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‘ Abstract. Recently, T. Watahabe has extensively studied approximate mappings of mverse
systems of spaces f2 X-» Y. He showed if p: XX and g: ¥—Y are ANR-resolutions of topo-
logically complete spaces X, Y, then f X Y induces a mapping f3 X-> ¥ and conversely, every
mapping f: X-» ¥ is obtainable in this way. In this paper it is shown that the basic results of Wata-
nabe’s theory are valid also for approximate mappings of approximate inverse systems X, ¥ of
compact ANR’s and compact Hausdorff spaces X = limX, ¥ =limY. Approxunate systems,
newly introduced by 8. Mardc¥i¢ ad L. R. Rubin, have bonding maps pas, 4 < a’, where in general
PasazPazay differs from pujag, but in a controlled way.

1. Introduction. An inverse system of gpaces X = (X,

0> Paars A) (in the usual sense)
consists of a directed set (4, <), spaces X,, ae 4, and maps p,»: X,— X,, aga’,
such that p,, = id and

)
The (usual) inverse limit X = lim X is the subspace X < ITX,, which consists of all
points x = (x,) € I X, such that p,.(x,) = x,, a< a'. Projections p,: X X, are
restrictions to X of the projections m,: IIX,— X,, ae A.

A mapping of systems f: X = ¥ = (¥}, ¢y, B) consists of a function f B—-rA

and of mappings f,: Xpuy— ¥y, b B, such that whenever b, <b,, there exists an
index ae A, azjf(by), f(bs), such that

@

(sce, o.g., (8], I, § 1.1). It is well known that for any mapping of systems
= (f,fy): X Y there is a unique mapping /2 X~ ¥ of the limits X = lim X,

Y = lim ¥ such that

6)] JePswy = s

This mapping is called the imit of fand is denoted by f = lim f (see, e. 8., [8], I, § 5.1).

PaiaiParas = Payays @1 S 03 S 3.

SoPswine = Aoiba SsaPrioara

beB.

This paper was written' during the Summer and Autumn Quarters of 1987, whileJS’. MardeSié,
on leave from the University of Zagreb, was visiting the University of Washington,
AMS(MOS) Subject Classification: 54B25, 54D30, 54C55.
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If f: X—Y is a mapping between compact Hausdorfl spaces, then there exist
inverse systems X, ¥ of compact ANR’s (compact polyhedra) and there exists
a map of systems f: X — Y such that X = limX, ¥ = lim Y and f = lim f (sce,
e.g., [4] for the case when X and Y are metric and [3], [1] for the general case).
However, if one chooses Y in advance, it may be impossible to find X and f such
that (3) holds for a given f. Such examples exist even when X and Y are metric com-
pacta and Y is a sequence of compact ANR’s (polyhedra) (see, e. g., [2], [12] or [13]).
This is the reason why various authors have studied more general mappings of
systems f = (f,f;): X — ¥, where the commutativity relation (2) holds only approxi-
mately (see, e.g., [11] for the case of inverse sequences).

An extensive and very general study of this phenomenon is due to T. Watanuabe
(see [12], [13]). He combined the idea of approximate mapping with the idea of
resolution, introduced in [3]. This enabled him to also consider non-compact spaces.
However, all inverse systems in Watanabe’s work are usual (commutative) systems,
which satisfy ().

Recently, S. Marde§i¢ and L. R. Rubin have introduced and studied approximate
inverse systems of metric compacta, i.e., systems where (1) holds only approxi-
mately [4]. These systems have proven very effective in constructing various
compact HausdorfI' spaces using polyhedra as terms of the system (see [4], [9]
and [5).

The purpose of the present paper is to establish all the basic features of Wata-
nabe’s theory also for approximate mappings between approximate systems of
compact ANR’s (polyhedra). In particular, such mappings f: X — ¥ induce a limit
mapping f: X — Y between the limit spaces X = limX, ¥ = limY and conversely,
every mapping f: X — ¥ between compact Hausdorff spaces is the limit of an approxi-
mate mapping f: X —» Y between two arbitrary approximate systems of compact
ANR’s (polyhedra) with limX = X, limY = ¥,

As a consequence of our general results, we can prove, e.g., the following.
Every mapping f: X—+Y between compact Hausdorff spaces with dimX<m,
dim Y< n is the limit of an approximate mapping f: X - Y, where X and Y are
approximate systems of polyhedra X, and ¥, respectively with dim X, <m and
dim Y, < n. This is so because, by [4], every compact Hausdorfl space X with
dim X < m is the limit of an approximate system of polyhedra of dimension <m.

If one insists on using commutative systems, such an expansion theorem in
general does not hold, because there are compact Hausdorff spaces ¥, dim ¥ = 1,
which are not representable as limits of 1-dimensional (commutative) inverse
systems (see [4]).

In the last section of this paper we show that approximate systems of compact
ANR’s can be used in the shape theory of compact Hausdor{l' spaces,

We believe that the basic results of this paper can be generalized to topologically
complete spaces, approximate systems of non-compact ANR’s and (non-
commutative) approximate resolutions.
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2. Approximate inverse systems of compacta. We quote from [4] the basic de-
finitions. .

