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Model theory for infinite quantifier languages
by

Tapani Hyttinen (Helsinki)

Abstract. In this paper we shall prove theorems for infinite quantifier languages (e.g. for
Ly+x, %>w) that are similar to those which are familiar to us from the model theory of e.g. Ly, 0
and L. We do this by using games and tree constructions. The main result of this paper is
Theorem 4.14 and its corollary, which states that if » is a regular cardinal and %% = xthen one
cannot say in Ly+, that an ordering contains no descending sequence of length #. This generalizes
the undefinability of well-order in Lo, e, due to M. Morley and E. Lopez-Escobar (IMoland [Lo]).

This work continues the work started in [Hy] and the main results of this paper are improve-
ments of those in [Hy]. This paper can be read independently of [Hyl. This work also parallels
[0i2], which uses proof-theoretic methods to derive related results.

1. Standard games. Although we are going to deal with many different games,
the central technical ideas we use are common to all of them. And so we begin by
studying games in general.

All the games in this paper are played by two players, which we call 4 and E.
1t is practical to assume that 4 is male (he) and E is female (she). All the moves in
these games are made by choosing elements from certain sets. Most of the games
in this paper are what we will call standard a-games or standard e-games:

1.1. DerINITION. Let « be an ordinal, let I = {I;: f<a} and J = {Jp: B <o}
be families of sets and let W = (p<op) X Tp<oJp)- Then G = A(I, J, W) is a standard
a-game (sa-game in short) of length o. It is played by 4 and E. In every move
f <, first 4 chooses an element x; € I, and then E chooses an element yg € Jpg-
We say that E wins the game if the pair of sequences (x,7) = ((*p)p<as (Vpp<e)
chosen during the game belongs to W.

We define a standard e-game (se-game in short) G = E(I, J, W) as we defined
sa-game above, except that now on every move E chooses first from 7 and then A
chooses from J.

For any cardinals » and 2 we say that the sa-game A (I, J, W)is a 4, x-a-game
if it is of length » and for all & < % |I|, |/} < 2. The sa-game G is an oo, x-a-game
if for some A, G is a A, x-a-game. We define 4, c-q-games and o0, co-a-games
in the same way.

Similarly we define 4, %-e-games.
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With every game we associate the concept “a strategy of 4 for the game” and
“q strategy of E for the game”. In the case of the s-games we do this as follows:

1.2. DeFITION. A strategy of A (E) for the sa-game A(I, J, W) of length
is & set F = {f;: p<a} of functions fy: Hy<ply—1 (fp: Hyeply—Jp).

A strategy of E(A) for the se-game E(I, J, W) of lengtharis a set F = { f3: f <}
of functions fy: My<pdy =1y (fy: Hygply, —Jp).

Wsually we are not intérested in strategies in general but in winning strategies.

1.3. DerINITION. A strategy of a player for a game is winning if the player
can always win the game by playing according to this strategy. (We say, e.g., that E
plays according 10 her strategy F = {fy: ff<a} for an sa-game if in every move
B <u she chooses fy(xg. ..., Xz), where Xy, ..., xp are the previous choices of 4.)

We say that G = E(1, T, (Wg<ody x My Jp)\W) is the dual of G = A(I,J, W),
and vice versa. Notice that £ has a winning strategy for G if and only if 4 has
a winning strategy for G and 4 has a winning strategy for G if and only if E has
a winning strategy for G.

Our first major goal in this paper is to give in Chapter 2 the Approximation
Theorems, which are the main tools in Chapter 4. They do not hold for all sa-games
and se-games, but they do for the closed and open ones.

1.4. DEFINITION. An sa-game A(,J, W) of length « is closed if there are sets
Wy & (I, <p L)% (I, <4 T,), B <a, such that

((xy)y<a, sy <,) eW
if and only if for all f<a

((x7)7<59 (y7)7<ﬂ) € Wﬂ *
An se-game E(I,J, W) of length « is open if there are sets

W,,;(H,,qu)x(ﬂ,qu) ,
B <a, such that

((%)y<as (rpdy<a) € W
if and only if for some f<a

(Geply<p (Pydy<) € Wy

We conclude this chapter by defining approximations for the sa-games and
se-games.

We say that a well-founded tree T = (T, <) is neat if for any two different
points x and y without immediate predecessor, the sets {zeT: z<x} and
{zeT: z <y} are not the same. For any cardinals » and 1 we say that T’ = (T, <)
is a A, x~tree if it is a neat, well-founded tree and no point in T has > 1 immediate
successors and there are no branches of length = x in T. As with the games, we say
that Tis an oo, x-tree if it is a 4, %-tree for some A. Similarly we define A, co-trees
and oo, oo -trees,
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1.5. DERNITION. Let G = A(I,J, W) (G = E(I,J, W)) be a closed sa-game
(open se-game) of length x for some cardinal % and let T be an o0, %-tree. The
T-approximation G ot G is the following game played by 4 and E. They play G” as
they play G except that during the game they go up the tree T as chosen by A(E).
The game is over when they cannot go up the tree any more. So the rules are the
following: for each move «, first A(E) chooses elements £, €T and x, € I, so that

1. if a is a successor, o« = f+1, then ¢, is an immediate successor of #;;

2. if « is a limit, then f, = supg<a?p-

After this, the player E(4) chooses y, € J,. The game continues only as long as A(E)
can choose ¢, satisfying 1 and 2. When the game is over, the players have made of
moves for some o < » and they have chosen sequences x = (X)g<a» ¥ = (Vp)p<a and
(1)p<a- E bas won if ((¥p)p<y> (Pp)p<y) € W, for all y<a ((Xphp<ys (Ppp<y) € We
for some y < ).

