142 T. Hyttinen

[0i2] J. Oikkonen, How to obtain interpolation for Lety, to appear.

[Ra] V. Rantala, dspects of definability, Acta Philos. Fenn., vol. 29, Nos. 2-3, 1977

[Svl L. Svenonius, On the denumerable models of theories with extra predicates, in Thc; theory
of models, edited by J. W. Addison, L. A. Henkin and A. Tarski, North-Holland Publishing
Company, Amsterdam, London, New York, 1965, 376--389.

[Va] R.L. Vaught, Descriptive set theory in Loy , it Cambridge summer school in mathematical
logic, edited by A. R. D. Mathias and H. Rogers, Springer-Verlag Lecture Notes in Mathe
matics, vol. 337, 1973, 574-598.

UNIVERSITY OF HELSINKI
DEPARTMENT OF MATHEMATICS
Hallituskatu 15

00100 Helsinki 10

Finland

Received 25 April 1988;
in revised form 27 June 1988

icm

A proof of Saffe’s conjecture

by

Ludomir Newelski (Wroctaw)

Abstract. We prove that ift T is weakly minimal, po & S(@) is non-isolated and has iofinite
multiplicity, then T"has 2% countable models, thus proving Saffe’s conjecture. Together with [B2]
this completes the proof of Vaught's conjecture for weakly minimal theories.

§ 0. Introduction. This paper may be regarded as a continuation of the proof of
Vaught’s conjecture for weakly minimal theories, which was initiated in [B2], and
carried on in [B3]. We use a standard set- and model-theoretic terminology. First
we shall review shortly what was proved in [B2], [B3], and sketch some proofs to
make the paper more self-contained. The reader should know the basic ideas from [B1]
and [B2] however, as well as be familiar with stable groups (see [Po]). Vaught’s
conjecture states that every 1*-order theory has either countably or 2% many coun~
table models. Up to now there has been made only a relatively small progress towards
proving this conjecture (see [Ls]). Shelah proved Vaught’s conjecture for w-stable
theories [SHM]. Thus the natural aim of attack became the case of weakly minimal T.
In [B2], Buechler proved that if T is weakly minimal and satisfies .

(8) For every finite 4, if pe S(4) is non-isolated then it has finite multiplicity,
then Vaught’s conjecture holds for T\ Earlier this was also known to Yiirgen Saffe.
Saffe conjectured that if T'is weakly minimal and does not satisfy (S) then T has 2%
countable models. Buechler [B2, Lemma 2.4 Proposition 3.1] reduced proving
Saffe’s conjecture to proving it for T'weakly minimal and unidimensional. This paper
is devoted to the proof of Saffe’s conjecture for weakly minimal 1-dimensional T. So
throughout we assume that 7' is weakly minimal, 1 -dimensional, not w-stable,
does not satisfy (S) and (wlog) is small (i.e. S,(@) is countable).

CB denotes Cantor-Bendixson rank defined on S(4) (cf. [B2)), CB(a/4) abbre-
viates CB(tp(a/A)). Recall that by [Bl] every non-algebraic weakly minimal strong
1-type over & is locally modular. For the advantages that local modularity gives,
see [B1), [B2], [FI]. Also, every such type is non-trivial. This is essentially by [B2, 2.4
and 3.1]. Notice also that if T'is weakly minimal, unidimensional, and a non-algebraic
peS(D) is trivial, then T is w-stable.
4+ -
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Given a formula ¢ (xy, ..., x,), we say that ¢ is algebraic in x; if, for some
k<o, (V20,0 %o g0 X0y s %) @)@ (%) holds. € is the monster model,
Given a family F of non-empty disjoint sets, we call C a selector from F if for every
XeF, |[XnC|=1and CcF.

Lemma 0.1. If ae acl(4u {b}) then CB(a/4) < CB(b/A).

Proof. An casy induction.

Lemma 0.2. If A is finite then there are only finitely many strong non-algebraic
(w.m.) 1-types over @ realized in acl(A).

Proof. This is Theorem A from [B3]. Following a request of the referce, we
give another proof. Let ST () be the topological space of strong w.m. non-algebraic
1-types over 4. Suppose that the lemma is false, and wlog 4 = {a}. First assume that:

(1) For some b e acl(a)\acl(@) there are b, & acl(@\acl(®) for n<w such
that tp(6/@) # tp(b,/9) and stp(b/D) = limstp (b,/D).

