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The upper central series of some matrix groups
by

B. A.F. Wehrfritz (London)

Abstract. In this paper we make a detailed study of the nilpotent structure (specifically of the
upper central series, central height, Hirsch-Plotkin radical and Engel elements) of an arbitrary
group of matrices over a specific type of division ring. These division rings are characterized by
a local residual property and are quite common. They include the following: all fields, division rings
of finite index a power of their positive characteristics, the universal division ring of fractions of the
group algebra of a free group, division rings of quotients of group algebras of certain groups,
including, in particular, the free soluble groups, and division rings of quotients of the universal
enveloping algebras of certain Lie algebras, including, with certain reservations, all finite-dimen-
sional Lie algebras. .

In [11] we analysed in detail the structure of nilpotent and locally milpotent
groups of matrices over certain division rings, which, as a temporary measure, we
called special. (We remind the reader of the precise definition of special Jater in this
introduction.) In this we built on work of Lichtman [6]. In this present paper we
attempt to describe the upper central series and the Engel structure of an arbitrary
group of matrices over a special division ring. Our results are comparatively complete,
much more so than seemed possible when, [11] was written. In particular the hyper-
centrality of the locally nilpotent groups, a major gap in [11], is settled here positively
{and easily) for a large class of special division rings. However, we do give below
examples of locally nilpotent matrix groups over certain special division rings that
are not hypercentral.

If D is any division ring we define as follows the function u(n, D) of the positive
integer variable »n into NuU {co}. Consider subgroups G of GL(n, D) and normal
unipotent subgroups N of G consisting of right Engel elements of G. (We follow the
Epgel terminology of [7], [8] and [9]; in particular our multiple commutators are
all left normed.) Then u(n, D) is the least non-negative integer e for which
[V, .G] = (1) for all such N and G, or co if no such e exists. For all fields D and
many division rings D we have u(n, D) = n—1, see [10]. In [11] we gave an example
of a special division ring D with u(n, D) = oo for all n > 2, see [11], 6.3. What we
missed in [11] is that this example seems somewhat exceptional. A simple argument
ki
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shows that u(n, D) is finite for very many special divisions rings D; indeed frequently
we have the best possible result, namely u(n, D) = n—1.

If G is any subgroup of GL(n, D), where n is a positive integer and .D is a special
division ring, our description of the upper central series and the Engel elements
of G are essentially complete if either the unipotent radical of G is trivial or u(n, D)
is finite. By complete we mean our information is as detailed as the lincar case. The
word ‘essentially’ refers to the case n = char.D = 2, for which we leave some niggling
gaps.

We summarize here our main conclusions. For Theorems A to C below D
is a special division ring of characteristic p 20, n is a positive integer and G is some
subgroup of GL(n, D). Letu(G) denote the unipotent radical of G. For any prime ¢
define e(n, q) by ¢°™? is the largest power of ¢ to divide n!. Note that e(n, q)
<(@—1)"(n—1), see [8], p. 112.

THEOREM Al. Suppose either that u(G) = {1} or that u(n, D) = m is finite.
Then G has central height at most

1 ifn=1,orif n=p=2 with u(G) = 1),
m+l fn=p=2and m<o,

o+em, )<o+Fm-1)] #n>2=p and
o+e(n,2)<w+n—1 ifnz2#p.

Here w denotes the first infinite ordinal. These bounds are not far from the best
possible; indeed they are (very close to) the best known (at time of writing) bounds
in the linear case ([9], 8.6) and in the locally finite-dimensional case (8], 3.4.13),
except for the anomalous situation n = p = 2, m <0, where the bound involves .
We give an example to show that m is attainable in this exceptional case. We do not
know whether the true bound is m or m-+1.

Our results are even more striking if G in Theorem Al is also locally nilpotent.
There, except for the anomalous n = p = 2, m<oo case the bounds are the same
as for the linear case and consequently are attained. Even the locally finite-dimen-
sional case, where the exact bounds are also known, see [8], 3.4.14, does not parallel
the linear case quite so closely. These precise bounds are as follows.