1.6. DEFINITION. If G is 2 sa-game then a strategy F of A(E) for the game G
is a set F= {f;: a<x} of functions fo: Hyeody>Tx1, (fo: My TxIp—T0).

In the case of se-games G the strategies for G” are defined similarly.

Let T and T' be ordered sets. We say that a function g: T—T" is order-pre~
serving if for any x,yeT, g(x) <g(y) if x<y.

1.7. LeMMA 1. Let G be an sa-game of length .

(i) If Ehasa winning strategy for G, then for all oo, %~trees T she has a winning
strategy for G7,

(i) Let T and T " be oo, %-trees. If there is an order-preserving function g: T—-T’
aid E has a winning strategy for G*, then she has a winning strategy for G7, too.

2. Let G be an se-game of length x.

(i) Iffor some oo, x-tree T, E has a winning strategy for GT, then she has a winning
strategy for G, too.

(ii) Let T and T’ be oo, x-trees. If there is an order-preserving function g: T—v T'
and E has a winning strategy for G¥, then she has a winning strategy for G-,

The lemma follows immediately from the definitions.

2. Approximation theorems for standard games. We begin this chapter by proving
an Approximation Theorem for open se-games. Originally the idea of the proof of
this theorem is due to M. Karttunen (see [Ka]).

2.1. APPROXIMATION THEOREM FOR OPEN se-GAMES. Let G = E(I,J, Q)
be an open A, % -e-game for some cardinals A and x. If E has a winning strategy for G
then for some A, u-tree T she has a winning strategy for G7, too.

Proof. Let F = {f,: ® <x} be a winning strategy of E for G. Let T be the set
of all sequences ((xp)p<s> (Vp)g<a) such that

(i) always x5 = fy(-.os Pys - ly<ps

(i) for all f< o, ((x,),q, y<s) ¢ W5,

where Wy, B <x, are as in the definition of openness, We order T by the initial

segment relation, which makes T a A, x-tree.
s!l
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It is easy to see that E has a winning strategy for G7: Let us assume that players
are on move «. On earlier moves A has chosen elements y,€J;, f <o, and E ele-
ments x; € Iy and #; € T, f < o Then on move o E chooses 2, to be ((Xp)g<a, (¥p); <)
and x, to be fi(.., ¥p, ... }p<q. Clearly this is a winning strategy. M

Next we give an approximation theotem for closed sa-games. The proof can
be found in [Hy].

2.2. THE APPROXIMATION THEOREM FOR CLOSED sa-GAMES. Let A and %
be infinite cardinals, let G = A(I,J, Q) be a closed A, x-a-game and let ju satisfy
the condition below. If for all u, %-trees U the player E has a winning strategy for G¥,
then she has a winning strategy for G, too.

The. condition for p is the following: If A is a successor or cf(A) = x then

= U {QY™*: B,y cardinals and <3,y <2}
and otherwise
. w=U{R") "y cardinal and y <} .

In Chapter 4 we will prove several consequences of these approximation
theorems.

3. Infinite quantifier languages. In this chapter we prepare for the last chapter
by defining the languages in which we are interested.

Let A and » be cardinals and let i be a set of relation-, function- and constant
symbols. The set p is called the signature. We recall the definition of the language
L (1) (L, in short):

3.1. DermaTiON. If all the relation and function symbols in p are of arity <
then the language L, (n) is defined and it is the least class X such that

(1) every atomic formula of the signature u belongs to X;

(2) if pe X then Tpe X;

(3) if @ is a subset of X of cardinality < 1 and the number of free variables in &
is < then A @ and \/ @ belong to X;

4) if p e X'and X is a set of variables of cardinality <x then VXo and I%¢
belong to X.

The semantics of Ly, is defined in the usual and obvious way.

The languages My(11) (M, in short) were first introduced by M. Karttunen
in [Ka]. Prior to that, J. Hintikka and V. Rantala had introduced in [HR] N-lan-~
guages that were defined by a similar technique. The idea behind these languages is
the following. Let T be a syntax tree of some formula ¢ € L,,,,: Then T has, among
others, the following properties:

(1) Every node has <« immediate successors.

(2) Every branch has length < .

We can generalize L,,; by inéreasing the number of immediate successors and
length of branches. The resulting language is M;,.
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3.2. DeFniTioN, If all the relation and function symbols in gt are of arity <x
then M,.(n) is defined and a formula of M, (1) is 2 pair (T, /) where .

1. T is a A, x~tree;

2. 1 is a labeling function with the properties:

(a) if ¢t e T does not have any successors then /(t) is either an atomic or negated
atomic formula of the signhature u;

(b) if e T has exactly one immediate successor then /(t) is of the form Jx
or Vx, x variable;

() if t € T has more than one immediate successor then I(f) is either \/ or A.

To be able to define a semantics for M,,, we must define a certain semantic
game. Let o be a model (of the signature 1) and let ¢ = (T, ) be a sentence of M.

3.3. DerINITION. The semantic game S(s/, @) is 2 game of two players, 4 and E.
When the game begins, the players are in the root of T and during the game the
players go up the tree 7. At each move the players are in some node te T and it
depends on /(¢) how they continue the game:

) If i(t) = \/ (/\) then E(4) chooses one immediate successor of £ to be thc
node where the players go next.

