and (iv) see [N3], Proposition 2 and [W1], Lemma
4.2.14; (ii) is obvious. =

PROPOSITION 4. Let g be as above. Then

() N(Res(I, g)) < N(I)d°g;

(ii) i, (Res(l, g)) > i, ()i, ((9)).

Moreover, if R=Z,

(iii) t(Res(l, g)) < (3+n+rin(n+1))e(D)t(g);

(iv) log||(Res (I, g)|., < ct (1) (g)+logmax (1], ||~ lg (w)|)

where ¢ is some positive constant depending only on n.
I:roof. (i) See [N3], Lemma 5.
) .(u) }Yc assume , # 0; let N =i, ((g)), d = N(I), D = d°g and let F be an
eliminating form of I. According to Proposition 1, we have
]
F=a H L, (™.

k=1

We may extend the valuation
vi:C@,....u H)>2Z

def.ined by \'r(F/G) =i,(F)—i,(G) to a valuation over K = C(u*,...,u"", o)
which we still denote by v. Moreover, we may extend v to the polynomial ring
K[u"] in the following way. Let PeK [u'] and assume

PSw)= Y b,m
meA
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where A = C[s}] is a finite set of monomials and b,eK VmeA. Then we

define v(P) as v(P) = mjf v(b,).

Lemma 1 gives v(G) = i, (G) for any GeC[u',...,u”]. We have
] &
io(Res(F,g)) = v(Res(F, g) = v(a® [] g(a") = Dv (GH.):: v(g(@).
h=1 =
The Taylor expansion of g gives '

n
gx)= Y e, xp W] (x0—xj0),  c,eC.
= N P P =1
A (ﬁvn'sufsn ) yrr

Hence )
V(g(dh)) = N min V(G,Cﬂj—ajmr)
e

2N min v(x0—00)= Nv(S w-a").
1£t<j€n

i,(Res(F, g)) > Dv(a)+ N Zl v(STw-a")
. R

> Nv(F@,...,u""!, S w)) = Ni, (F).

(iii) See [N3], Lemma 5.

(iv) See [N3], Proposition 3. m

For the proof of Theorem 1 we should find a low;r.bound_ for the
exponent of some primary components associated with . This is the aim of the
following lemma:

LEMMA 3. We use the same notations as in Proposition 3. Assume i, (I) > M
for the generic point w of Ve (py). Then ey > M. .

Proof. We observe that 0E,/dub¢p, since its total degree is less than
d°E,. Thus, taking into account Proposition 1, we have

i) 2 M;
i,(pp=0 for h=2,....[;
im(pl) o l
for the generic point @ of Vpc~(p,). Hence by Proposition 3(ii)
M<i(D)=e i (p)+ ... +ei(p)=¢;,. =

2. Proof of Theorem 1. Now we assume R = Z. For a homogeneous prime
ideal p = A we define S,(H, s) as the set of residues mod_ulo p of homogeneous
polynomials g€ Z [x,, -..,X,] of degree s whose coefficients do not exceed H
in absolute value. Using an upper bound for the growth of §,(H, s) due to Yu.
V. Nesterenko (see [N2], Thorem 3) it is easy to prove the following
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COROLLARY 2. There exists ge./I such that
t(g) < 3(6ny4r(ntintiom,

Proof of Theorem 1. Let S be a non-empty subset of C" and let
PeZ[x,,...,x,] with t(P) = @y(S) = T such that D* P(«) = 0 for aeS and
for any multiindex u e N" such that |u| < M. Let f = *P be the homogenization
of P. Clearly, it is enough to give a homogeneous polynomial g with t(g)
< cT/M such that g(«) =0 for any aeV,,, where

Vu = {«€P(C") such that D*f (@) =0 for any Ae N"*! with |4 < Mj}. -

We assume V), # @ and we denote by c,, ...,cg positive constants depending
only on n. Let t,...,t,€[0, 1] be defined by

tb=0, t=m+1-k)~' fork=1,...,n
Let k, < n be a natural number which will be specified later. By induction we
define a sequence {I,};~;. 4 of pure ideals of rank k:
k=1:
I, = ().
k—k+1: Let
I* = Ql_gﬁ...hQ,m*

be an irreducible primary decomposition of I,. Let us put p,, = /0, and let
us denote by e;, the exponent of Q. After a permutation of 1, ...,J,, we may
assume that there exists an integer s,€[0,...,/,] such that:

D*fep;, for any AeN"*! with [A| <t M, if j=1, -
{D“’fﬂ;u for some AeN"*! with |V <t M, if j=s.+1,...,1,.
et Ji= n Qj.k-

e

If Veery(J)nVay =9 we let ko =k (this certainly occurs if k =n, since
otherwise there would exist an index j > s, such that Vpen((p).s,, D* N #9,
which is impossible because the homogeneous ideal (p;,_, D* f) has codimen-
sion n+1).