THEOREM A2. Assume G is locally nilpotent and suppose either that u(G) = )
or that u(n, D) = m< 0. Then G is hypercentral and has central height at most

1 Fn=1o0rif n=p=2withuG) = (1),
m+l fn=p=2andm<w,
o+max{g"M—1: g = 3,5, 7}

‘ ifn>2=p and
o-+max{giPl-1: ¢ = 2,3}

ifnz2%p.
Further G never has central height w.

In the anomalous case of Theorem A2 again m is attainable and we leave open
whether the true bound is m or m+1 if n = P=2and m<oo. For any group H
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let {{,(H): o >0} denote the upper central series and {»"H: a>1} the lower central
series of H and set {(H) = | {,(H), the hypercentre of H.

THEOREM B. Suppose either that u(G) = <1) or that u(n, D) < . In the Jformer
case set m = 0. Otherwise set m = u(n, D). Let e be the largest p'-divisor of n!
(meaning n! if p = 0y and put w = {primes q: p +# q< n}. Then:

1. [C(G), m-(-lG] is a TT-group.

2. [8(B)s mux (ot 1,n-1)G] is abelian; if m = 0 even [$(B), ,~1G] is abelian.

3. §(O)En41(G) is @ m-group.

4. L(G)(G) is finite of order dividing e.

The conclusions of Theorem B are much as in the linear case. There is one
obvious difference; m is involved. The linear case (and the locally finite-dimensional
case) suggests that in Theorem B the m+1 should be replaced by m. The difficulties
with settling this point are related to the problems associated with the anomalous
case of Theorem A (! and 2).

As a minor corollary of Theorem B we have the following, see Section 15 below.
Suppose G is locally nilpotent and either u(G) = {1) or u(n, D)< co. If also G
satisfies the maximal condition on abelian characteristic subgroups then G is nilpotent.
In general, a locally nilpotent group with the maximal condition on abelian normal
subgroups need not be nilpotent, since there are locally finite ¢-groups, g a prime,
whose only ascendent abelian subgroup is trivial, see [7], Vol. 2, p. 29. We also prove
the following, sce Section 14 below. Suppose G is finitely generated and either
u(G) = (1) or u(n, D)< . Then G has finite central height and nilpotent Hirsch-
Plotkin radical. All this mirrors the linear case.

In order to discuss Engel structure we have unfortunately to introduce a sub-
stantial amount of motation. Again we follow in the main [7], [8] or [9]. For any
group H,

L(H) denotes the set of left Engel elements of H,

L(H) the set of bounded left Engel elements of H,

R(H) the set of right Engel clements of H,

R(H) the set of bounded right Engel elements of H,

n(H) the Hirsch-Plotkin radical of H,

n(H) the Fitting subgroup of H,

o(H) the Gruenberg radical of H = {x e H: {x) asc H},

G(H) the Baer radical of H = {x& H: {(x)< < H},

o(H) = {xe H: Vge H, geo(y,x"))} and

O(H) = {xe H: @ke N)(VgeH), {g) is subnormal (g, x"> in k steps}

Although the first four here are in general only subsets of H the remaining six
are always subgroups; this remark is important in the proofs. For an arbitrary
group H we have (see [7], Vol. 2, p. 63)

c(H)<n(H)SL(H), n(H)<F(H)<LH),
L(H)<o(H)SRH), . L(H)<e(H)sR(H).
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We also have #,(H) < y11(H) < a(H). (Here nyn(H) .denotes 1n: (n(H)) ete.) Thus
the following is as strong a result as we have any right to expect.

Terorem C. For our arbitrary subgroup G of GL(n, D), where D is special,
o(G) = n(G) = L(G), mn(G) = (G) = L(G),
e(G) = R(G), 2(G) = R(G).
In particular the four sets of Engel elements of G are subgroups.