(2) If I(t) = 3x (Vx) then E(4) chooses an element x* from & to be an inter-
pretation of x. The players go then to the immediate successor of .

(3) If I(t) = p(X) then the game is over and E has won if

o Ep(®x].

The concepts a strategy of A4 for S(«f, ¢) and a strategy of E for S(«, ¢)
are defined essentially as in the case of sa-games and se-games.

Let ¢ be a sentence of M;, and o a model.

3.4. DEFINITION. &f ¥ ¢ if E has a winning strategy for S(«, ¢).

We list below a couple of properties of these languages that are apparent but
still worth noting.

(1) For all 4 and % L,, is a sublanguage of M, (L, < M3,), 1.e. for any sentence
@ of L,, there is a sentence Y of M,, which is equivalent to ¢.

(2) For all A L,, = My, i.6. Lio < My, and My, < L.

(3) If %> o then there is no obvious reason why Mj, would be closed under
negation. One might think that we could get the negation of ¢ = (T, ) by putting
T = ~ ¢ = (T, ") where [' is such that ['(r) = A if and only if I(r) = \/ and
so on. But this is not the case because it may happen that for some model & the
semantic game S(s7, ) is non-determined, i.e. neither Enor A has awinning strategy.
In this case o k= ¢ and o k= ~ ¢ (see [Hyl). The question whether all the lan-
guages M,, are closed under negation or not is open to the author.

In Chapter 4 we will need the mext theorem from [Ka].

3.5. THEOREM. Assume A" = A If ¢ & M+, (1), |1l <4, has a model then it
has a model of cardinality <A
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Proof. Simply take some model & of ¢ and some element a € o and close {a}
under the winning strategy of E for S(#, ¢) and under the functions of u. M

Theorem 3.5 is true also for the language /\;+,, which will be defined below
(see [Ka]).

Let 1 and » be infinite cardinals. The Ax-Vaught sentences are defined as follows.
Originally Vaught sentences were defined by R. L. Vaught in [Va].

3.6. DeFNITION. We assume that all the reJation and function symbols in the
signature p are of arity <. Then ¢ is a conjunctive Ax-Vaught sentence (of the
signature p) and  is a disjunctive Ax-Vaught formula it they are of the following
form:

P = (qul/\ By, V )a<u/<\ iodouniude

x €l Ju€Ja
'// = (axa. \/ vya /\ )a<x \/ ‘/’iujomi"j’
igele JueJu a<x

where I, and J,, & <, are sets of cardinality <A and @*fordde ang yjfofe.fade
o < %, are atomic or negated atomic formulas (of the signature i) with the variables
from the set {x,, Yo, ... Xa; Vo).

We will write A, for the language of all conjunctive Ax-Vaught sentences
and \/,, for the language of all disjunctive Ax-Vaught sentences. Again, in defining
semantics for the languages A\ ;, and \/,,, we need a certain semantic game. Let o
be 2 model,  a conjunctive Ax-Vaught sentence and v a disjunctive Ax-Vaught
sentence.

3.7. DEFNITION. The semantic game S(sof, @) is a game of two players,
A and E. For each move & < x, first A chooses an element x from & to be an inter-
pretation for x, and then he chooses some i, € I,. When 4 has chosen x¥ and i,

E chooses some y from & to be an interpretation for y, and then she chooses some
Je€J,. After x moves E wins if

lojo e lufup.
&{’:(pojo d(xg’yg,_.,xad;y:’

for all a <.

The semantic game S(=7, ) is again a game of two players, 4 and E. For
each move a <z, first E chooses an clement x¥ from & to be an interpretation
for x, and then she chooses some i, & J,. When E has chosen x¥ and i, 4 chooses

o . N
some y, from s to be an interpretation for y, and then he chooses some j, & J,.
After » moves E wins if

o Fyloleteln(ll y X Y8,
for some o <.
There is also another way to define S(«, ¢): we put
I'= {ofxL: a<u},
J = {ef xJ;: a<u}
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and define W < (I, <, X L)X (Ty< o % J,) to be such that

(((am iw))a<x’ ((buju))u <x € W
if and only if
ok glolodedg b ., by

for all & < x. Then we can define S(«f, ) to be A(Z,J, W). So S(+, ¢) is a closed
sa-game of length . Similarly we can see that S(&, ) is an open se-game of
length ».

3.8. DrRNITION. & F @ (& F ) if the player E has a winning strategy for
S(d: (f’) (S(J?[, '//))

We make the following remarks:

1. In Definition 3.6 we could have let @™ol and holo-i« pe con-
junction or disjunction of <A atomic or negated atomic formulas, e.g., and still
get the same languages A\, and \/j,.

2. In all cases My, < Nasw and My, < Vasy. If 1> & then A, < M+ and
Ve < M. If 4 is a successor cardinal or a regular limit cardinal with AF =2
then Ml,,g /\;‘“ ﬂ.nd M,wé \/An-

3. Asin the usual proof of the Gale-Stewart Theorem, we can see that if g & /\ 1o
then S(o, @) is determined, i.e. either £ or 4 has a winning strategy. If g € Nax
for some x>  then S(s7, ) does not have to be determined (see [Hy)). The same
is also true for disjunctive Vaught sentences, because the semantic games of disjunctive
Vaught sentences are duals of the semantic games of conjunctive Vaught sentences.