A classical trick (see for instance [M-W1], Ch. 4, Lemma 2 or [P1], Lemma
1.9) allows us to find A%, ...,A*e N**! with || < t, M and @,, ..., $,e A with
d°¢; = |4'| and t(¢) < c, T such that

DA‘ Diﬂ
Ve = ¢1“ﬁf+ +¢.Ti{¢pj.t

for any j>s,. We observe that D* y, () = 0 for ae ¥, and N > Al 42, M.
Besides

©) t <c,T.



354 F. Amoroso

Then we define
Ii+1 = Res(Jy, ¥p).

We claim that the following three assertions hold:

Ko m
@) Vu s U U Vren @1

k=1 j=1

k-1
) eu=MT] ta—t)=n"2*M* forj=1,...,5 and k=1, ...,ko;

h=0
(6) Y et <es T for k=1,....k.
j=1

Assume for the moment (4), (5), (6) proved. For any k =1, ..., k,, Corollary
2 ensures the existence of g, € ()7« p;x such that

t(gy) < cu i t(ps)'~

j=1

Using (5) and (6) we obtain .
&

tg) S cs M7 (Y eutu)™ < Z5va
J=1

Let g = [[i%g,: relation (4) ensures that g is zero over V), and we have
t(g) < ¢, T/M. Hence it is enough to prove (4), (5) and (6).
:(4) By induction we have

ks
Vu (U U Veery 1) © Veen U

h=1j=1

and Vpeny (i) N Vi = 9.
:(5) By induction we prove the following
LEMMA 4. Let N> t,-y M and

k=1 =n
weV\ U U Vren @50
A=1j=1

Then
i) > [T (N=1,M).

k=0
Proof. k=1: Lemma 2 ensures that i ,(I;) = N for any weVy,.
k=k+1: By the inductive hypothesis, for

weV\ U “1 Vaen (®1.0)

A=1 )=
we have

k-1
i) > [T V=5, M)

h=0
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(if G is an eliminating form of J, and F is an eliminating form of I, then, by
Proposition 1, G = EF and 0,E # 0, hence i,(J,) =i,(I,)); besides,
(1) > N—t, M.
Hence, using Proposition 4(ii),

k
ipUis)) > [T(N=1,M). u
h=0
Lemma 4 allows us to prove (5). In fact,
Ve Pjn) S Vo for j=1,...,5.
Hence, using the lemma above and Lemma 3,

k-1
€ = H tM—t, M)
h=0
Mi k—1 k—h

— > —-2k+1 k P S,
n—k+ 1, (i—k+ D) (—h+1)~ " MY, j=1,...5

and (5) is proved.

:(6) Using Proposition 4 and inequa.!it‘y (3), it is easy to see t(I,) < c, T*.
Hence, by Proposition 3(iii),

Sy
Z eut(lﬂu) ‘-<-.. cs T*. [ |
j=1

Remark. Our method says something about the relation between w, (S)
and w,(S), but we obtain only

i 1
) 4770, (9) < 70w (9)
Using Chardin’s bound for Hilbert’s function (see [CH]), we may imprbve Mto
’ 1
"_4(91 S) < Ewu(s)-

3. Some applications. Let ¢ = (£,, ..., &) be a n-uple of complex numbers.
We define its transcendence type 7(¢) as the infimum of the set of real numbers
7 for which there exists a positive constant c, such that
log|P (&)l > —c, t(P)
for any non-zero polynomial P with integer coefficients. Using the box-
principle, it is easy to see that z(£) > n+1.
Similarly we define ({) as the infimum of the set of real numbers 5 for

which there exists a positive constant c, such that
logla=¢§] > —c, @, (a)
for any aeC".
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We have the trivial inequality
n(&) < (%)

which reposes on the following lemma:

LEMMA 5. Let éeC". For any PeC[x,,...,x,] and for any aeC" with
_P(o:}=0 and |x—¢&| < 1 we have

IP(&) < lee— &I [+ (n+1)*1F H(P).