DepNITION 1. An  approximate inverse system of metric compacta
X = (Xa5 Uas Pay» A) consists of the following: An unbounded directed set (4, <);
for each a € A, a compact metric space X, with metric d, = d and a real number
u, > 0 (called a mesh); for cach pair a < o' from 4,a mapping p,,: X, — X, satisfying
the following conditions:
(A1) A(PyyaParas s Pasas) € Uay s
(A2 Vage )(Yn>0)0a; > a)(Va; > a, > d))

d(pagazpaug: Pauu) < 1’[ .
(A3) (Vae DVn>03Hd 2a)(Va' 2d)Vx,x € X,)
d(x, x') €ty = d(Popi(X), Parx)) <11 .

Here d(f,g) = supd(f(x),g(x)).
DepNITION 2. A point x = (x,) € IIX, belongs to X = lim X,

Sy A3y Pag = id.

X = (XM YUus Paat s A)
provided, for every ae 4,

(AL) X, = Hmp,(x,) .
o
The projections p,: X-— X, are given by p, = n,|X.

We now quote (as propositions) several results from [4], [5], [9] and [10], which
we need later. We assume that X = (X, #,, Do, 4) is an approximate system of
metric compacta with limit X and projections p,: X— X, a€ 4.

ProrositioN 1. If X is a commutative system, then X = 1mX as defined in
Definition 2, coincides with the usual inverse limit (see [4], Proposition 1).

PROPOSITION 2. If X = (X, Pyur> A) is @ commutative system of metric compacta
and A is unbounded (has no maximal element) and is cofinite (every element has only
finitely many predecessors), then there exist numbers u,>0, aed, such that
(X, Uyy Puwrs A) 15 an approximate system ([4], Remark 2).

PROPOSITION 3, If X, # @ for all ae A, then X = limX is a compact Hausdorff
space and X # @ (sce [4], Theorem 1 and 2).

ProrosITION 4. For every ac A,

Iil}ld(Pm'pa': Pa) =0
(see [4], Lemma 4).
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PROPOSITION 5. Let X = (X,, ty, Puw> A) be an approximaté system with’
limit X and projections p,. Let <' be a binary relation on A such that

a, <'ay=a,<a,,

ti1<'a2 and ady § a3 =>ay <’a3 »
Vae HQAd e Aya<'a .

Moreover, let a;<’'a, mean that ay<'ay or a; = ay. Then A’ = (A4, <) is
a directed set and X' = (X,, g, Py A') is an approximate system with limit’
X' = X and projections p, = p, (se¢ [5]; Proposition 9).
PROPOSITION 6. The following statements hold:
(BY) Let ae A and let Uc X, be an open set which contains p(X). Then there is an
a >a such that p,(X,)<S U for each o’ > a'.
(B2) For every open covering U of X there exists an a € A such that for any a, > a
there exists an open covering V" of X,, for which (p,)™'(¥') refines ¥ (see [4],
Theorem 3 and [9], Theorem 1).
ProrosITION 7. The following statements hold:
(R1) For every compact ANR P, n >0 and mapping h: X — P, there is an a € A such
that for ‘any a' > a there is a mapping f: X, —P for which d(fp, h)<2n.
(R2) Lét P be a compact ANR and n>0. Whenever ac A and f,f: X,~P are
mappings with the property d(fp,, f'p.) <1, then there is an o' € A such that
Jor any & = a' one has d(fpage, [ 'Pag) <1
‘(R1) was proven in [5] as Proposition 7. (R2)is an immediate consequence
of (B2).

_ DerNrion 3 [10}. An almost commutative system X = (X,, pow» A) consists
of an unbounded directed set (4, <), of metric compacta X, and of maps p,, such
that it is possible to associate with every ae 4 a number u, > 0 so as to obtain an
approximate system as in Definition 1. Such numbers u, are called admissible meshes.

Remark 1. If (4,) and (u;) are admissible meshes for the same almost commuta~
tive ‘system and X = (X,, 4, Por, 4), X' = (X, tdhy Puwrs ), then X = limX
cofhcides with X* = lim X", because the limit space does not depend on the meshes
(see Definition 2). Therefore, the limit space of an almost commutative system is
well defined.

Remark 2. If u, and u; are admissible meshes for the same almost commutative
system, then max (u,, u,) and min(v,, u}) are also admissible meshes for that system.

PROPOSITION 8. For every approximate system X = (X,, u,, Pawr A) over
a cofinite set A there exist admissible meshes uy>u,, ae A (see [10], Lomma 1).

3. Mappidgs of approximate systems and their limits. :

DepNimion 4. Let X = (X, th,, Do, A) and ¥ = (Y%, v4, by, B) be approximate
systems of metric compacta. A mapping of approximate systemsf: X -» ¥ (or approxi-
mate mapping) consists of a function f: B—+4 and of mappings fi: Xpgy— Y,

e ®
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be B, such that whenever b </, then there exists an index ae 4, a>f(5),7 (),
such that for every a’ > a the following condition holds

(AMI) A(fuPreyers Govr S Prona) S0
. (see [12], § 2, condition (AM2)).
The main purpose of this section is to prove the following theorem,

ToeoreM 1. If f = (f,fy): X =Y is a mapping of approximate systems, then
there exists a unique mapping f+ X—=Y, X =1limX, Y = HmY, such that

(M) d(foPray B f)Sv,, beB.