. ! n

: _Then by the exchange principle, b e acl(b,) and b, s acl(h) for n<w. By
Lemma. 0.1 we get CB(b/@) = CB(5,/@). On the other hand, by the definition
of CB-rank we have CB(b/@)> limsup(CB(5,/@), a contradiction,

‘Now we shall show how to reduce the general case to (1). ST(Q) is compact,
hence there are b, e acl(@)\acl(@) for n <o, and there is a g€ ST(D) such that

g = limstp(5,/9). Let b e g(®)\acl{a). Let us work in T(a, b). Let o = a, a' { ab.
By [B1] there is b’ = b with b' e acl(u, o', b)Nacl(a, b), and for n<w there are
by e acl(a’)Nacl(a, b) with &, = b,. In particular, stp(d'/{a, b}) = limstp(b}/{a, b})

and also {tp(b,/{a, b}): n<w} is infinite, so we get (1) for T i= T'(a, b) and
4= {a}.

"LemMA 0.3 [B2]. If A is finite and stp(a/d) is modular then Milt(a/A) is finite.

We shall rely heavily on Hrushovski's result asserting existence (in €% of
a definable w.m. abelian group G, such that on the connected component G° of G
the forking dependence relation is particularly well describable. If < G° is finite
and r: G°— G°/S is 2 homomorphism, we say that r is definable if S'is definable and
there is a formula (x,y) such that for a,be GO, k ¢(a, b) iff ra = b+S, The
definition of » works (by compactness) also on some definable G, € G such that
G°< Gy, We take the following presentation of Hrushovski’s resuli from [Lo].

TuroreM 0.4 [H]. (1) If S<G®nacl(®) and ri GO~ 18 s a definable
group-homomorphism then r is almost 0-definable.

Q) If G° is locally modular, Au{b}=G® and beacl(d) then there are
Gisesd€4, S<KG° almost 0-definable and definable  group-homomorphisms
ri: G°—G°/S such that (&+S8)~2r.a, = acl(Q), '

" We can regard every homomorphism r definable in the above way as acting
on G°/S,, where §; := acl(@) " G®. Then we can define D as the set of all such
homomorphisms of G°/S,. D forms a division ring, and G°/S, is o vector space
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over D. D does not depend on the choice of G but only on T, as T'is unidimensional.
Thus we can define F(T) := D (sec [H]).

T is 1-dimensional, hence if p € S(@) is non-isolated and Mlt(p) > o then
also in T}G, for some finite A< G there is ¢ e S(4) which is non-isolated and
Mit(q) = w. So to prove Saffe’s conjecture it suffices to prove it when € = G is
an abelian group (with some further structure possible). Hence from now on until
§3 we assume that T = Th(G, +,..), pp € S(@) is non-isolated, Mlt(p,) ;q),
T is small weakly minimal and not w-stable.

The following lemma was already known to Buechler and Hrushovski.

Lamma 0.5, F(T) is locally finite, and so char(F(T)) # 0 and F(T) is commu-
tative.

Sketch of the proof. First, for every finite F, < F(T), by compactness and
by Lemma 0.2, we prove that for every definable G, < G there is x € Go\G°® such
that for each n<w i a;,..,a,&F,, then ay ..a,(x+S,) is well defined. By
Lemma 0.2, the closure C of {x+S,} under multiplication by elements of Fy, and by
natural nunibers, is finite, and we can assume that C < G, < G for some Gy such
that for every a e F,, multiplication by a is distributive w.r. to + on Gy. The set
U {r(®): re ST(@) and r(C) # &} generates a non-algebraic type-deﬁnabh? s‘ub—
group G, < G, such that for cvery y € Gy, the closure of {y+So} under (1)11u1t1phca—
tion by clements of F, and by natural numbers is finite. We. have G° <G,. By
Lemma 0.2 again we see that I, generates a finite division subring of F(T), so we
are done. ‘ .

The next lemma shows that if p & S(A) has infinite multiplicity, then in some
neighbourhood of p (in S(4)) there are no algebraic types. This strengthens
Lemma 0.2.

LemMA 0.6, Assume that A is finite and p € S(A) has infinite multiplicity. Then
there is an E° € FE(@) such that for aep(€) we have E%C, a)nad(4) = 3. In
particular, for some g €p we have @o(€)nacl(d) = @.

Proof. I4est we shall prove the lemma for 4 = @, Let a realize p and suppose
that

() for every £e FE(@) we have E(€, o) nacl(D) # .

We luve MIt(p) = 2%, and the set P = {g & ST(D): pS g} is cliosed, has 2?
isolated points, and for every open U @ST(@), if UnP # @ then [UnP] =27,
Also, by Lemma 0.3, every ¢ & P is non-modular, Let go = stp(a/D). The set of ty"pes
from ST(@) realized in acl(gy(€)) is countable. Hence we can choose a ¢y e P such
that g, is not realized in acl(go(€)). Let b realize q;. go and ¢y ar§ non»ofthogox:al,
hence by [BI] therc is a formula ¢ (x, y, z, 1) algebraic in x, ¥, z, tand ¢ = a,d ;b
such that @ (a, b, ¢, d) holds and any 3 elements from {a, b, ¢, d} are mdepen'dent.