If, further, u(G) = {1) or u(n, D)< oo then
(@ = 7(G)= L(G), which is nilpotent ,
L(G) = o(6) = R(G) and [,(G) = ¢(G) = R(G).

It scems possible that 7,(G) = 5,7 (G) for all G as in Theorem C. Note that it
follows from Theorem C that if D is special then any locally nilpotent subgroup
of GL(n, D) is 2 Gruenberg group and any Baer subgroup of GL(n, D) is a Fitting
group.

Now we discuss specific examples of special division rings. We begin by remind-
ing the reader of the definition of special. A division ring D is special if for every
finite subset X of .D there is a ring homomorphism ¢ of the subring R of .D generated
by X into a division ring Dg such that Dg has finite (Schur) index a power of its
positive characteristic. If ¥ is any finite subset of R then ¢ can always be chosen
to be one-to-one on Y, see the introduction to [11].

The examples of special division rings discussed in [11] (and by implication
in [6]) are of five broad types.

(a) Any field.

(b) A division ring of finite index a power of its positive characteristic.

(c) Division rings of quotients of the universal enveloping algebras of certain
Lie algebras, including all finite-dimensional Lie algebras.

(d) The universal division ring of {ractions (in the sense of P. M. Cohn, see [1],
p. 254) of the group algebra of a free group.

(e) Division rings of quotients of group algebras over certain groups, including,
in particular, the free soluble groups.

Here types (a) and (b) are obviously special, while (¢), (d) and (¢) cover the
main division rings considered in [6] and [11].
If Fis a field then u(n, F)=n—1 and if D is a division ring of type (b), say
of characteristic p and index p", then
n—=1<u(n, D)< p"(r—D <.
This follows from 1.2 of [10], although the finiteness of u(n, D) is easy; for D is
a vector space of dimension p™ over some maximal subfield of D and so

“u(n, D)< pn—1< o0
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by the field case. As we pointed out above [11] contains an example of a special
division ring D of type (c) for which u(z, D) = w for all 7 >2. No such examples
exist of types (d) or (¢). In the following two results the fact that D is special is already
given in [11], sce especially [11], 1.4 and 1.5, and in mé.ny cases in [6]; it is the com-
putation of u(n, D) that we wish to record here.

ProrosiTioN D. Let F be a field, L a free group and D the universal division
ring of fractions of the group algebra FL. Then D is special with u(n, D) = n—1
for all nz1.

To state the next result adequately we need P. Hall’s calculus of group classes,
see [7], Vol. 1, pp. 1-4. In particular A, F, §~* and §, denote the classes of abelian,
finite, torsion-free and, for some set = of primes, finite-n groups. Also P, Rand L
denote the poly, residual and local operators.

ProrositioN E. Let F be a field of characteristic p >0 and S ¢ soluble group.
Under any one of the following four conditions the group algebra FS has a division
ring D of quotients that is special with u(n, D) = n—1 for all n3> 1.

Lp=0and SeP(UAAFHN NeenR(ATF, A F™) for some infinite set n of
primes.

2.p>0 and SeP(UNF )N RUF, N F )N RAF, " F).

3. 8 = L/M for some free group L and some term M # N, of the derived series
of the normal subgroup N of L such that either p = 0 and L/N e NeexR, for some
infinite set w of primes or p>0 and L/N e RE, N RE,.

4, S is free soluble, ;

The conditions on S in Proposition E are the same as those required by 1.4
and 1.5 of [11] to derive that D is special, except for 2 and the case p > 0 of 3, where
they are slightly stronger. Note that in both propositions we obtain the best possible
result, namely w(n, D) = n—1. For the division rings D of Propositions D and E we
settle the queries left by Theorem A in the anomalous case n=p = 2, m< 0.
For the same division rings D we also make some progress with the queries Teft by
Theorem. B concerning m~1. See (20) and (21) below. ‘

Finally we turn to our examples of locally nilpotent groups that are not hyper-
central. For each prime p we construct groups of 2 by 2 matrices over special division
rings of characteristic p that are locally nilpotent (and hence Gruenberg groups by
Theorer C) but are not Baer groups, are Baer (and hence Fitting) groups but are
not Baer groups, are Bacr (and hence Fitting) groups but are not hypercentral,
are hypercentral but are not Fitting groups and are hypercentral Fitting groups but
are not nilpotent. Clearly these examples cannot arise from special division rings
of types (a), (b), (d) or (e) considered above. In fact they arise from the following
sixth method for constructing special division rings.