4. The languages /\;, and \/;, are not always closed under negation. For
example A\,(@) is not closed under negation: :

o = Vx¥x; 4\ Ax s x j<i}
belongs to \g»(F) but "¢ does not because N 1s compact (see [Ka]). In Corol-
lary 4.18 we have another example of a language A\ that is not closed under
negation,

"We say that ¢ belongs 10 Apu( Vews Moxs L) if it belongs to
Al Vs Mg, Li) for some A Similarly we define the languages Nioo
(\/lw! My Lag) and /\ww (\/ww» Mooy Loneo)-

We conclude this chapter by giving a characterization for /\m-clementary
equivalence.

Let o and # be models and « an ordmal.

3.9, DERINITION. The Ehrenfeucht-Fraisse game of length « F(sf, ®) is
a game of two players, 4 and E. For each move f§ <« first A chooses an element
age o or byed and then E chooses an element by e & if 4 has chosen a, € o,
otherwise she chooses a, € #. After o moves E wins if the function that takes ag to by
for all f <« is a partial isomorphism.

As with the semantic game for the conjunctive Ax-Vaught sentences, we could
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find such I, J and W that F(s/, %) is A(I,J, W). So F(of, %) is an s-game of
length o and it is closed if all the relations and functions are of arity < cf(), as
one can immediately see.

Let % be a cardinal and o/ a model of cardinality A.

3.10. DErINITION. (i) 0% is the following sentence of /eyt
O = V2 A\ 390 V Dac \ 070 Ct0, Yo, o0y Xy 32)
igeof Juesf a<i

where @ !ix(x po. .., %, ¥,) is the conjunction of all atomic or negated
atomic formulas ¥(xg, Yo, ..., ¥z V) that satisfy

'91 F ‘/’(jﬂy 7'.0: '“bjﬂﬂ inc)‘

(i) ¥% is the following sentence of \/j+,:
‘//x” = Gxai\e/dvyaj /E\d)¢<"¢\</nllliojomimj’(xo: Yoo vy Xy yu)

where /oo tede(x, yo L, X, ) is the disjunction of all atomic or negated atomic
formulas (X, Yos s Xu» ¥a) that satisfy

of = l[/(fo: Bos vves Jus ia) .

The next lemma and its corollary are from [Kal.

3.11. LemMa (M. Karttunen). If all the relations and functions are of arity
< cf(x) then for all models #:

(i) E has a winning strategy for S(®, ¢%) if and only if she has a winning strategy
Jor F(, %B);

(i) E has a winning strategy for S(@ , ) if and only if A has a winning strategy
Jor F (L, B).

3.12: CoroLLARY (M. Karttunen). We assume that sf and B are models and all
the relations and functions are of arity < cf(x). Then s¢ = BN o) if and only if E
has a winning strategy for F (oA, 5).

4. Model theory for infinite quantifier languages. Our first goal in this chapter

is an approximation theorem for disjunctive Ax-Vaught sentences.
Let

Y= Gx”‘i\/; Ve A\ dxc |/ 000 leds

oaly Ju€du A3
be a disjunctive Ax-Vaught sentence, T a v, x-tree and let & = max {2, v}.

4.1. LemmA. There is a T-approximation of Wi, Y7, in My, such that for all
models of :

(1) E has a winning strategy for [S(s#, )" if and only if she has a winning
strategy for S(sf,y7) (i.e. o EYT);

2 -‘4 has a winning strate, yJjo ls o ’ ¢ [ mld nenasaw
f ( f Onl} lf i‘ 1ning st aleg)
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We skip the easy proof.

We immediatcly get the next corollary from Lemmas 4.1 and 1.7.

4.2. CorOLLARY. Let ¢ be a disjunctive cox-Vaught sentence and T and T'
00, u-trees. Then

1. E@¥—op;

2. If there is an order-preserving function g: T—T" then k o7 - @7

The next theorem follows immediately from Lemma 4.1 and Theorem 2.1.

4.3, APPROXIMATION THEOREM FOR DISJUNCTIVE VAUGHT SENTENCES (M. Kar-
ttunen [Ka]). If V/ is a disjunctive Ax-Vaught sentence and o is of cardinality <A then

gk \/ oTeq.
TA,x-tree

4.4, COROLLARY. If of and # are models of cardinality » and of = B(My+y)
then of =%B.

Proof. This corollary follows immediately from Lemma 3.11 (ii) and Theo-
rem 4.3. W

In the case % = o the following corollary is due to D. Scott. In [Ra] V. Rantala
has proved a weak version of it.

4.5. COROLLARY. Let of be a model of cardinality x and X < . Then the following
are equivalent:

(i) X is closed under all automorphisms of & ;

(ii) There is a formula (x) of My«, such that of ¥ \i(d) if and only if ae X.

Proof. “(ii) - (i) Trivial. “(i) = (ii)” For each a¢ X let ¢(x) be a disjunctive
% x-Vaught formula such that for all be of of F (b) if and only if there is no
automorphism of s which takes a to b. This ¢ exists by Theorem 3.11 (ii). By The-
orem 4.3 for each b & X there is an approximation of ¢ which is true in ¢. Let ¢/, be
conjunction of these approximations for each a ¢ X. Then i, € My, and & F %,(b)
and of k= ¥, (a) for all a ¢ X. But now i = \/ {¢/s: b e X} is the required defining
formula, W

Next we study approximations of conjunctive Vaught sentences. Let

P = (sz /\ aya v )¢<x /\ (Plohmi'h
Iyala Jaeda a<x

be a Ax-Vaught sentence, T a v, ®-tree and let ¢ = max {4, v}.