Fix an E e FE(@). By compactness, if d’ realizes a type rp € ST(9) sufﬁcxentgc
close to g, then for some ¢ € E(€, a) we have ¢(a, b, ¢’ d). Choose such a
realizing a type rye P which satisfies moreover
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(2) rg is not realized in acl(ge(€) L ¢((€)).
In particular any 3 elements from {a, b, ¢’, d'} are independent, and ¢’ does not
realize go. Thus for some E’e FE(@), 71E'(q, ¢) holds. Again by compactness
there is E* € FE(@) refining E such that if E*(d", d") holds then for some ¢’ we have

(3) o(a,b,c",d")& E(a, ¢")& 1E'(a, c") holds.

By (1) we can choose d”’ € E*(€, d')nacl(@), and let py = stp (¢"'/@). If P is
algebraic then we get b € acl(a), a contradiction. So pg e ST(9) and by 3), pe # qo.

Let 4’ = {a, b}, We see that for every Ee FE(D), py is realized in acl(4").
By (3), the set {py: E'e FE(@)} is infinite. So we get a contradiction with Lemma 0.2,

" Now the general case (with 4 # @) follows, because by Lemma 0.2 there are

only finitely many types from ST (@) realized in acl(4). The @, from the last clause
of the lemma can be defined as the union of E'classes meeting p().

Remark. The above proof would be easier to carry out if we used the notion
of acl*-dependence introduced in [N] (sec also § 3 below).

§ 1. A duality theorem.
LemmA 1.1. For every infinite 0-definable group Go <G and for every finite

Fo < F(T) there is a 0-definable infinite Gy < Gy such that G,/S, is closed under
multiplication by elements of F,.

Proof. Follows by Lemma 0.5.
COROLLARY 1.2. There is a sequence Guy1 € Gy, 1<, of 0-definable subgroups
of G such that (\ G, = G° (the connected component of G), and for every a e F(T)
»
there is n(a) < w such that for every n>n(a), G,/S, is closed under a and a™*.

Using G,’s from Corollary 1.2, we define equivalence relations E,, n < w, by
xE,y iff x~yeG,, and by Corollary 1.2, E,’s generate the topology on ST(Q).
For a finite set 4 we say that the set {p,: n< 0} = S(4) is abmost orthogonal

if every selector C from {p,(€): n < w} is independent over 4 (i.e. for ce C, ¢  C\{c}
(over 4)).

For a finite set 4 and an element a, we define a function
S(a/d) = f(tp(a/d)) € "w by
J(a/4)(®) = the number of E-classes consistent with
{Ei-1(x, @)} Utp(a/d)(x) .

We define 1 ¢ “wo by 1(i) = 1, and forf,g & ®w.f = *g,f<*g mean that /(1) = gn),
S <g(n) respectively, eventually.
. If 4 < B are finite, p e S(4), g e S(B), q b p, then we say that g is isoluted in P
iff for some p(x)eL(B), q(x) = 2V {p)}. If no -uch ¢ cxists we call ¢ non-
isolated in p,

LemmA 1.3. Assume that A< B gre Jinite and a,b e 6.

(1) Let fony€°w be defined by Joudi) = [Gioy: G)] (and G, = G,). Then
127 (a/4) < fruax-
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D) [ A) = "o (I tp(ald) is isolated and non-algebraic.

3) f(ald) = *L iff Mli(a/d) iy finite.

(4) (monotonicity) f(alB) <*f(a/A). )

(5) If Mlt(a/A) is infinite then f(a/d) = *f(a/B) iff tp(a/B) is non-algebraic
and isolated in tp(a/d).

(6) If B acl(4), then f(a/d) = *{(a/B).

(1) (symmetry) fafA0{b}) = "f (a]d) iff £ (blA U a}) = *f(B/A).

Proof. (1), (2)+~, (3), (4), (5)« and (6) are easy.

(@)= Assume f(a/A) = *f,y. Choose n, < w such that for n 2 n,, f(ajd)(n)
= frnl). By (3), Mlt(a/4) is infinite. Let E = Eyy. By Lemma 0.2 there are only
finitely many types ¢ & ST(@) such that for ¢ realizing ¢, (c-+G°) nacl(@) = .
Also, whenever (¢ -+ G°) nacl (@) = @ then stp(c/) is generated by {Ex, ) n < w}.
So by Lemma 0.6, wlog

(a) E(€, d)nacl(d) = &,

We shall prove

(b) If be E(E, a) then b = a (over A).

By (a) we know that tp(b/4) is non-algebraic and {E(x, b): n< w} generates
stp(b/A). Suppose that for some ¢ & L(4), ¢(a)& "o (b) holds. For some n> n,
we get I, (€, b) = "1p(€). By the choice of ny we sec that for some @' = a (over A),
we have E£,(a', ). So "p(a) holds, a contradiction. .

To finjsh, notice that ip(a/d) is isolated by the union of E-classes consistent
with tp(a/4).