Lumva F. Let F be a field of characteristic p >0 and S a torsion-free group
acting as a group of field automorphisms of F. Suppose for every finite subset X of F
and finitely generated subgroup Y of S there is a Y-invariant subfield of F containing X
and centralised by some abelian normal subgroup of. ¥ of finite index a power of p.
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Let D be the division ring of quotients of the skew group ring FS of S over F. Then D is
special.

Note that §'e (P, L)(UF), so D does exist by 4.1 of [5]. We also use Lemma F
to give examples to show that the condition u(G) = 1) or u(n, D) <oo cannot be
completely removed from Theorem B. The obvious question arises as to whether
there are characteristic-zero versions of all these counter examples. We show that
this is the case for those counter examples preventing the strengthening of Theorem B.
However, it remains open as to whether a locally nilpotent group of matrices over
a special division ring of characteristic zero necessarily is- hypercentral and I think
this must be counted the most pressing open question in this area.

The proofs. Until we come to the proofs of Propositions D and E, we let D
denote a special division ring of characteristic p 2 0 (even for these propositions and
also Lemma F this is true, but by conclusion rather than direct hypothesis). Recall
that upipotent subgroups of GL(n, D) are always unitriangularizable ([11], 4.2b).

(1) Let G be a locally nilpotent subgroup of GL(n, D). Then {ge G: g unipotent}
is the unipotent radical u(G) of G.

A subgroup of GL(n, D) in which 1 is the only unipotent element we call
unipotent-free. Thus by (1) a locally nilpotent subgroup G of GL(n, D) is unipotent-
free if and only if u(G) = {1).

Proof. Let h e {g € G: g unipotent). If D is finite-dimensional over its centre
then / is unipotent by the linear case ([9],7.11). Suppose ¢ is any ring homomorphism
as in the definition of special for which

he{ge GnGL(n, dome): g unipotent) .

If ¢, denotes the map induced by ¢ on n by n matrices, then kg, is unipotent. Enough

such ¢ exist to apply ([t1], 4.2a). Consequently 4 is unipotent and the lemma
follows.

(2) Let F be any central subfield of D and G a subgroup of GL(n, D) with G/u(G)
locally finite. Then the F-subalgebra F[G) of the full matrix ring D"*® generated by G
is Jocally finite-dimensional over F.

Proof. Suppose G is finitely generated, so now G/u(G) is finite. Let n denote
the nilpotent radical of F[G]. Since u(G) is unitriangularizable we have
u(G) = Gn(1+n). Hence dimy(F[G)/v) is finite. But w is nilpotent and F[G] is
a finitely generated F-algebra. Therefore dimp F[G] is finite, cf. [8], 4.3.13 or [9],
p. 22, Point 1. The general case follows.

(3) Let L be a locally nilpotent subgroup of GL(n, D) with Lju(L) periodic.
Then there is a unipotent subgroup H and a unipotent-free subgroup K of GL(n, D)
with [H, K} =<1> and HL = KL = HK < GL(n, D), such that Ngygm(L) nor-
malizes both H and K.

This result has a number of immediate consequences. Clearly HNK = {1,
$0 HK = Hx K and H & HK/K = KL/K = L{(KnL) and K = L)(HNL) are both
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locally nilpotent. Further u(HK) = H and u(L) = HAL, for example by (1), so
K = Liu(L).

Proof. Suppose p = 0 and let F denote the centre of D. Then F is trivially
perfect and F[L]< D"*" is locally finite-dimensional over F by 2. Hence there are
by [8], 3.1.7, subgroups H and K of GL(n, D) exactly as required; in the notation
of that result they are the Jordan components L,=Hand L;=K of L.