4.6. LEMMA. There is a T-approximation of o, @7, in My,, such that for all
models o :

L. E has a winning strategy for [S(e , o))" if and only if she has a winning strategy
Sor S(st, %) (i.e. Ak @N);

2. A has a winning strategy for [S(, @)|” if and only if he has a winning strategy.
Jor 8(4, @7).

We skip the easy proof. C

Vaught himself has defined approximations ¢® for all o, w-Vaught sentences @,
see [Ma] (or [Va]). One might ask how different the approximations defined here


Artur


134 T. Hyttinen

are from those defined by Vaught. The next lemma apswers this. We skip the easy
proof.

4.7. LEMMA. Let ¢ be an wqw-Vaught sentence.

1. For every ordinal o there is an 0, w-tree T such that F 7%,

2. For every o, w-tree T there is an ordinal o such that ¥ ¢ — 7.

We immediately get the next corollary from Lemmas 4.6 and 1.7.

4.8. COROLLARY. Let ¢ be an cox-Vaught sentence and T and T' o, x-trees.
Then

1. ko-oT;

2. If there is an order-preserving function g: T—T" then k ¥ — @,

The next theorem follows immediately from Lemma 4.6 and Theorem 2.2, In
the case % = o it is due to R. L. Vaught ([Va]).

4.9. APPROXIMATION THEOREM FOR CONJUNCTIVE. VAUGHT SENTENCES. I ¢ is
Jn-Vaught sentence, o is of cardinality <) and u satisfies the condition below then

AdE N T

Tp,x-tree
The condition for p is the following: if A is a successor or cf(d) = x then

i=U{QR™)*: B,y cardinals and ff <3,y < x}
and otherwise

p=U{@")*: y cardinal and y <x}.

4.10. COROLLARY. For all cox-Vaught sentences P,

AL

T o0, x-tree

4.11. COROLLARY. For all models of and #
o =BM,,) if and only if of = B\ ) -

We recall from Chapter 3 that of = #(\/,,) if and only if E has a winning
strategy for F(s7, #). By Theorem 4.3 of = #(M,,,) if and only if of = BN wo)-

Next we aim to prove the main theorem of this paper, Theorem 4.14. To do
this, we have to be able to construct models for sets of sentences of Lyv,. For
this reason we now present a technique to construct a model out of constants.

Throughout the rest of this chapter, we assume that x is a regular cardipal and
%" = % (we do not assume that x is a limit cardinal). We also assume that the
signature u is of cardinality < and that all the relation and function symbols in p
are of arity <.

Let X be a set of sentences of L+, (1), || <, and let C = {ci: i<} be aset
of new constant symbols. We assume that in every sentence ¢ e X' all negations are
pushed in front of atomic formulas.

Let 4(C)2Z be a fragment of L+, (uu C) of cardinality x, i.e. A4(C) is closed

Fope
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under subformulas and under substituting free variables by terms. This 4(C) exists
under the assumptions on x we have made. Let 4(C) be the family of all subsets
of A(C) of cardinality < that have the property that for all atomic formulas ¢
of L uuC) cither ¢ ¢S or T ¢ S.

4.12. DurmvrioN. The Hintikka game H(Z, 4(C)) is a game of length x
played by 4 and E. During the game A interprets symbols of x to the set Cto make C
a model of Z. This is done so that at every move o < 2 first E asks a question and
then A answers the question by choosing some S, & 4(C). There are eight djfferent
ways to form the question:

(1) E chooses some @ eZ; then 4 must choose S,e4(C) so that p&S,.

(2) E chooses a closed term f; then 4 must choose S, 4(C) so that t =t
t =ceS, for some ce C.

(3) E chooses t = t' ¢ Up<aSp, where t and 1’ are closed terms; then 4 must
choose S, € A(C) so that ¢' = teS,.

4 E chooses A% (%) & Up<oSp; then 4 must choose S, € 4(C) so that ¢(¢) € S,
for some Ze C.

(5) E chooses YXp(x) € Uy, Sy and some sequence ? of closed terms; then 4
must choose S, ¢ 4(C) so that o(f) € S,.

(6) E chooses \/® € Jp<aSy; then 4 must choose S, 4(C) so that ¢ &S,
for some ¢ & .

(7) E chooses AP € Up<sS; and @& P; then 4 must choose S, € 4(C) so
that ¢ € S,.

(8) E chooses ¢ = ' and ¢(£) from Up<,Sp, wheré ¢ and ¢’ are closed terms;
then A must choose S, & 4(C) so that p(t')eS,.

A4 must always choose S, so that Up<aSp S Se. E wins if for some o <x 4
cannot find S, satisfying the rules. Otherwise A wins.

Again we notice that H, (X, WAM(C)) is an open se-game of length x.

We call this game the Hintikka game becausc it is a generalization of the concept
of Hintikka set: in the case % = o E does not have a winning strategy for
H(Z, 4(C)) if and only if I can be extended to a Hintikka set (see [Mal]). Prior
to the author J. Oikkonen has considered the dual of this Hintikka game.

4.13. LeMMA. (% is a regular cardinal and %% = %) Let T and A(C) be‘ as
above. Jf' E docs not have a winning strategy for H, (, 4(C) ‘the.n z ﬁ(as a canonical
model o (canonicul means that for every ae o there is ce C with ¢ = a).