(5)~- is similar to (2)-. Let n, be so large that for n>ny, f(a/d)(n)
= f(a/B)(n), and let [ = E, . By Lemma 0.6 wlog

(a") E(€, a)nacl(B) = @.

We prove

Y If be E(C, a) and b = a (over 4) then b = a (over B).

Suppose not and choose ¢(x) e L(B) such that ¢(2)& ~1¢(b) holds. By (a’),
Tl is non-algebrajc and {E,(x, b): n < w} generates stp(b/B). So for somewn ?no,
EL€, b) < "1 (€). By the choice of ny,, for some a’ = a (over B) we have E,(d', b).
In particular, E(€, o) & e(€) hence also £,(C, ) = 19(€) and TT¢(a) holds,
a contradiction, Now, tp(a/B) is isolated in tp(a/4) by the union of E-classes
consistent with tp(a/B).

(7) is casy by (1) (6).

The next lemma is the only essential place where we use the assumption that €
is a group. Moreover, it is the crucial point of the whole proof.

LeMMA 1.4, If A is finite and a e acl(Aw{b}) then f(afA) <*f (b/A).

Proof. Wlog 4 = @ and Mlt{a/@) is infinite (by Lemma 1.3(3)). Thus stp(e/D)

is not modular, as well as stp(b/@), and we have also b € acl(a). Take ¢(x, y) € L(D)
algebraic in x and in » such that ¢(a,b) holds, ¢(x,b)t tp(a/b)(x) and
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o(a, y) b tp(b/a)(y). Take o’ and b’ such that &' = a b =0b d\aband a'b' = ab.
Then

Y—b,ad—acG\S, and ¥ -beacl(a,d'~a).

If B —b ¢ acl(a’' —a) then ¢ € acl(h'—b, a'—a). In [B1] or in [N, Proposition 2.7]
it is proved that if p, g arew.m. locally modular, p“Y, ¢” and g is modular, then p is
modular. Thus in our case we would get that stp(a/@) is modular, a contradiction.

So b'—beacl(d—a) which means that for some AeF(T), A(a'—~a+S,)
= b'—b+S,, i.e. b'eb+A(a'—a+S,). By compactness we see that for some nq,
whenever a; € E, (€, a)\acl(a, b), then for some by € b+A(a,—a+So), olay, by)
holds.

By Corollary 1.2 and the choice of E,’s, take n, so large that for » > ny+ny,
G, is closed under 1 and A™'. In particular, for every m>n > ny+n;, A induces
a permutation of G,/G,. Let n>ny-+n,. We shall show f(a/@)(n) < f(b/B)(n).

Let k = f(a/@)(n). That means that we can choose ay, ..., &y ¢ acl(a, b)
realizing tp(a/@) such that E,. ,(a;, @) holds (i.e. a,—ae G,_y), and for i # j<k,
TE,(a;, a;)) holds, i.e. {g;—a)—(a;—a) = a;—a; ¢ G,. Choose by, ..., by so that
¢(a;, b)) holds and b; € b+2(a;—~a+S,). It follows that for i<k, E,_(b;, b) holds
and b;—b e A(a;—a+5S;). {a,—a: i<k} are in distinct cosets of G, in G,-,, hence
for i j<k, by—b; = (b;—b)—(b;—b) ¢ G,. So "E(b;, b). Also, b, = b by the
choice of ¢. We see that f(b/@)(n) = k.

TueorEM 1.5 (the duality theorem). dssurme that T is small, weakly minimal
unidimensional, not w-stable, p, € S(@) is non-isolated and Mlt(py) is infinite. Then
either (A) or (B) holds, where

(A) If A is finite, q € S(A4) is non-isolated and MIt(q) is infinite then there are
byy s by € q(€) (for some m) such that tp(byJAu{by, ..., b,..}) is non-algebraic
and isolated in q and there is r& S(AU {by, ..., b,}) with r v q and such that MIt(r)
is infinite and r is non-isolated in g.

(B) There is a finite set A and an almost orthogonal set of non-isolated types
{gs: n< 0} = S(4).

Proof. Suppose (A) does not hold for some 4, and g, and we shall prove (B).
The proof is split into two cases depending on whether the assumption of case (a)
below holds or not.

Case (a). Assume that for some finitc B there are infinitely many non-isolated
types re S(B) with finitc multiplicity.

In this case put 4 = 4guUB, and by Lemma 0,2 we can define inductively
4, € S(4) so that Mit(g,) is finite, ¢, is non-isclated and whenever a, ¢ g(€) for
i<n then g,(€)nacl(Adu{a;: i<n}) = &, so we are done.

Case (b). Suppose that the assumption of Case (a) does not hold.
First notice the trivial fact that

(1) If A< B are finite and p e S(4) has infinite multiplicity, then p has only
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finitely many extensions over B iff all exlensions of p over B are non-algebraic
and isolated in p.