Proof. _ i
rac ¥ PO g e
1<|A]<dP :
A
ey 3 2P

1
0<|i|<dP Al

< Je—&|(n+1)"F sup |P(x+0a)

jxj=1
< o =&l [(1+ el (n+ 1)*177 H (P)

< le—&[R+1E)(r+1)1“PH(P). =
In the opposite sense, using Lemma 2.7 of [P2], it is possible to prove

(@) sn@)+1.
It seems to be natural to expect
@®) (&) =nE) for t(§)>n+1

(notice that (8) holds if n = 1: see for instance [W1], p. 133).
(8) implies the following conjecture of G. V. Chudnovsky (see [C],
Problem 1.3, p. 178):

CONJECTURE. For almost all (in the sense of Lebesgue measure in R*")
n-uples ¢ of complex numbers we have

() <n+l.

The link between (8) and the conjecture above is given by the following
proposition:
PROPOSITION 5. The set of n-uples of complex numbers & for which
7€) >n+1

has Lebesgue measure 0.

Proof We denote by A the Lebesgue measure in C". Let B = {{€C" such
that |¢| < 1}. It is enough to prove that

A = {£€B such that n(¢)>n+1}
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has Lebesgue measure 0. From the definition of A we have

+o

Ac VU U As(exp(—sN*Y)

3=2 NeN feZ[x1,....5n]
eM=N

Ag(e) = {¢eB| dist(Z, {f=0}) <e}.
We need the following lemma from measure theory:

LemMA 6. Let V be a pure algebraic variety in C" of codimension k and
degree d. Then for any ee(0, 1)

A({€eB| dist(£, V) < e}) < c(n, k)e**d

where c(n, k) is some positive constant depending only on n and k.

Proof. We denote by H* the 2k-dimensional Hausdorff measure and by
B, (r) the ball of C" with centre at x and radius r. We also denote by ¢, ...,c13
effective positive constants depending only on n and k.

We begin with a bound for the area of Vn B, (r). Using Theorem 3.2.22(4)
of [F1], a Fubini-Tonelli argument yields

H" ¥ (VAB,(M)=cs [ dvlp) [ card(VAB,(r)np~t(y)dH""*(y)
G(nn—~k) p(¥ nBol(r))
where G(n, n—k) is the set of (n—k)-dimensional complex subvector spaces of
C™ (which are in turn identified with the set of orthogonal projections p over
these spaces) and v is the only measure on G(n, n—k) with unitary mass and
invariant by the action of U (n). For v-almost all p and for all yep(Vn B, (1))

card(VAB,(nnp~1(y) <d.

where

Hence |
©) H"*VnBy(r)<ced [ dv(p) [ dHH() < crodr®™H.

G(a,n—k) PV nBolr))

The link between the growth of the area and the measure of the set of points
which are close to Vis given by the following formula which derives from The-
orem 6.2 of [F2]:

H""*(V B, () H" (Bo(s) = | H* *(Vn By (r) » B, (s)di (8).
2

Using the formula above with r = 14 2¢ and s = 2¢ and the bound (9) we find
(10) crpde*" > /il (Vn B‘(%)) di(¢).

{ZeB|dist($.V) <e)

For {eB, dist(§, V) <&, let &* eV be such that dist(, V) = dist(§, ¢*). Then
VN B,(28) © VN Byl(e).
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The function
E_.H“"‘(Vn By (2)

£2(u —k)

is monotonically increasing and is bounded from below by some positive
constatnt ¢, (see [L], Theorem 2.23). Hence

H" *(Vn Bs(2¢)) =2 H" *(Vn Bp(e)) 2 c138°775,
Combining with (10) we have
A({¢eB| dist(&, V) <e}) < cr3de**. m
From the lemma above with V = {f =0}, we obtain
A(A (exp(—sN"*1)) < c(n, 1)Nexp(—2sN"*1).

The number of polynomials in n variables with integer coefficients and size
< N is bounded by exp(2N"*!), hence for all s > 2
) < A(U U A (exp(—sN"" )

NeN feZ[xi,....xn]
[HPN=N

< Y c(n, )Nexp(—=2(s—)N""") =¥ (s)
Nz21
and

Y(s)»0 as s—+oo. =
Let 7 = 7(¢) and = n(£). As an application of the method of the proof of
Theorem 1, we shall prove:
THEOREM 2. Assume 1 >n+1, n=2. Then

< n—1 2n—y
7 < n+max m wtl /)

Moreover, if n=2,
: 7 < n+max(0, (4—1n)/3).