The mapping f: X'~ ¥ is called the limit of f and is denoted by f = lim £t
should not be confused with f: B—4 from f= (f,f): X=Y) '
To prove the existence of f we need the following lemma.

Lemma 1. Let X be a compact Hausdorff space and let hy: X—Y,, be B,
be -maps such that

(1) dthy, Quwhy) Sv,, bV .
Then there exists a mapping f: X— Y = UmY such that
@ dhy, g f)<v,, beB.

Proof of Lemma 1. For a given b € B we consider all b’ > b and the maps
Dy hy: X— Y,. We will show that these maps form a Cauchy net and therefore

@ = ]‘i:nqbb'hb'

is a well-defined map f*: X ¥,.
Indeed, for any n> 0, by (A2), there exists an index &' > b such that

@ d(Gop, Dosny» Gov) SN» B <by<by.
Moreover, by (A3), one can assume that, for any &' 2 ¥,
©) d(y, ¥') <oy =>d(@ss(3)s quul¥)) <1 -
(1) and () imply

© d(Gons o> on Gounshs) <1, B <b < by,
which together with (4) yields

0] d(quy, hgs oy Be) <2, B <by<by .

Analqgous}y, we obtain
(8) d(%b;hw qbbghbs) <21,
Since B is,directed, (7) and (8) prove
®

b'<by<bs .

,d(Qbhhl{n be;hba)s‘h, » b’<!’}:b2 »
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which proves that (g,,hy, b’ >Bb) is, indeed, a Cauchy net of mappings X -Y,.
For every x& X and b’ <b, <b,, by (4), we have

(10) A( Gy, Do, o5 (%) 5 Tosa () <11
Passing to the limit with b;, we obtain

(1) OO A CW () B T A
which shows that

(12) I = li;lllq}:hf ")

This means that the mappings f*: X—Y,, be B, determine a mapping f: X~ ¥
< 1Y, such that

13 af=f", beB.
Passing to the limit with &' in (1), we obtain
(14 dhy, /) <vy, beB,

which, by (13), coincides with the desired formula (2).

Proof of Theorem 1. Existence. Given a mapping of approximate systems
J=(f,fs): XY, we put
(15 by = fuPsey

By Lemma 1, it suffices to show that the maps hy; X~ Y3, b & B, satisfy (1).
By Definition 4, if b< ¥, there is an azf(b), f(b') such that (AM1) holds
for all @’ > a. This implies

beB.

(16) A(SoP 16y Par» Aose S PsorarPu) S Vg

Passing to the limit with &', we obtain (1), because, by Proposition 4, for any a & 4»
one has

W) limpy,py = p, .

The uniqueness of f is a consequence of the following lemma.

Lemma 2. Let X be a compact Hausdorff space and let hy, hy: X—Y,, be B,
be two families of mappings satisfying
(18) d(hy, l)<v,, beB.

Let f, f's X~ Y be mappings such that f satisfies (2) and ' satisfies the analogous
relations with hj,. Then f = f".
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Proof of Lemma 2. Given any b e B and 5> 0, by Proposition 4, there is an
index b’ > b such that

(19 (@ Gy g) S1, b 2D .

By (A3), one can assume that for 5" >4’ (5) also holds. Then, by (2), one has
(20 Aoy, Qo qp FIS 0y, B 20 .

Analogously,

1) Ay, QoG S Sy BB

Furthermore, (5) and (18) imply

(22) Ao ltyes Qoprhp) S5 B 2B

Now, (19), (20), (22), (21) and again (19) yield

(23) daf, s f)<5n, beB.

Since # > 0 was arbitrary, we conclude that g, f = g, ", for all b € B, and, therefore,
f=7.

Proof of Theorem 1. Uniqueness. It suffices to apply Lemma 2 to A, = h;
= foPrey and f, f'.

DEFINITION 5. An almost commutative mapping f: X - Y between almost com-
mutative systems consists of a function f: B—4 and of mappings f3: Xy — T3,
b e B, such that f = (f, f,) is an approximate mapping for some choice of admissible
meshes. The limit mapping f: X— Y is defined as the limit of such an approximate
mapping.

Remark 3. Let v, and v}, b € B, be admissible meshes of an almost commutative
system (Y, ¢ps» B) and let f= (f,f;) be an approximate mapping into both
Y = (Y, Uy, qop» B) and Y’ = (¥}, v;, gy, B) with limits f and f" respectively.
Clearly, fis also an approximate mapping into (¥;, max(v;, v;), gss» B). Moreover,

(24) A(foPrey Ao S) S vp < max (v, v3) ,
(25) d(fopsys 96 S") € vy < max(vy, v) .

By the uniqueness in Theorem 1, one concludes that f = 1", so that lim f does not
depend on the choice of admissible meshes.