Take any ac q(€) and let 4 = 4, u{a}. We dcfine g, € S(d) by induction on
n so that che following hold:

(i) ¢, F q, q, is isolated in ¢ and non-algebraic,

(ii) if @, q(®) for i<n then g, splits over AU {a;: i<n} into finitely many
types, i.e. there are ry, .., rye 84w {a; i <n}) such that ¢,(C) = { r(G).

gk

By (1) we see that (1) and (i) for q,, 1 < o, imply (B). Suppose we have found ¢;
for i< n and we want to find g, satisfying (i) and (if). By the inductive hypothesis,
the set ) :

P {tn(@/A): i = {ag, ..., @y-y» and a;€ q,(€)}

is finite. Choose &y, ..., &, s0 that P = {tp(@,/4): i< m}. As we assume that (A)
does not hold for 4, and ¢, and the assumption of case (a) does not hold either, we
sce that for eévery /< m, for all but finitely many non-algebraic r € S(4) such that
rF g and ris isolated in ¢, we have that r splits over 4 U3, into finitely many types.
A contains o realization of ¢ and T'is small, hence by Lemma 0.2 there are infinitely
many non-algebraic » € S(4) isolated in g. Consequently we sce that there is a non-
-algebraic ¢, & S(4) isolated in g such that for every i < m, g, splits over 4 U4, into
finitely many types. Tt is casy to sce that g, ..., g, satisfy (ii).

Facr 1.6, If 1.5(B) holds then T has 2% countable models.

Proof. Sce [B3]. The point is that by the omitting types theorem, for every
X there is a model My of T(4) such that g (My) # S iff ie X.

In [B3] S. Bucchler proved that ift F(7') is finite then 1.5(B) holds, thus proving
Saffe’s conjecture for the case of finite F(T). In the mext section we shall prove
that 1.5(A) also implics that 7 has 2% countable models, thus completing the proof
of Saffe’s conjccture. Notice that in Theorem 1.5 we did not use the assumption
that € is a group. ‘

§ 2. 1.5(4) implics that 7 has 2% countable models. In this section we assume
that 1.5(A) holds and we shall construct 2% countable models of I. Recall that
Po € S(0) is non-isolated and MIt(pe) is finite.

LiMMA 2.1, There are a, € py(€) and fie "o Jor n,k<w and an increasing
sequence . k<2 (with ny = 0) such that if Ay = {a;: i<n} then the following
hold: :

() Sivr €% "Wy = A
(i) For each k there Is g & S(A,,) such that if 12z n, then

f(an/Am() "ﬂ: ‘md tp(an/Anu) = i

(i) I m € n<myq then fla/dy) =
Proof. Straightforward by 1.5(A).
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We call a countable model M of T constrained if it satisfies
(1) a,e M for n<w and
(2) M omits every modular w.m. non-algebraic type.
For a constrained model M we define g, € “2 as follows.
gaei) = O iff for every finite 4 & po(M) there is a finite B < po(M ) containing A4
such that for every a € po(M), if /' (a/B) = *f, then for some m < »
there are by, .., b, € po(M) such that aeacl(Bu{by, .., b,}),
and for cach < m, f(b/B)<*/, and "1f(b/B) = *f;,
gu(i) = 1 otherwise.
We shall show that for every g & ®2 there is a constrained model M of T such
that g = gy Cleatly this will give 2" countable models of 7. So fix g € “2 and lot
A = {a,: n<w}. We definc by induction sets B, ~1<k <, where

B, = {b}: m<w)}

or B, = &. Let k= —1. We define b”; by induction on m so that acl(4uB._))
is a model of T and the following hold for k = —1 (and we stipulate g, = @,
n.y=0and oy = fum)-

(i) for every m, tp(by/4,,) + g, and

(ii) if B is finite and A, =Bsdv {B;: —1<i<k}u{bi: s<m} then
FBi/B) = *f,.

It is easy to define B_, because T is small. If we have defined B, for ¢ <k and
g(k) = 1 then we define B, = {by: m < o} so that (i) and (i) hold. If g(k) = 0
then we put B, = @. Let

C=Au{B: —-1<k<w} and M = acl(C).

Lemma 2.2. (1) M is a model of T.

(2) C is independent over @.

(3) If be B, then for every finite B such that A, < Bs C\{b} we have
F(b/B) = *f (b/dn) = *f .

(4 M is constrained.

Proof. (1) follows by the choice of B..,.

(2) First we prove that A is algebraically independent. If not, then for some »
we have a, € acl(4,), but then f'(a,/4,) = *1. On the other hand by Lemma 2.1 (iii),
fla,jd,) = *f;, for some k, and 2.1 (i) implies ™f; = *1, a contradiction. Similarly
we prove that the whole C is algebraically independent.