Now suppose that p>0. Then L is periodic and locally nilpotent, so
L = 0,(L)x 0,(L). Set H = 0,(L) and K = 0,(L). Tn this case H and K are actually
characteristic subgroups of L.

(4) Suppose G = {L(G), R(G)> <GL(n, D)isa subgroup of GL(n, D) generated
by its Engel elements. Then G is soluble and locally nilpotent.

Actually every locally nilpotent subgroup of GL(n, D) is soluble with bounded
derived length, see [11].

Proof. G has a local system of finitely generated subgroups H each generated
by its own Engel elements. Consider such an H. For each ring homomorphism ¢ as
in the definition of special with H < GL(x, domg), the group Hp,, for ¢, the map
on n by n matrices induced by ¢, is nilpotent by the linear case ([9], 8.15). Then Hop, is
soluble of derived length at most 2n, for example by [11], 1.1a). (Actually its derived
length is at most | ~[—log, n] by [8], 3.3.8 and, forn = 1, by [11], 1.1a)). Thus G is
locally residually, soluble of derived length at most 2n, and consequently G is soluble.
But G is generated by its Engel elements. Hence G is also locally nilpotent by
a theorem of Gruenberg ([2], Theorem 4).

(5) Let G be any subgroup of GL(n, D). Then
0(0) = 1(6) = L(G), mn(G) =35(G) = L(G,
¢(G) = R(G), ¢(6®) =R(©6).
In particular the four sets of Engel elements of G are subgroups.

Proof. By (4) the subgroup <L(G), R(G)) of G is soluble and locally nilpotent.
All claims now follow from another theorem of Gruenberg ([3], Theorem 1.5)
with the exception of the equality n,n(G) = &(G). Always #,7(G) <F(G). Set
M == (0), N = G(G) and U = u(M)< N. By [11], 1.3b) the group MU is iso-
morphic (o a lincar group. Therefore N/U s nilpotent. Also M'U/U is periodic by [11],
L3c¢), so [N, MIU/U too is periodic. Apply (3) to [NV, M]1U. Thus we have
IN, MIUS Hx K = GL{n,D), where H is unipotent and K = [N, M]U/U.
Hence H, K and so [N, M are nilpotent. Let x & N. Certainly {x) [N, M is normal
in M. But N is a Baer group, so {x) is subnormal in N and [N, M, x] = (1) for
some positive integer k. It follows that x acts unipotently on the upper central factors
of the nilpotent group [N, M] and so {(x)[N, M] too is nilpotent. This proves
that N <n,(M) and the proof is complete.

The following lemma is in some ways the main result of this paper.


Artur


118 B. A. F: Wehrfritz

(6) Let N be a normal subgroup of right Engel elements of the subgroup G of
GL(n, D) and suppose that u(N) = {I1).

(a) N<L(G).

(b) N has ceniral height in G at most w+e(n, 2) and at most w+-e(n, 3) if p = 2.

(c) Let m = {primes q: p # q<n}. Then [N, G] is a n-group and [N, ,.,G]
is abelian. In particular [N, Gl = 1) if n=1 or jf n =p =2,

(d) N(Nn(,(G)) is a m-group. If e is the largest p'-divisor of nl then
NINAL, (@) is a finite group of order dividing e.

(e) If N|eG, i.e. if for all g e G there is an integer k such that [x, ,g] = 1 for
all xe N, then N<(,(G).

(F) If N is nilpotent then N < {,(G).

Proof. (a) Clearly N = (L(N)), so by (4) the group N is locally nilpotent.
Hence N is abelian-by-finite by [11], 1.3a). Therefore N has a characteristic abelian
subgroup 4, of finite index. By the finite case [N, ,G] < 4, for some positive integer r.