Proof. We assume that E does not have a winning strategy for H(Z. 4(C)).
We let A and E play the game H,(Z, 4(C)) so that £ plays according to the strategy
described below and A so that he wins. The idea here is to make E asl.c all the possible
questions she can. For this let g: % -»% X % be one-one and onto with the propt?rty
thatif g(x) = (, z) then y < x. In each move & < » we let Q, be the set of all pos'mblz1
questions E can ask in that move. This set depends on how the players have pl‘aye
earlier. In any casc |Q,| <x because x~ =« and' we; can epumerate it as
Q, = {g§: B <x}. The question E chooses in move & is g; if (@) = (@, B)-
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Let {S,: & <x} be the set of answers of 4 in the game where A played so that
he won and E according to the strategy described above. We let § = UnexSy.

In S we have a complete description of s¢. We get the universe of o from ¢
as follows. In C we define an equivalence relation ~ by ¢~¢'if ¢ = ¢' & S. Because
of 2, 3 and 8 in the definition of the Hintikka game, ~ is an cquivalence relation,
For all ce C we write [¢] = {¢/e C: ¢'~c} and definc the universe of & to be
{lc]: ceC}.

All the symbols of U C are interpreted to & in the obvious way, For example
if ce C then ¢ = [¢] and if R(x, y) is a binary rclation symbol then R¥([¢], )
if R(c, ¢) € S and so on. It follows immediately from the definition of the Hintikka
game that o is well-defined and a model of ¥. Trivially o is canonical, B

We say that T'is a wide A, x-trec if it satisfies what we require from a 4, x-tree
except that instead of neatness it is assumed to satisfy only the condition that for
every teT the set

{eT: {ueT:u<t} = {ueT: u<t)}

is of cardinality < A. We use this concept in the next theorem instead of the concept
of the 4, x-tree to make the construction of T* easier. Notice that if for every
A, x-tree T there is an order-preserving function g: T U, then for every wide
A, x-tree T" there is an order-preserving function g: T'= U. This is because every
wide A, %-tree can be extended to a A, x-trec.

4.14. THEOREM. (% is a regular cardinal and % * = %) Let u be any signature
which includes a unary predicate symbol U and u binary predicate symbol <. We
assume that ¢ is a sentence of Ly (1) and that Jor every wide %™, %~ tree T there is
amodel of of ¢ and an order-preserving Junction g: T— (U, <™). Then there is a mo-
del o of ¢ such that (U”, <) contains an increasing sequence of length .

Proof. Let D = {d,: « <x} be a set of new constants. To prove the theorem
it is enough to show that the set

Z={etu{di<d;: i<j<u}u{UWd): i <)

has a model. Let C = {c,: < x} be again a set of new constants and let 4(C)
and 4(C) be as in the definition of the Hintikka game (now the signature is jyw D),
By Lemma 4.13 it is enough to show that & does not have u winning strategy for
H,(X, A(C)). By the Approximation Theorem 2.1 it is enough to show that £ does
not have a winning strategy for [H(2, 4 (O] for every »*, x~tree T. ‘

We show this. Let 7 be an arbitrary x*, »-tree. The idea hero is the following,
We define a model o of ¢ so that 4 can play the game [H(Z, 4(C))]" by putting
to S, only “what is true in &”. If he can do this, he must win. The only problem
he must face in doing this is that E can make him interpret a lot of new constants

dy to o so that in all cases & <42 if a < o', So we must make (U, <) a very
rich ordering.
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We put
T* = {(t,N,n): 1eT, Ne """ » < N()} .

We define an ordering of T* by putting (¢, N, m) < (t', N',n') if and only if

1. t<t" and N(x) = N'(x) for all x<¢
or

2. 4=t and N =N and n<n'

Because % is regular 7% is a wide x™, x-tree.

Let o be a model of ¢ such that there is an order-preserving function
g: T (U, <*). ‘By using o we can now describe even a winning strategy of A
for [H,(2, 4(C)]"

We assume that 4 and E have played ¢ moves. E has chosen the elements
{ty: B<o} from T and asked the questions {g,: p <a}. 4 has answered with the
sets {Sy: f <a}. For some i,j<x, 4 has interpreted all ¢, f<i, and d;, <,
10  and nothing else. We write ¢ and dj for these interpretations. 4 has done this
so that if some constant ¢ & C or de D exists in some sentence ¢ in (Jy<,S;, then
¢=¢por d=d, for some ff<iory<j And everything that is in {J;<.S; is true
in o with given interpretations. 4 has also chosen numbers N(f,) for all f <a.

On move o £ chooses 1, € T and asks a question g,. The question ¢, can be of
one of the cight different types in the definition of the Hintikka game. We assume
that g, is of type 2 and describe how 4 answers. In all other cases 4 can answer si-
milarly by keeping in mind that everything in Jz<qSp is true in & with the given
interpretations.

So E has chosen a closed term ¢, Let i’ <% and j/ < be such that i’ > i, j' > j
andif ce Corde D exists in t then ¢ = ¢ or d = d,for some f <i'ory<;j'.Then 4
puts N(z,) =j' and for all B, i< <, A interprets cp arbitrarily and for all
v,J<y<j’ A interprets d, to g((t,, N', 7)), where N’ e <9y and N;St,,) = N(tp)
for all <« (recall that g is an order-preserving function g: T*—(U?, ; )).dBy
interpreting new constants this way, 4 can be sure that if y < then d; ,< dg.

At this point the interpretation ¢ of ¢ is fixed and 4 interprets ¢, to +”. Then -
he can answer by choosing 8, to be

USpufr =11t = c}.
B

By playing as explained above, 4 wins the game because he puts to S, only what
is frue in of. W

4.15. COROLLARY. (% Is 4 regular cardinal and »™* = x) Let p be any signature
which includes a unary predicate symbol U and a binary predicate .\'ymbol. <. Then
1n Low (1) one cannot say that an ordering is a linear ordering which contains no de-
seending sequence of length x.