Remark 4. In some cases an approximate mapping of systems f = (f,fp): X = ¥
also satisfies the additional condition

(AM2)  (Vbe B)(Vn>0)@b 2 b)(Yb"' =b)Fazf(b),f(b")(Va > a)

A(foPs@ws Do SoPrieya) S1 -
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In this case the limit map f: X— Y satisfies the commutative relation
(26) foPrwy = auf, beB.

Indeed, by (13), (3) and 15,
@n | W/ = E{“%bvf b Py -

Therefore, Proposition 4 and (AM2) imply.

(28) d(fopswys 1 F)<n, beB.
Since 1> 0 was arbitrary, (28) proves (26).

4. Representing mappings as limits of approximate mappings. In this section we
prove the following expansion theorem.

THEOREM 2. Let X and Y be almost commutative systems with limits X and Y
respectively and let f: XY be a mapping. If all ¥,, be B, are compact ANR’s
and B is cofinite, then there exists an almost commutative mapping f: X =Y such
that f = lim f.

We first prove a lemma which often enables us to verify that a collection of
maps is an approximate mapping. '

LemMA 3. Let X and Y= (Y, vy, ¢4y, B) be approxzmate systems, let
I B~ A be afunction andlet . X4, — Yy, b €B,be maps nhtclz satisfy the following
condztwn

(1) d(fopseys Qow Jor Pj’(b')) vy, b

Then f = (f, f) is a mapping of approxunate systems f P X=X = (Y, 03, Gy, B),
Jor any choice of admissible meshes vy >v,, be B.

Proof. Given b; <b, we must find an index ¢’ € 4, & Zf(by), f(b,), such
that for all a” >4’ one has

(2) d(fo,swpas Goana fo 5P sipg)a) Ulu

Choose numbers 1, >0, #, >0 such that

©) d(x, X) <nu=d( £, (%), o, () < $0p,~vy,) -

C) d(x, X'y Sy = d(gp,p, [1,(%), Foinaoa(x)) € F(Oh~04,)

By (A2), there is an index a > f(by), f(b,) such that for any a” 2 4.one¢ has
(5) d(Pf(b,)aPaa“,!’f(m)a") M, I=1,2.

Now (3) and (4) imply ‘

() d(fouP s y0Pan> o Proarar) < F(vh, ~Vn),

(7?' , d(oyb3 foaPrwa)aLuars Toyny ], pzl)f(ba‘)u'*) <+ (op, "'vb:.?,'
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Since limy:pogPar = po and hma,,p,(bm,,,p, = Prwp» I = 1,2 (Proposition  4),
. (6) and (7).yield
(® Ao P pwnaPas fou Pron) < 5 (0, —vy,)
) d (qt:lhzf 62D 1b20aPas Dosba S0aP r62)) S 5 (W05, — 0,)

Applying the assumption (1), we conclude that

, (10) A(SosP s@aPas Gosta SaProsaPa) S # @Why—4,) + 0,

By continuity, there is a neighborhood U of p,(X) in X, such that

(1) d(flupf(h)a'U qh;bszzpf(hz)ul U< S(Lb;"‘vbl)'l'"b; .

We now use property (B1) (Proposition 6) to conclude that there is an o' >4 such
that-for any a'’ > a’ one has

4 (]2) plm”(Xa") == U .
Therefore, (11) :yields

’

(13) d(fblpf(hl)npaa“: qhbthzf)[(hz)npaa”) < :}(u:u_va) +'Ub1 2 a’ =a .

By (6), (7) and (13), we conclude that (2) indeed holds for all a”" >4'.

Proof of Theorem 2. By assumption there are numbers v, >0, b e B, such
that ¥ = (Y}, vy, q,,,,, B) is an apprommate system. By Proposmon 8, there exist
admissible meshes -vj > v,, b B. By Lemma 3, it suffices to produce a function
f: B~ 4 and mappings f,: X4 — Yy, be B, such that

,(14) d(foPreys Dow SoPreny) S5,

(15) d(fspseys s f)<vy, beB.
First note that (Al) implies

(16) Aoy Do Qs Do o) SOy, BSHRD.

Passing to the limit with &, we obtain (by Proposition 4)

(1) Aoy @y, gr) S vy, BSD .

By uniform continuity and cofiniteness of B, for any b € B there is an 1, >0 such
that for all by <b one has

(18) Ay, ¥) € 1y d(§uos()> Tpor¥") S 3 (04~ o) -

Since Yy, b ¢ B, is an ANR, property (R]) (see Proposition 7 vieldsana = f(b)e 4
and a mapping f,: X,u— ¥, such that

(19) d(fopsays o) S min{ny, 45— v4), 03} -

a — Fundamenta Mnthcmntlcae 134/1
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If b< Y, then (19) and (18) yield
Ay S s> Db i ) <H(vy—vp) .
Now, (19), (17) and (20) yield (14). Moreover (19) implies (15).

(20)

5. Contiguous and equivalent approximate mappings. Different approximate
mappings can have the same limit mapping. In this section we study this pheno-
menon.

DeriNiTIoN 6. Let X and Y = (Y, vy, 4pp» B) bo approximate systems.
Two approximate mappings f = (f, /), f* = (f', fs): X~ Y are called contiguous,
denoted by f = f’, provided for every b e B there is an ae 4, a2 f(b), f'(b), such
that for any &’ > a one has

¢)) d(.fbpf(b)u‘:ﬁnlpf’(h)u’) SE

Two almost commutative maps f, f': X— Y are called contiguous provided
they are contiguous as approximate mappings for some choice of admissible meshes
v, >0, be B.