Let g € G. Then {g) 4, is hypercentral. Hence by [11], 1.3¢) it is unipotent-by-
periodic-by-abelian. Then [d,, g] < 4, is unipotent-by-periodic, and 4, is unipotent-
free. Consequently [4,, g] lies in the maximal periodic subgroup T, of 4, This
is for all g & G and so [4,, G] < Tp.

Finally T, is periodic abelian of rank at most n, see [8], 2.3.1 and 2.5.1. Then T,
has an ascending characteristic series with finite factors and length . Hence
To < {,(G) by the finite case and N <{(G) as required.

(b) The proof of (a) yields that N has G-central height at most w-+r+1. We
must be more careful in the choice of 4, if we wish to bound r.

Let 4 be an abelian subgroup of N that is normal in G and is maximal with these
properties. Then Cy(4) > 4 is also normal in G. If Cy(4) # A4, then since N < {(G)
by Part (a), there exists x € Cy(ANA with [x, G]< 4. Henece {x>A < N is abelian
and normal in G. This contradiction of the maximality of 4 shows that 4 = Cy(A).
In particular 4 is also a maximal abelian normal subgroup of the unipotent-free,
locally nilpotent group N.

By ([11], 1.3a) the group N/ is isomorphic to a p’-subgroup of Sym.(n). For
any prime g the composition. length of the Sylow ¢-subgroup of N/4 is at most
e(n, q). But

e(n, )< e(n, 3y < e(n, 2)

for all primes ¢ > 5 and integers » 2 1, see [8], p. 112. Consequently N/A has G -central

height at most e(n, 2) in general and at most e(n, 3) if p = 2. As in the proof of

Part (a), with 4 for Ao, the G-central height of A is at most w+ 1. Once we have
proved (e) (in fact (d) will do) we will have 4 < £,(G), and the proof of (b) will be
complete.

(¢) Let g € G. Then (g} N is locally nilpotent by (a) and so [V, g] is unipotent
by a z-group by [(1], 1.3c). But [N, g] < N, which is unipotent-free. Consequently
[V, g1<0,(N). This is for all ge G and so [N G] <0,(N) is a m-group. If n =1
orif n=p =2 then = is empty and [N, G] = {1).
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Let 4 be as in the proof of (b). Then [N, en,2)0] < 4. But 4 is abelian and
e(n, 2) < n—1. Thercfore [N, ,_ G is abelian.

(d) Let 4 be as in the proof of (b). Then N/A if a finite n-group of order di-
viding e, so we need to prove that 4/C(G) is a m-group. If g e G then {g) 4 is
locally nilpotent, so [4, ¢°] is unipotent by [11], 1.3a). But [4, g°]< N, which is
unipotent-free. Therefore [4, ¢°] = (1), for all ge G, and we have shown that
G € Co(A).

By (¢c) the group 7' = [4, G| < d is a n-group, and it is also abelian of rank at
most . Thus 7" is a Cernikov group and hence its (outer) automorphism group is
isomorphic to some linear growp of characteristic zero ([4], 3.38). Thus H = Cy(T)
is normal of finite index in G by Burnsidc’s theorem (9], 1.23). Let he H. Clearly
A<y A). Henee 4°<E(CR) A) by [11], 4.5 and the unipotent-freeness of 4.
Consequently A°< B = C,(H) and so 4/B is a m-group.

Again let g ¢ G. Then {g) B is hypercentral and [11], 4.5 and the unipotent-
freeness of B yields that (Bn{y(6))°<{,({g)B). Conscquently (BN G(O))°
< BN {(G) and a simple induction vields that

(BNl SBNL () forall 2€i<e.

But Cy;(B) > H has finite index in G, so B< {,(G), for example by [9], 8.1, Therefore
BICy(G) = (BN Lo(G)/(BE(G)) is a m-group and hence so is N/(NO ().

In fact 4 < {4(G), for if a @ 4 then {a)T'is an abelian normal subgroup of G.
Now T is Cernikov and we have just shown that A|C4G) is a m-group. Hence
a) T/Cuyr(G) is also an abelian Cernikov group. As such it is a union of its finite
characteristic subgroups. Therefore {a)T'< {,(G), for all ac 4, and s0 4 < {,(G)
as claimed. But (N : 4) is finite of order dividing e. Consequently so too is
(N: N (o).