(3) Fix b = by € B, and let 4,, < Bs C\{b}, |B| < w. By Lemma 1.3 (4) wlog
whenever by € B then 4, < B. Let

R = {(i,j): (.f) = (m, k) or b\ e B},
By Lemma 1.3 (5) and by the definition of B,'s there is a formula
(¥ (G, N eRN eL(4nB)
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such that
tp(¢bh: () e RyldnB)(<xj: (1)) e RY)
= U {gx): (b)) e RYuip(h: (i) RY)} .
Thus tp(h/B) () = qulxi) W {p(¢by: (L) e RN{0n, &)}, 33} So tp(B/B) is isolated
in g, hence by (2) and Lemma 1.3 (5) we have f(b/B) = *f,.

(4) Suppose not. Take any ¢ ¢ M realizing a modular type p & ST(@). There
is a finite set B¢ C such that ¢ € ucl(B). Wlog B = A,,,‘u{b'j: i<k, —1<j<kand
By # @&}, We see that either for some n <y, stp(a,/A,) is modular or for some
ij, bheB and sip(BYBNAYY) is  modular. Thus cither f(a,/4,) =*1 or
f (bj/b‘\{b}\}) == 1, contradicting Lemma 2.1 or (3).

We are left with proving that gy = g. Let i < o,

Case L g(i) = 0, Wewant to prove gy(i) = 0. 8o take any finite A° < po(M).
By Lemma 1.3 (6) wlog A% & €. Lel f, be the minimal j such that j> i, 4° n 4 c4,,
and if blaA® then r<j Let B= A°0A, . Take any aepy(M) such that
fla|B) = *fi. acacl(Bu{d,b,é}), where 454, be U{B;: —1<j<i} and
s U {B;:j>il and &, B, ¥ are chosen of minimal possible length. ‘

Limma 2.3, If ded then f(d[B) = *f), (and jo>1) hence 1 f(d/B) = *f,.

Proof, Similar to that of Lemma 2.2 (3). Let R = {(i,/): b‘,eB}. Then

tp(<hy: (i) & RY” (] A, )<xht (7)€ R <p))
= U {g): (1) e Rhug(uie(h: G0 e R ()},

for some ¢ € L(4,,). So (p(d/B) is (non-algebraic and} isolated in g;, = tp(d/4,,),
and by Lemma 1.3 (5) we are done.

CLaMm 2.4.(1) If ce&nB; (j> i) then f(c/B)S*f), for some ji >i, hence
(elB) = ¥f,.

(25 =@

Proof. (1) f, = min{/y,/} > i Ay, S B 50 f(c/B) ¥ (c/dy) = *fy..

(2) If not, take any beb, By Lemma 2.2(3), f(b/Bu{d,b,cI\{8}) = *f;
for some j< i By the minimality of @, 5, & we have beacl(Bu{a, b, &, a}\{b})-
So by Lemmu L4, fy<* (@/Bufd,b, ei\{b}) hence f = */(a/B)* =[(a/BU
wi{a, b, E\N{B)* 2, and £} /. This implies fj = ¥/, contradicting 2.1 (i)-

Clearly 2.3 and 2.4 imply that gy() = 0, and we are done in case 1.

Case 2. 4() = 1. We want to prove gy()) = 1. That means that we want to
find a finite 4% & po (M) such that for every finite B & py(M) containing A° there
is a e py(M) such that

T (a/B) = *f, and there are 1o by, ., by € po(M) such that
(%) acacl(Buiby, ..., b,}) and for each t, f(b/B)<*/; and 717 (b/B) = *fi.
So let A% = A,,. Take any finite B° G po(M) with 8°2.4°. Choose a finite B with
A°¢ B ¢ such that B < acl(B), and take any a € BB, Tn order to prove that a
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and B, satisty (¥), by Lemma 1.3 (4), (6}, it suffices to prove that @ and B satisfy
this condition. By Lemma 2.2 (3), f(a/B) = *f,. Supposc towards a contradiction
that there are by, ..., b, € po(M) such that aeacl(BU{by, ..., b,}) and for 1< m,
Fb/B)<*f; and T1f(b/B) = *f.

For each t<m choose &, b,, & of minimal possible length such that
biead(Bu{a,b,t}), <4, bcU{B: —-1<j<i} and &< U{B;:j>i.
So aeacl(Bu{a, b, ¢: 1< m)) and by Lemma 2.2 (2), for some f we have ae b,
However we have

Cramv 2.5, by = @ for any t<m.

Proof. If not, take any beb,. So bead(Bu{a, 5, &} u{BIN{B). By
Lemma 1.4, f(6/BU{a, by, EINBY) <7 (6/BU e, B,y 2IN{BY) < * F(b/B) < ¥y,
On the other hand, by Lemma 2.2 (3) (as 5, s U {B;: j< i} and 4,, = B), we have

F(®Bu{G, b, TINB)) = *f(b/B) = i
Thus we get

for some j< 1.