The following is an easy consequence of Lemma 2.

TreOREM 3. Let f,f': X —Y be approximate maps of systems with limits
fof's X=X respectively. If f and f' are contiguous, then f = f".

Proof. Let hy = fypsey» By = Jy Py By (LM), f satisfies § 3(2) and f” satisfies
the analogous formula. By Lemma 2, it suffices to show that § 3(18) also holds.

By (1), we have

2 da(f; bPfb)a PosJo pf‘(b)a’pa') LUy,

for o' sufficiently large. Passing to the limit with o, by § 3(17), we indeed obtain
§ 3(18).

The following lemma is sometimes used to conclude that two approximate
mappings are contiguous.

LemMa 4. Let X and Y = (Y, vy, g4y, B) be approthte systems and let
F=(00) f = (' fy): X~ Y be approximate maps. If

3 A fobswy> foPrw) S0y, beB,

zbhean =f XY = (Y,, vi, gy, B), for any choice of admissible meshes vy> v,
€ 0.

Proof. The proof is similar to the proof of Lemma 3. By (A2), there is an index
az=f(),f'(b) such that for any ¢’ > a one has

) A foP graPaw FoP rora) S S0 —0) ,
(5) d(f;”pf'(b)apaa" 2 fl;Pf'(b)a") S ’}(U[/; - IJ,,) .
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Since lithyp . pa = ps (Proposition 3), (4) and (5) imply
©) dCfoPswraPas SoP ) S3(05—0)
) AUy Pyipyalar S Prey) S5 04—03) -
Using (3), onc obtains
®) dCfub sralas Jo ProaPe) S5 04~ 05) + 05 .
By continuity, there is a neighborhood U of p,(X) in X, such that
® ALl 1w1al Uy Jo Prriana U) S5 05— 01) +05 -

By property (132) (Proposition 4), there is an a' > a such that for any o” = a’
one has

(10) P Xu) €U,
and therefore,

(1n dCfoP gwyaPuas fo Proiwyalas) S (0h—08) + 05 -
Now (4), (5) and (11) yield the desired relation

(12) dCSuP iy Jo P ypyer) S 05 -

Remark 5. By Proposition 4, (1) implies (3).

The next two lemmas show that certain modification of approximate mappings,
called shifts, produce contiguous approximate mappings.

Lemva 5. Let f: X~ Y = (¥,, vy, qsy» B) be an approximate mapping and
let v} > vy, b & B, be admissible meshes. If B is cofinite, there exists a function ¢: B—A,
@ =f, such that any function f': B~ A, f' > ¢, together with the maps

(13) beB,

Jorm an approximate mapping f' = (f, fy): X ¥’ == (Y, Up, Tov» B), called an
initial shift of f. The approximaie mappings f, f's X—Y' are contiguous.
Proof. Yor each be B choose a number #,> 0 such that

i = fubraypant KXoy Voo

(14) d(x, %) € 0= d(Qun JH0X) s oo So(%")) S (05— Vo) »

for all b, <b. ,
By (A2), cach b € B admits an index ¢(b) . (b) such that for any o’ 2 az ¢ (b),

(15 d(Psip)aPaas Prewrar) S Mo -
Let f': B— A4 satisfy J" 2 ¢, Put
(16)

N = fibserrwm, bEB.
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If b, € b,, there is an a =7 (b;);/(b,) such that for any a' > a one has

)] d(fbxpf(bﬂa' qb;bthzpf(hz)a) Vpy -
We can choose a2 f'(b,),f'(b;). Then, by (15) and (14) for any a’ > a one has
(18) A(fo,P 000 P SosProna) S %W =00 5

. (19) A Gbyb2 TP 03 5020 Prrgparer s Tota S0P piparar) S 3 (0, ~04,) -

(16), (18);, (17) and (19) imply

. (20) d(.fb,;pf"(bx)a’? Qm ba.ﬁvl1pf'(b:)a‘) $ D;“ ’

which shows that f': X — ¥ is indeed a mapping of approximate systems. Obviously,

f=f

LBMMA 6. Let f: X— Y = (Y}, vy, @y, B) be an approximate mapping and let

v, > vy, be B, be admissible meshes. If B is cofinite, there exists a function yx: B— B,

x(®)=b, be B, such that for any function \j: B—B, Y >y, the function ' = fi

and the maps

.2 = dwmSooryt Xewy— s,

beB,

form an approximate mapping f' = (f' fy): X—= Y = (¥,, v}, gy, B), called
a terminal shift of f. The approximate mappings f,f': X-+Y' are continuous.

Proof. Since B is cofinite, by (A2), cach b e B admits an index x(b) 2.5 such

that, for 0" > b’ 2> y(b),

(22) A @y Qs Guu) SE(0p—05)

and even

(23) d(‘?bob Tob o s Goobd ) S%(.Ul/bo“' V) »

for al] by 5 b.