Proof. This corollary follows immediately from Theorem 4.14 and tl?c fact
that for each wide x*, x-tree T' there is a linear ordering § which contains no
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descending sequence of length x, and a function f: T—.§ such that if x>y then
Sx)<f(3) (sec [BP]). B
As a Corollary of Theorem 4.14, we can also prove a generalization of Vaught’s

Covering Theorem. In the case » = w it is due to R. L. Vaught ([Va]) and the
proof we will give is analogous to that in [Va].

4,16. THEOREM. (% is a regular cardinal and %™* = x) Let & be « conjunctive
%™ %-Vaught sentence. If @ does not have a model, then there is some »™, %~tree T for
which & does not have a model.

Proof. For a contradiction we assume that

@ = (V’Cai /\ ayu v )a-<,, /\ (Pfulu...l,j“

@ S Jualn a<x

is a conjunctive x*x-Vaught sentence of the signature u and that for every
st x-tree T there is a model of 7 but there is no model of @, The idea in this
proof is to construct a sentence ¥ of L+, that contradicts Theorem 4.14,

We take two new unary predicate symbols M(x) and U(x), one new binary
predicate symbol < and for every « <% and (.., ¥, jp, v Jp<q, Ig € Iy, jyeJyfor all
B <u, we take a new 1+a-ary predicate symbol RG-’adadfi<a

Let ¥ be the conjunction of 1-6 below.

(1) “(U, <) is a partial ordering and M is closed under the functions of u”,
@ NV Ly x5, 2y o Jp <o ROy 30 Do, s Xy Vs oo Yp<a
= QOIS Yy s Xps Vs Jp<a)t g € g, Jy€ Ty for all f<a, a < ).
(3) Yue U(R(w)).
@ AN{Vu, ' e UY {2, v, Jps(<ui >
03 Vg5 38
(R(..ipln..)ﬁ<u<u, Xo» Vos ey Xp, Vs -'-)ﬂ<a“’
R(-.-‘ﬁ]ﬁ"l)’<d(ul’ Xos ¥y vees X, Y '__)ﬁ‘c“))
tipely,jpely for all f<a, o<}
(5) /\ {V“v {’ Xpr Vg "'}ﬁ<ﬂ('R(m‘”Fm)p <c((u’ Xos Yo ey Xps yﬁv ...)/)‘(0(“’
Vi'e U(u' > u=

Vi A\ Bre VMGV (M () A R0, 3y, 3,y s 39)

tigely, jpedy for all ﬂ<a,a<x}.
O] /\ {Vuv {’ Xp2 Ve "‘}I’%( /\ﬂ<aR(mMV"')y<ﬂ(uo Xos Yoy ey Xys Yy ~~)v<l"’
Reriedpdbseq, oo, Xgs Vgr a<a)t ig €1y, fy€Jy for all f<a,

o is & limit ordinal and <x}.
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In short V" says the following thing. Let . be a model for the signature
po{U, M, <}. Then

o B AREIIIR e g e Sy, 0 <K} W
if and only if
“MY R P <y

Because for every ', x~tree 7, ¢" has a model, we see that for every wide
x*, x-tree 1" there are a model o of ¥ and an order-preservingg: T~ (U, <),
Because ¢ does not have a model, there is no model o where (U%, <)
contains an increasing x-sequence, Because ¥ @ Ly, the existence of ¥ contradicts
Theorem 4.14. W

As a corollary ol Theorem 4.16, we will prove & generalization of Theorem 4.14.
We could also get this corolfary from Theorem 4.14 itself by Skolemization. This
Skolemization would go somewhat like the proof of Theorem 4.16.

4.17. COROLLARY. (% is a regular cardinal and »™* = x) Let u be any signature
that meludes u unary predicate symbol U and a binary predicate symbol <. We assume
that ¢ is a sentence of Nevi() and that for every x*, n-tree T there Is an order-
-preserving function g: T-+(U*, <™). Then there is a model s of ¢ such that
(U*, <™y consists of an increasing sequence of length x.

Proof. To obtain a contradiction let @& Ay, i) be such that for every
®*, u-tree T' there is & model & of ¢ and an order-preserving g: T+ (U¥, <*)
but there is no model & of ¢ such that (U™, <¥) consists of an increasing sequence
of length x.

Let th & Nysy be

o= (ax“)“<”,, /\< U AUGx) A (g < x) .

Then @ A is & conjunctive »* x-Vaught sentence and it does not have a model.
On the other hand, for every x* x-tree T (¢ AY)T has a model, because o k e
if and only if there is an order-preserving function g: T— (U*, <*). This contradicts
Theorem 4.16,

4.18. COROLLARY. (% iy regular cardinal and 3% = %) Let p be any signature
which includes a unary predicate symbol U and a binary predicate symbol <. Then
Viuetl) is not closed under negation.

Proof. Lety & \/y 1, (10) be as in the proof of Corollary 4,17, Then 71y ¢ \/,,u(#)
by Corollary 4.17. &

We can also get o separation theorem for M, as a corollary of Theorem 4.16.
(The method in the proof is analogous to that used in [Va].) For this we need the
following theotem. In its most general form it is due to J. Oikkonen [0il]. In the
case x = @ it iy doe to L. Svenonius and R. L. Vaught ([Sv] and [Va]).