Li< (b B) <M,
which implies j = i and f(b/B) = *f;, a contradiction.

This contradiction finishes the proof in case 2.

The concept of assigning 1o tp(a/4) the function f(a/4) (which is essential in
the above proof) is similar to the concept of ordinal rank. f (a/d) can be regarded
as an “f-rank” of tp(a/4), where the values of f-rank are not ordinals but functions,
or as a “topological shape” of tp(a/4). The core of the above proof is of course
Lemma 1.4. We did not use its full strength. The group structure on € induces
a group structure on ST (). Lemma 1.4 implies that definable functions preserve
the ideal of sets of Haar measure zero on ST(@). Although Vaught’s conjecture for
w.m. theories is proved, several questions concerning the proof arise, The main is
whether there is a T which fails to satisfy 1.5 (B), and is small. We state some result
connected with this problem in the next section. Another kind of problem is how
CB-rank and f-rank are refated (whether there is any relation at all),

§ 3. acl* for small w.m. 1-dimensional not o -stable 7' with finite F(T). In this
section we assume that T is small, w.m., 1-dimensional and not «w-stable. We shall
show what impact on acl* has the assumption of smaliness and |F(T)| < w. First
let us say what acl* is (see [N]). acl* is a dependence relation on ST(€)). For
RS ST(Q) and p e ST(@) we define p e acl*(R) iff pacl( U {r(€): reR)) # .
We have

Facr 3.1 [N]. The following are equivalent for R<ST(@) and p s ST(O).

(1) p e acl*(R).

Q) p is modular or for every selector C from {r(€): re R}, we have
p(acl(C)) % B, i.e. p is realized in acl(C).

So Lemma 0.2 says just that acl*(R) is finite for every finile R.

Facr 3.2 [NL If UsST(@) and int(U) % & then acl*(U) is clopen.
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The author belicves that investigating acl* may be basic in proving that in
Theorem 1.5 always (B) holds, Here we show that if F(T) is finite then acl* is
“regular”. Now we define precisely what we mean by this, We say that acl® is regular
if for every decreasing sequence of clopen sets U, & ST(@), n<w, with R = nu,
finite, we have acl*(R) = () acl(U,). »

"

For a finite A, cvery non-algebraic pe $(4) determines a closed set
[p] = {g&STE): qis consistent with p}. If moreover p is isolated then [p]is clopen,
By Lemma 0.6, for isoluted p, [p] is clopen also in the space of all strong 1-types
over €.

Tagorum 3.3, If 1" is small, w.m., L~dimensional, not w-stable and F(T) is
finite, then acl* is regular.

Proofl. By the proof of Proposition 5.1.1 from [H], acl is modular on the union
of 0-definable w. . sets in €% As an immediate corollary we get that acl* is modular
on ST{() (= the set of w.m. non-algebraic, non-modular strong 1-types over @
in T°9).

In)dced, suppose that for some finite, acl*-independent sets P, @ < STS(®),
we have

(1) dim(P)+dim (Q) > dim(Pu Q)+ dim(acl*(P) N ac"(Q)),
where for X s STU(#), dim(X) is the ucl*-dimension of X, and it is well defined,
because by Fact 3.1, acl*-dependence satisfies the exchange principle on STS(@).
Let Q = {(l()! s qu}‘

Let X be u selector from {p(€): p &P} and choose ¥ = {yy, ..., ,} 50 that
yi€4(€) and whenever ¢ is realized in acl(Xu {y,, ..., y,,}), then

yreacl(X U Py, o ¥ D).

For 4 & € let dim(A4) be the usual acl-dimension of A, and let acl, be acl re-
stricted to O-definable w.m. sets in 7%

By the choice of X, Y, for evety ge PUQ, dim(q(acl(X V) Y)))s 1. Hence
by [BI], for every re ST, dim(r(acl (Xv Y))) <1, It follows that

dim(X) = dim(P), dim(Y) = dim(Q), dim(XV¥)=dim(PUQ) and
dim(acly(X ) racly(¥)) = dim(ac*(P)nacl*(Q)) .
So (1) translates into
dim (X)) +dim(Y) i dim (X U Y)+dim(acly(X) nacly( ),

contradicting the modularity of acl,

" Another proaf of modularity of acl* on ST'(¥) (without referen.cc to [(H)
is implicit in [N]. We shall not distinguish clearly between acl* and acl**%. Now we
prove

() If 4 is finite, p e S(A) Is isolated, q & [p] and ro ¢ ST(@))\acli(q) then for
some clopen U comtaining ¢, we have ry ¢ acli(U).
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Here acl® is acl* regarded in 7'(4). $T(4) can be canonically identified with ST (@),
Prool of (2). Wlog 4 = @. By modularity, ST*(d) with acl*-dependence
relation can be regarded as a projective space over a division ring D, and as F(T)
is finite, it is easy to prove that D = F(T) (this is true also for F(T) infinite, but the
proof is harder). So we can choose in ST*U@) types 7y, ..., f\y.y such that

(3) acl* (g,r) = E) acl*(r;) Uacl*(g).
i<n

(This union is not strictly disjoint, but we ncglect modular types by Fact 3.1.)