By (A3), one can also assume that for 3" = x(b)

S(24) d(y, y) Svpn=> d(‘[bqb‘lbb"(y) » Dbod fil;b"(J’f)) 57}.‘('”;:0 - Vbu)

for all b,<b.
We will now show that x has the desired property. Let y: B~ B be a function
with v > x. Let by < b,. Choose b2 y(b,), 1//(b1) By (AMY), there exists an index

cazfi(by), S (by), £(B) such that for any o' = a one has

- (25) A Sl rvwnas Qoo SoPraye) S Vymys  1=1,2.
Since V(b)) Z y(&), (25) and (24) imply
(26) d(Gb,u5) S0P riv0ws Doapip Tuoon SoP rrar) S5 (Ohy = 0p) »

L
. @D (b1 Torp6) Joen P ria)e s Gosta Doayion) Tycears ol rora) <FWh, ~vy,)

icm
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By (22) and (23) we also have

(28) Ao ps) A0 06 SoP 510> Dub SoPriorer) S h —0p) 5
(29) Ay 03 Tonpnn) W66 SoP 100+ Loava D2 6P r(ojar) S5 (05, ~p,) «

Also, by (Al), we have

(30) (@b b2 Do S0P it s Qoo SoPpoar) S Vpy
Now (21), (26), (28), (30), (29) and (27) yield
’(3') d(-ﬁ”l Preooars QIuhz./;:lzpf’(bz)a') < Ulln ‘,

which shows that f! = (/",/;) is indeed an approximate mapping f': X— Y".
By (AM1) applicd to b<y(h), we sce that there is an a2 f(b), (b)) = fir ) *
such that for & > a one has

(32) ACHp v Jo P priyer) S

In § 6 we will need the following lemma.,

Lamma 7. Let f=(f.fy): X=X = (¥, Oy Qppr» B) be an  approximate
mapping and let vy, >v,, b e B, be admissible meshes. If B is cofinite and 6,>0 are
arbitrary numbers, there exists an approximate mapping f' = (f,fy): X=» Y
= (Yy, Vb qur» B) such that
(33) d(x, x') € gy = d(@ngs 5 (%), qhubfb’(xl)) <64y

Sor alk by <b. Moreover, f =f: X—=Y' and f''is an initial shift of f.

Proof. By uniférm continuity and cofiniteness of B, for each b e B, there is *
a number 7, >0 such that

(34) d(x, x) € Ub"fl(‘]rml;fb(‘-"’)z Qbobfh(x/)) <y s
By (A3), every be B admits an index a(b) =/ (b) such that, for any aza),

UV S V.

bozb.

(35) d(x, x) K = d(Prya(), Pryale)) €15 -

We now choose a function f/: B— 4 such that /' >« and f* > @, where ¢ is as in
Lemma 5. Then £/ and the maps fy = fuPrw e form an approximate mapping -
[ X—Y' and f! = f. Moreover, (33) holds because of (34) and (35).

The relation of contiguity gencrates an equivalence relation in the set of all -
approximate mappings belween two approximate systems.

DeriNrmion 7. Let X and ¥ be two approximate systems. Approximate maps
Sof's XY are called equivalent, written f ~f ", provided there is a finite collection
of* approximate maps f,: X— ¥y i =0;1,..,n, such that fo=f,f,= fand -
figfiv, I=0,.,n-1
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An analogous definition applies to almost commutative maps between almost
commutative systems.

The equivalence class containing f will be denoted by [f].

The main result of this section is the following theorem.

TuroreM 4. Let f,f': X Y be almost commutative mappings between almost
commutative systems with limits f, f's X = ¥ respectively. If B is cofinite, then f = f*
if and only if f~f'.

The sufficiency immediately follows from Definition 6 and Theorem 2. This
part of the proof does not require the cofiniteness of B.

The necessity follows from the next lemma.

LemmA 8. Let f,f': X—= Y = (¥, 0. qup» B) be approximate mappings with
limits f, f': X — Y respectively. If B is cofinite and v}, >> vy, b € B, are admissible meshes,
then f = f' implies f~f": XY = (¥4, Vb, Yo B)-

Proof. Choose functions ¥, x¥': B—B by applying Lemma 6 to fand f' respec-
tively. By (A3), there exists a function : B— B such that i = x, ¥’ and

(35) d(y, )< U.p(b)‘-‘>d(qw(b)(y)a ‘Iw(b)(.l’/)) < %v,, , beB.

Put g = fy, ¢’ =Y and
(36)
(€D

Ib = Qoyry f-ﬁ(b) ’

gy = qw(b)fu:(b) .

By Lemma 6,9 = (9,9s), 9" = (¢, g;) are approximate mappings g,9': X ¥’
and f=g¢, f' =g¢'. Moreover, by (LM),

(38

and therefore, by (35) and (36),

A( Sy Prowys Gyin) ) < vy »

(39 d@sParr> Twer Iy f) <hvy,  beB.
Analogously, (35) and (37) imply

(40) d@oPyay> v Gy S ) SAvy, beB.
Therefore, one has

@1 d(gsPyays GuPey) S Sy, beB.