(¢) We may assume that N = <x%) for some x, for example by (1). Lét P be
the maximal periodic subgroup of N. By (¢) we have [N, G] < P and hence N = {x)P.
By (d) the group N = N/Cy(G) is a n-group. If A is as in the proof of (b) then
(P: P A) is finite and P A has rank at most n. Therefore N is a Cernikov group.

Now N is also nilpotent. Thus the maximal divisible abelian subgroup J of N
lies in the centre of N ([4] 1.F.1). Let K denote the kernel of the transfer map of N
into J. Then JK = N, see [4] 3.9 and proof, J and K are both characteristic in N, J is
the union of its finite characteristic subgroups and K is finite. Therefore N is the
union of its finite characteristic subgroups,

But NV == {ay, Consequently N is finite and so [N, ,G] = (1) for some integer r.
But then [N, ,, (G) = (1) and N {,.((G) < £,(G). The proof is complete.

(F) Trivially N = L(N). Also N is isomorphic to a linear group by [11], 1.3(b).
Thus & is nilpotent by the linear case ([9], 8.15ii). Now apply (e).

The parts of Theorems Al and B with u(G) = <1} follow at once from (6) by
choosing N = {(G). Clearly then u(N) < u(G) = (1) and N < R(G). Slightly more
geuerally we have the following. :
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(7) Let G be any subgroup of GL(n, D).

(a) LG u(G)u(G) has G-central height at most w--e(n, 2) (at most w+e(n, 3)
ifp=2). ‘ o

(b) [£(6), G]isunipotent by a w-group(w as in (6)(c) and [{(G), ,~ Gl is unipotent-
by-abelian.

(€) L(B)Cyex(GIu(G)) is a m-group.

Proof. Since u(G) is un'triangularizable, G/u(G) is isomorphic to a completely
reducible subgroup of GL(#, D), sec [8], 1.1.2 and proof and 1.1.7. Now apply (6) to
G/u(G) and its normal subgroup N = {(G)u(G)/u(G).

(8) Let G be a subgroup of GL{(n, D) with u(G) = {1). Then

11(G) = L(G), which is nilpotent ,
{6 =R (O =RG.

Note that (5) and (8) deal with all but the u(n, D) <oo case of Theorem C.

Proof. By (5) the set R(G) is a subgroup of @, so by (6) (EL) we have R(g) < (G).
The reverse is always true. Also by (5) we have R(G) = ¢(@). If x & ¢(G) then
{x%Y)eG and (6) (f) yields that x e £,(G). Tt follows that 2(G) = L.(6).

Again by (5) we have that L(G) = &(G). Always 1,(G) < &(G) and &(G)| ¢5(G).
Hence by (6) (f) we have &(G) <{,3(G)<n,(G). Finally #,(G) is isomorphic to
a linear Fitting group by [11], 1.3b). Therefore #,(G) is nilpotent.

(9) The proof of Theorems Al, B and C. In view of (5), (6) and (8) we have
only to consider the case where u(z, D) = m <oo. Then by hypothesis {(G) A u(G)
< §,(@). Now G/u(G) is isomorphic to a completely reducible subgroup of GL(, D).
Apply (6) (b) and (6) (c) to its normal subgroup {(G)u(G)/u(G). Then Theorem Al
follows.

By (7) (b) the group L = [{(G), G] is unipotent by a r-group. Apply (3) to L;
so let H and K be as in that tesult. Then H =;LK nL) is unipotent and hyper-
central in GH. Hence [H, ,,G] = <1} and so

[1(6), ms1G1 < K = LiLOu(G)

is a m-group. This proves Theorem B1. If # = 1 then {(G) is abelian by (7) (b). I!f
n>1 then [L,, ;G) = [{(G),,-;G] is unipotent-by-abelian. Thus [K,,.,G] is
abelian, since K 22gL/u(L), and so

[L:mnx{m, n'-z)G] < [Hs mG] [K’ n*zG]

is also abelian. Theorem B2 follows. Theorems B3 and B4 follow at once from (6) (d)
and the containment {(G)nu(G) < {,.(G).