Choose for i<n a clopen ¥, with r;e V; and act*(q)n V; = & (here we use
Lemma 0.2, i.e. smallness). Extend the signature by adding some parameters {rom
acl®(@) to make every ¥, 0-definable, and let the present p be the completion of
the old p in the new signature such that still g e {p]. Hence, for every ¢’ € [p] and
i<n we have

@) ad*(@)nV,=@.
We treat V; both as a formula and as a clopen subset of ST*Y(@). Choose a, & q(€)
and a;er€) for i<n so that for every i<n, « €acl(ay,a,). By (3) we have
dim({ap, ..., @,}) = 2 and any 2 elements from {4y, ..., a,} are independent. So
choose a formula #(%) e L(®) such that

@) hfay, ..., a,) holds,

®) fori<j<nif & = {x5, .., x,\{~}, 3} and & = {a,, ..., a,}\{a;, a;} then
h(X', a;, @) isolates tp(@'/{a;, a;}), and

(©) Ax) Fple)y& A\ Vix).

i<n

For i<n let A(x, x,) = @xg, ooy Fimps Xigts oes Xy VAE). Ay, @) bolds,
hence hy(x;, @) is non-algebraic. Choose E ¢ FE(@) such that [or every i<n and
b,ceC,

either E(C, )n (€, b) or E(E, ¢)n1h(€, b) is finite,

and wlog if ce V(€) then E(€, ¢) < V().
It follows that whenever b e h (€, a,)\acl(@) then

E(€, )\1(C, ) s acl(a,) n V(€) sacl(@) (by (4).

Hence for i<n, there is &< C/E such that for cvery reSTY(@)n Vi,
r(x)u {hy(x, a,)} is consistent iff for ¢ € r(€), ¢/E &, Extend the signature by C/&,
and extend p to a complete type over & in this new signature so that still ¢ € [p].
So for i < n there are 0-definable clopen subsets ¥{ < ¥, with r; e ¥ such that for
every ¢’ € [p] and every i<n, if # & ¥ then for some ab, ..., d with e ¢'(€),
aier{(€) and aje V)(€) for i # j<n, we have h(ap, ..., a}) holds. It follows that
dy ¢ acl(@) for j <, hence aje ¥](€) for j <n We get that whenever ¢’ & [p] and
for some i<n, r e V7, then there are e V; for i # j<n such that
(5) acl*(g’, 1)) = acl*(g") uJU acl*(r)).
<n

Now we prove that acl*([p])n ¥} = @ for every i. If not, take the minimal m
such that for some gqy,...,q,c[pl, for some i<n apnd rie V), we have
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ri € ael*(gy, - ). By (5) und modularity of acl®, we see that there is J<mand
ry & acl*(r/, qo) O Vj’mxcl""(q,. s @), Which contradicts the minimality of m.

In particular we get ry ¢ act*([p]), and (2) is proved.

Now we approach the general case. Let R & ST(@) be finite and ro ¢ acl*(R).
Let 4 be a selector from {r(€): re R}. Take an isolated non-algebraic p € S(4),
and ¢ & [p]Nacl*(Ru {r,}). In particular ry¢ acl*(Ru{g}). By (2) there is a clo-
pen U containing ¢ such that ry ¢ acli(U). Thus also, by Fact 3.1 (or just by the
definition of acl*), ry ¢ acl*(RULU). By Fact 3.2, acl*(RLU) contains a clopen
neighbourhood ¥ and R, so we get r, ¢ acl*(¥),

Now, take any decreasing sequence U,, n< o, of clopen subsets of ST(9)
with Q U, == R. We see that for some n, U, & ¥, hence r, ¢ acl*(U,), and we are

done,

Lemma 3.4. If acl* is regular then in Theorem 1.5 condivion (B) holds.

Proof. We keep the notation from Theorem 1.5. Take a € py(€). Hence, over 4,
Po splits into infinitely many types ¢, € S(a), n< o, and let qollstp (a/D). Let us
work in T'(s). By regularity of acl*, notice that as any [g,] is closed, if acl*(go)n
nlg] = @ then for some clopen Us gy, acl*(U)n]g,] = @. Using this, we can
choose types ¢,,, i<, such that for every i, acl*( U {[g,]: /> i} Ng,] = @
In particular, {¢,: i <®} is an almost orthogonal family of types.

COROLLARY 3.5 [B3]. If F(T) is finite then in Theorem 1.5 condition (B) holds.

ConyperTure, If T is small, |-dimensional, w.m., not w-stable, then acl* is

regular.
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