By Lemma 4, g and g’ are contiguous approximate mappings ¥-»¥'. Since
f=g=g" =f, we obtain the desired relation f~f'.
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6. Composition of appreximate mappings

Drrintrion 8. Let X, Yand Z = (Z,, w,, 1., C) be approximate systems and

let f=(f,fu): X=Y, g =(g,9): Y- Z be approximate maps. Let bk = fg: C— A
and let

(]) hc = gcfa(c): }"h(c) —’Zm

If h=(h,h) X=Z'=(Z,w,te,C) is an approximate mapping for some
admissible mesh w, = w, and if limh = gf, then & is called the composition of f and g
(for the meshes w;) and is denoted by A = gf.

Remark 6. In general, k is not an approximate mapping X — ¥. Even if w, > w,,
& may not be an approximate mapping X —Z’. Nevertheless, we will see that, for
cofinite C, the composition gf is often defined. This will enable us to define the com-
position of equivalence' classes [g][f1, whenever C is cofinite.

Lemma 9. Let f= (f,fp): X—=Y and g = (g,9.): Y=2Z = (Z,, We, Iepr, C)
be approximate maps and let w,> w, be arbitrary admissible meshes. If C is cofinite,
there exists an approximate mapping §' = (g',g%): Y=2Z' = (Z,, W, I, C)
(initial shift of g) such that g = g' and the composition g'f: X—2Z' is a well-defined
approximate mapping with

@ lim(g'f) = gf,
where g = limg = limg’ and f = lim f.

Proof. Choose numbers w,, ceC, such that w,<w) <w,. Clearly,
Z" =(2Z,, W, re, C) is an approximate system. By Lemma 7, applied to
g: Y-Z, wl>w, and &, = J(w.—w]), there exists an approximate mapping
g =(g',9.): Y—=Z" (initial shift of g) such that
(3) d(Yﬂ y’) S vg’(c) = d(rcacg:*(y)’ rcocg::(yl)) < %(w;o'— w:’::) E)
for all ¢5<ec,

We will first show that 4’ = fg’ and the maps
(4) h; = gr’.'f;'(c) » Vc € C:

form an approximate mapping A': X—Z'. Indeed, if ¢;<c, then there is
a b>g’(cl)7 g’(cz) such. that

ce C.

4 A9, Qyierrps TeseaFeaDoriearn) S W, -
Moreover, there is an a2 fg(c,), fy{cs), f(B) such that for any &' >a one has
© d(SfpeoProeondreom fsPsow) Syey, 1=1,2.

Note that (6) and (3) imply
(7) d(g:?l fﬂ’(cﬂpfa’(cl)a’ 3 g::: qg'(q)b.ﬁapf(b)n’) < %(W:“ - ng) 4

rt

’
(8) d(rcwagcl:z .ﬂ’(ca)ij'(cn)a’: rc:czg::z qa’(cz)b fbpj(b)a') < i'(wl-‘i - wq) .
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Now (4), (7, (5) and (8) yield
(9) d(h;;ph’(ciia': rcxczh;'zpfl"(cz)a’) < w:‘x 2"

which shows that k': X— Y’ is an approximate  mapping. -
If f=lim f, by (LM),

(10) d(fy@Pres Ay ) < Vg

Therefore, by (3) and (4),

an At prviers Gedyior ) STW=w,)

If g = limg, then ¢’ =g implies g = limg’ (Theorem. 3). "Therefore, by (LM),"
(12 d(geGyiers Ted) S W -

Now, (11) and (12) yield

(13) A, puceys 7o ) S WA W) < WL

which shows that indeed
(14 lim#' = gf.

Depmion 9. Let X, Y and Z = (Z,, w,, I, C) be approximate systems,
where C is cofinite. Let w.,>w, be arbitrary admissible meshes and lot
Z' = (Z,, W, I'ew, C). The composition [g][f] of equivalence classes of approxi-
mate mappings f: XY, g: Yo Z is the equivalence class [g'f ] of the approximate
mapping ¢'f: X—Z’, where g’ ~g is chosen so that g'f is defined.

Remark 7. By Lemma 9 such g’ exists and lim(g’f) = gf, because lim g’ = lim g.
If g ~ § is another representative of the class g such that g''f is defined, then by
Definition 8, limg"f = gf- We now conclude, by Theorem 4, that g”f~ gf and
therefore, [¢°'f ] = [¢'f]. This shows that [g][f] is well defined and lim([g][f]) = gf

For any approximate system Y = (Y, vy, qyys B) we define the identity

mapping 1y: ¥- Y. It is given by the identity 1,: B— B and by the identity maps )

1,: Y= Y,. Condition (AMI) is an -immediate consequence of (Al).

THEOREM 5. Almost commutative systems over cofinite index sets and equivalence
classes of almost commutative maps between such systems form a category denoted

by Ap-Inv.
Proof, The associativity law

(13) [ (g1L5D = ((MgD[S]

follows from #(gf) = (hg)S and Theorem 4. Similarly [1y][g] = [g] and‘

[91[1x] = {g] follows from lyg = g and gly = g respectively.
It is a consequénce of Definition 8 that lim is a functor from Ap-Inv to the

category ¥ of compact: Hausdorff spaces and continuous mappings. By Theorem 4, "

icm
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im[f]=lim[f] implies [f]= [f’], which shows that lim: (Ap-Inv)~% is
a faithful functor.