We recall that ¥ is £ over L) (over May()) if it is of the form 38y, where S is
& set of relation (and function) symbols and ¥ € Ly(uu8) (f € Mu(puS)).
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4.19. TaroREM. (x is regular cardinal and %" = 1)
1. For all I3 over L+, sentences A8y there is a sentence ¢ of \xtx such that
@) F3SYy -0,
(ii) for all models s of cardinality <x o F ¢~3SY.
2. For all sentences @ of \/x+x there is a It over Ly, sentence A8y such that
E o35Sy,

We omit the proof of this theorem. The proof of part 1 goes as in the case
% = o (see [Ma]). Part 2 can be proved by Skolemization.

Notice that if in part 1 in Theorem 4.19 the negation of I8y is also X}
over Lys,, then F o385y (use Downward-Lowenheim-~Skolem Theorem).

4.20. SEPARATION THEOREM FOR M, .,. (% is a regular cardinal and %** = x)
Let AR and A8y be Z} over My, If ARp AASY does not have a model then there
is a sentence 0 € M+, such that

EARp -0
and ‘
E 0138y .

Proof. We assume that 3Rop A 35y does not have a model. By Skolemization
we can assume that AR¢ and 38y are I} over L,+,. By Theorem 4.19 there are
sentences @ and ¥ of /\,+, such that

1. k3R - ¢ and FASY - ¥
and

2. for all models & of cardinality <x & k ®-HRp and & F ¥ -35y.

By the fact that Theorem 3.5 is true also for A ;+,, as we noticed after the
theorem, we see that ® AW does not have a model. By Theorem. 4.16 there is
a x¥, n-tree T such that (@ A ¥)* does not have a model. But then &7 A %7 does
not have a model. Now

E o>
and
FeT—y
and
EY - 138y
and so
E o738y .
On the other hand,
FARp—¢
and
k@7
and so
EARp - 0" . B

icm
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421, INIERPOLATION THEOREM POR L. (% is a regular cardingl and w<* = %)
Let (pEI:w,{([!‘) and '/' € l‘u‘x(fl’)' ]f P Iz ‘/’ then there is 0e M,,+k([,¢n#’) such that
k0 and 01y, M

Tet

Mj, = {@ e My, the negation of ¢ belongs to My},

We recall th.m A4 (M 1)) ‘i:: thf: set of Limsc 31 over Ly, (over M,,) for-
mulas ¥ for which the negation of ¥ is also X7 over Ly, (over M;,).
4,22, CoroLrArY. (x iy a regular cardingl and ™% = )

Ay (= Ad(Myri)) = M, . W

423, Brr's TIUOREM VOR My, (% is regular cardingl and »* = %) Let‘
o(PYe Myr it AP} and let p{8') be the sentence formed by replacing P everywhere
by P'. We assume that

PR)Ap(P') EVE(P(R) > P'(R)) .
Then there is 0 & My, (1) such that
p(P) b VE(P(E)er0(F) .
Proof. Let & be new constants. Then
(2(P)AP@) A (0(P) A IP'(E))

does not have o model and 0(X) will satisfy what we required if 0(¢) is the separating
sentence of these sentences, B
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A proof of Saffe’s conjecture

by

Ludomir Newelski (Wroctaw)

Abstract. We prove that ift T is weakly minimal, po & S(@) is non-isolated and has iofinite
multiplicity, then T"has 2% countable models, thus proving Saffe’s conjecture. Together with [B2]
this completes the proof of Vaught's conjecture for weakly minimal theories.

§ 0. Introduction. This paper may be regarded as a continuation of the proof of
Vaught’s conjecture for weakly minimal theories, which was initiated in [B2], and
carried on in [B3]. We use a standard set- and model-theoretic terminology. First
we shall review shortly what was proved in [B2], [B3], and sketch some proofs to
make the paper more self-contained. The reader should know the basic ideas from [B1]
and [B2] however, as well as be familiar with stable groups (see [Po]). Vaught’s
conjecture states that every 1*-order theory has either countably or 2% many coun~
table models. Up to now there has been made only a relatively small progress towards
proving this conjecture (see [Ls]). Shelah proved Vaught’s conjecture for w-stable
theories [SHM]. Thus the natural aim of attack became the case of weakly minimal T.
In [B2], Buechler proved that if T is weakly minimal and satisfies .

(8) For every finite 4, if pe S(4) is non-isolated then it has finite multiplicity,
then Vaught’s conjecture holds for T\ Earlier this was also known to Yiirgen Saffe.
Saffe conjectured that if T'is weakly minimal and does not satisfy (S) then T has 2%
countable models. Buechler [B2, Lemma 2.4 Proposition 3.1] reduced proving
Saffe’s conjecture to proving it for T'weakly minimal and unidimensional. This paper
is devoted to the proof of Saffe’s conjecture for weakly minimal 1-dimensional T. So
throughout we assume that 7' is weakly minimal, 1 -dimensional, not w-stable,
does not satisfy (S) and (wlog) is small (i.e. S,(@) is countable).

CB denotes Cantor-Bendixson rank defined on S(4) (cf. [B2)), CB(a/4) abbre-
viates CB(tp(a/A)). Recall that by [Bl] every non-algebraic weakly minimal strong
1-type over & is locally modular. For the advantages that local modularity gives,
see [B1), [B2], [FI]. Also, every such type is non-trivial. This is essentially by [B2, 2.4
and 3.1]. Notice also that if T'is weakly minimal, unidimensional, and a non-algebraic
peS(D) is trivial, then T is w-stable.
4+ -
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