For example, if n =2 we find:

1<334 forn<3; t=nfor n>4.
If n =3 the situation is a little worse:

1<45 for n<4; 1<6.34 for n<6.

We observe that for any fixed n our result approaches (8) when 7%
(or 1) > +o0:
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COROLLARY 3.
n<t<n+o(l/n) for n—+c0. _
Proof of Theorem 2. Let us assume 7 >n+1. We choose a real

number g with n+1 < g < 7. By hypothesis, for any positive constant C there
exists a polynomial P with integer coefficients such that

(11) ' log|P (%)l < —CT*,

where Tis the size of P. Let d = d° P; in what follows we denote by ¢,4, ...,Cas
positive constants depending only on n and |£].
For any multiindex Ae N" we define the real number ¢ (1) as

1+card {he[l,...,n] such that 1, =0}

o() = n+1

we have ¢((0,...,0)) =1 and ¢(4) = 1/(n+1) for any multiindex AeN". Let
ZeN" be a multiindex with | =d such that the monomial x}'...x* has
non-zero coefficient in P(x); then, using (11),

= 1> |PE)PP.

1 i
‘ﬁDPm

Hence we can define an integer M (0, d) as the first integer for which there
exists L€ N* with |[{] = M+1 such that

(12)

F0P@) > 1P@r.

We can find he[l,...,n] such that 1, # 0; let

n= (I.l! "'!Ik—l’ 0, I}H‘l’ ""IR]‘
We have |yl < M and ¢(u)—¢ (1) = 1/(n+1). Let ﬁs consider

00) = ;}D*‘P(a, i Bl

which is a polynomial in one variable of degree 6 < d—|u|; let «,, ...,x, be its
roots. We need the following lemma:

LeMMA 7. For any s>0 there exists a homogeneous polynomial
R,eC[y,,...,y;] of degree s and height < 6* 's! such that

700
= or

= Q@R ((t—a)™!, ...t~ Y).

6 = Acta Arithmetica LVI.4
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Proof. Let s
QW =al](t-a)

h=1
and let a: C[y,, ..., y;] = C () be the homomorphism defined by y,—(t—a,) ™"
forh=1,...,6. We prove our assertion using induction on s; we define R, as
Ry =1and R, as R, = y; + ... +Y,. It is easy to Verify that relation (13) holds
for s =0, 1. Let us assume (13) holds for some s for a polynomial R, of degre

s and height <& 's!; then
>0 90 (le iYan)
h=1

3
ar'+l. = ot aRl_Q(t).gl(t'"ah)

Hence we can define R,,; as

& 40R
Rsy+1 =R, R:_ Z J’f-a*—'-

Using the inductive hypothesis we see that R, is a homogeneous polynomla.l
of degree s+1 and height
H(R,+1) <0H(R)+JsH(R,) <o (s+1). m

Now we assume

oy =&l <. S og—Els
then, by Lemma 7,

™ 0(&) i =
| <12 )™= T ey — .l

By the definition (12) of M we have |Q(&)| < IP(E)I“’" and

M Q(&)

at*h
Combining with (14) we find
lay —Er < (@— )™~ 1 |P(@)P 9P,

Let &= (&, .. s Eh-15 %gs Ent1se--,&p); taking the logarithms in the last in-
equality and using our upper bound (11) for log|P({)| we find

(14)

p*rml > LIP @)™,

(15) logloe—¢| < logd—
Moreover, D*P () = 0, hence

(16) @ (@) < t(:—!D" P) <2T.
Let ue(0, 1] be defined by

c
M+1)(@n+1)

_log(M +1)
~ logT
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From relations (15) and (16) (with a suitable choice of C) we have
(§)] 0 <n+u.