Let (Ap-Inv)sng denote the full subcategory of Ap-Inv whose objects are almost
commutative systems of compact ANR’s over cofinite index sets. By Theorem 2,
lim: (Ap-InV)anp — % is a full functor.

Furthermore, every compact Hausdorfl space X is homeomorphic to the limit
of an inverse system X of compact polyhedra over an unbounded cofinite index
set (sec e.g., [8], T, § 5.2, Theorem 8 and I, § 1.2, Theorem 2). By Propositions 1
and 2, X can be viewed as an almost commutative system of compact ANR’s. This
shows that lim on Ap-Inv and (Ap-Inv),ne is a representable functor.

Summarizing, we obtain the following theorem.

THEOREM 6. The funetor lim is an equivalence of categories between (Ap-Inv)anr
and 4. )

7. Approximate systems and shape of compact spaces. The purpose of this section
is to show that approximate systems of ANR’s over cofinite sets can be used to study
shape of compact HausdorfT spaces in the same way in which commutative ANR-
systems were used in [7] (see also [8]).

In this section we are interested in approximate systems X = (X,, U Dagr» 4)
of compact ANR’s which satisfy the following homotopy conditions.

(H) pa;azpuzaa = paxua »

(Ll{) anzpuz = Pﬂl!
The next lemma shows how to convert an arbitrary approximate system of
ANR’s into one having properties (H) and (LH).

LemmAa 10. Let X = (X,, 0, Pua» A) be an approximate system of compact
ANR’s. Then there exists an ordering <' on A such that a<'a' implies a <a’,
A" = (4, <) is directed and X' = (X,, v,, Pow» A') is an approximate system satis-
fying (B) and (LH). Moreover, X' = limX' and X = lim X coincide and so do the
natural projections pl: X'~ X, and p,: X—X,, ac 4.

Proof. For every a € 4 there is an #,> 0 such that #,-near maps into X, are
homotopic (X, is an ANR). By property (A2), there is a function ¢: 4 -4, (@) > a,
such that

(1) d(pmuzpllzas 4 quns) < Hay »

whenever a; = a, = ¢ (a,).

We put a; <'a, provided a, > ¢(a,) and we put a, <'a, provided a; <'a,
or ay = a,. Cleatly, a, <'a, and a, <a; imply a; <’'a;. Moreover, since 4 is
unbounded, every a € 4 admits an o' € 4 such that a <'a’. Then, by Proposition 5,
X' = (X,, 0y, P> 4') is an approximate system and X' = X, Py =pa, GEA.
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Note that a; <'a, <'a; implies a; < p(a;) <a, <ay so that (1) yields (H).
Moreover, (1) and Proposition 4 imply

3] A(PayasPazs Pay) S May »
which yields (LH).

Let X = (X,, paw> A) be an almost commutative system of compact ANR’s
with limit X and projections p, and let (H) and (LH) be satisfied. Then the homotopy
functor converts X to a system HX = (X,, [p], A) in the homotopy category.
Moreover, the homotopy classes [p,]: X — X,, a € 4, form a morphism Hp: X-HX
of pro-HTop (for terminology and notation see [8]).

Approximate ANR-systems (over cofinite index sets) with properties (H)
and (LH) can be used in shape theory just as commutative ANR -systems because
of the following theorem, which generalizes [8], I, § 5.3, Theorem, 9.

THEOREM 7. Let X = (X, Pour> A) be an almost commutative system of compact
ANR’s, which has properties (H) and (LB). Let X = limX and let Put X=X, ae A,
be natural projections. Then Hp = ([p,]): X HX = (X,, [Puw], A) is an HTop-
expansion of X.

Proof. We must verify the following two conditions (see [8], T, § 4.1 and § 5.3,
Lemma 3).

(E1) For every mapping h: X~ Pinto a compact ANR P there exist an a e A
and a mapping f: X,—P such that & =~ fp,.

(E2) If P is a compact ANR, ae A and f,f": X,—P are mappings such that
JPa = f'pa, then there exists an o’ > a such that fp,,. 2 [ Doare

Proof of (EI). Choose # > 0 so small that n-near maps into P are homoto pic
By Property (R1) (Proposition 7), there exists an ae A and a mapping f: X,— P
such that d(fp,, k) <n. Consequently, fp, = h.

Proof of (B2). Let H: X xI-»P be a homotopy with H, = fp, and H, = ['p,.
By compactness, there are numbers 0 = ty <ty <..<t, =1 such that

3 d(H,, H, V<nl4, i=0,.. k=1,

a<'a,,

By property (R1) (Proposition 7), there is an g e 4 and there are maps fi1 X,~P
such that

@ d(H, fipd <nfd, 0= 0, . ko1,

(3) and (4) imply

) d(fiParfrespd <, =0, k1.
By Property (R2) (Proposition 7), there is an a' > a such that
© S ipaws frebad <, =0, ., k=1,

and therefore,

(7) fpad' =f0paa' zflpaa’ = ﬁﬁpan‘ =flpaa’ .
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