Now we apply the machinery of Theorem 1 to find another bound for
e which becomes better for large u. We closely follow the pattern of the proof
of Theorem 1. Let f be the homogenization *P of P; for simplicity we shall
consider C" = P" via the canonical map

gy oo )o(1x0.. . 1 x).
Using the definition (12) of M and the inequality ¢(4)> 1/(n+1) we find

|—-D‘f(a{ <P,
umﬂ
1] S M,20=0

We prove by induction that
Ao
nD‘ft"| (O p e

for any Ae N"** such that || < M. Let us assume (18) holds for any A with

A9 = k—1 and let Te N"** be a multiindex with 4, = k; by Euler’s formula we
have

(18)

| 20| = -y

t=0

where pu=(4,—1, 43, ...,4,). Hence

IDA1(E) < (=l ! &D'ftc)I

1
o 1] max {2 e

1<t<n

[@+n)|E1**

Al
< FUmI =

NGy

[P (i1

[P(G)Hert D,

so (18) is proved. Combining this with (11) we obtain

(19) maxlog|D*f(§)] < —¢, CT®.
AsM

From this point on, we closely follow the pattern of the proof of Theorem 1.
We define I, as usual; let us assume I, ...,I, defined. If

log “J;H; = $log Hfg“g
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we let k, = k and we stop here. Otherwise we construct I, ., as in the proof of
Theorem 1. Inequalities (5) and (6) are still true. Moreover, repeatedly applying
Proposition 4(iii) and (iv) with the bounds (19) for the value of D*f at &, we
obtain

t(Ih)-(c“W, log "IM“C< -—cl,CT"

(we remember that ¢ > n+1 and C > 1). This implies k, < n, since otherwise
we would find an ideal I,,; of codimension n+1 which satisfies
log [I,+1ll; < 0. Notice that k, >2 too (f is irreducible and, a fortiori,
square-free). Hence, using Proposition 3(iv) and relation (6),

(20) 2 €140 108 1950l < 108 14, [l —108 15, |l e+ €16 T*
ko
< —¢17CT? < —¢15C( Y ej.,,or{pj'h))“’*°.
Let us assume =
log [psselle > —C1o Ct(p1a@™ M%) for j=1,....5,.

By the two inequalities above,

Beg Skg
c18C( Y ejaot (Praof™® < €19 C }Z €Jko L (P )@ RN Tk
j=1 =1

Sko Skg
<19 C( Y ot (Prrd) (X £(Pxg) @ V7,
I=1 i=1

Hence
Skg -
(21) CY ekt Piag) < (Cro/c1af @ (T t(Psao)) .
Jj=1 =
On the other hand, using (5) and (6) we obtain
s “D . ’kn 'ko
Y, €0t (Pran) > 1M T, t(pyag) = nHOT L, t(Pad
J=1 =1 .
kg kg
>n" e (Y ‘-’J.ku‘(PJ.ko))" Y t(Pyke)-
Henm j=1 Jj=1
Iko wi
(22) Y ejnot (Pjue) = (%0 c%)” UA-0( T ¢ (pe)) V0.
j=1 J=1

Comparing (21) and (22) we find
C1e > C301= Cyg (0 cB) =e+kall{1=wiko),
Hence by (20) there exists some prime ideal p of Iy, such that

23) log “p“g < —Cz0 Ct{p)“_"‘“m“ —uiko) < (),
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Corollary 2 ensures the existence of gep with t(g) < ¢,y t(p)/*°. Hence for any
zero aeC" of p we have

(24) . @, (@) < 29 t(p)*e.

We distinguish two cases:

Case 1. Let us assume 2 < k, < n—1 (hence this case does not occur if
n = 2). Then Lemma 2.7 of [P 1] and inequalities (23)-(24) ensure the existence
of a zero aeC" in the projective variety defined by p such that

logla—¢&| < c22£(p) ™ log lIpll,
< —Cy3 Cﬁ_’l (a)lﬂ—ko)f(l"ll) < —Cy3 Cd’l (t:)“_""'_lml_"}.

We conclude
(25) e<n(l—u+n-1.

Case 2. Let us assume k,=n. The set of projective zeros of p is
a zero-dimensional variety, hence smooth. Theorem 1.1 of [A] asserts that we
can find a zero aeC" in the projective variety defined by p such that

logla—¢&| < log |Ipll;+c2a t (p)?.

Thus if

we have (using (23) and (24))
logla—¢&| < —4cz0 Cioy (@)@ ~% < —3¢20 Cidy (0.
Hence we conclude
(26) ¢ < max((2—u)n, q).
Collecting (17), (25) and (26) we find
¢ S min(n+u, n(l—u)+n—1) < q+:—;-%
for 2 <k, <n-1, and

@ < min(n+u, max((2—u)n, 1)) < n+max (0, %:_F;f)

for ko =n. In any case

— n—1 2n—n

Gl n+1 n+l)
If n=2 case 1 does not occur and we have the better result
2n—ny

e < n+max (0, m).

Theorem 2 is proved. »
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