Suppose A is a normal subgroup of G with N < R(G). Then by (6) (a) and hypo-
thesis Nu(G)/u(G) < {(G/u(G)) and Nru(G) < £,(6).

It follows that N < {(G). If in fact N|eG then Nu(G)/u(G) < ¢.(Glu(@)) by (6) ()
and so N<{,(G). The remaining case of Theorem C follows from this, of. the
deduction of (8) from (6) (a) and ) ().
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(10) The proof of Theorem A2, Clearly G = R(G) here, so by (6) () the group
Gfu(G) is hypercentral. By hypothesis w(G) = 1) or u(G) < {n(G). Therefore G is
hypercentral. By (6) () we have G abelian if n = 1 or if 1 = P =2with u(G) = <1).
By the same result G has central height at most m+1 if 5 = P =2 with m < o0.

Suppose n>2 or n = 2 = p. Then we may pass to G/u(G) and assume that
u(G) = {1). But then G is isomorphic to a linear group of degree n and charac-
teristic p and so the central height of G is bounded by the maximum central height
of such a linear group. For the same reason G cannot have central height w, see [9],8.3.

(11) For every positive integer h there are D and G as in Theorem A2, with
n=p=2 uQ,D)=2"and G nilpotent of class exactly 2"

Proof. The construction works for any prime p. Set g=p' and let
K = P(xy,...,%,) be the rational function field in the g exhibited variables over
the ficld P of p clements. Let y be an indeterminate acting on K as the field auto-
morphism defined by y: x; - x,, 1 for all i modulo g. The skew polynomial ring K[y]
is an Ore domain; let D denote its division ring of quotients. Then Ce(» (¥ is the
centre of D and Galois theory yields that D has index ¢ = p". By [10], 1.2 we have
u(n, D)< q(n—1) for all n>1, so certainly u(2, D)< p". Set

G= <((J)’ 2) (i (1)) xeD><GL(2, D).

Since y? centralizes D, the group G is nilpotent of class at most ¢. But G has a section
isomorphic to the wreath product of a cyclic group of order P by a cyclic group
of order g, so the class of G is exactly ¢ = p* and u(2, D) =p.

Theorems A2 and B immediately yield the following

(12) Let G be a locally nilpotent subgroup of GL(n, D), with u(G) = <1) or
u(n, G) < ow.

Ifm, = and ¢ are as in Theorem B then:

(@) Y"**G is a n-group;

(b) Y™™ " 2NG i abelian; if m=0 then y*G is abelian;

(©) G/l11(G) is a n-group;

) GIL(G) is finite of order dividing e.

(I3) Let G be a subgroup of GL(n, D) and assume u(G) = (1) or u(n, D) < co.
Then ny(G)u(G) = ny(n (G)u(G)) and (1(G): n,(G)) divides e (e as in Theorem B).
Note that u(G) s nilpotent, so 1(G) <7,(G) and the statement of (13) makes
sense. This little result parallels closcly the locally finite-dimensional case,
see [8], 3.5.5, It is not truc in general, see the examples of (22) and (23) below. Actually
by Theorems A2 and B4 we have 1(G) = n(G), {un(G)<ny(G) always and

(tn(6): £an(G)) divides ¢, but the simple proof below avoids using these results.
Since

11(G)u(G) < My (G)fu(G) < ny(n(G)/u(G))
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it also furnishes an alternative proof of a small part of Theorem C, namely that
1:(G) = nyn(G) is nilpotent.

Proof. Always n,(G)< K for K/u(G) = n,(n(G)u(@). By [11], 1.3(b) the
group 7(G)/u(@ is isomorphic to a linear group of degree n and characteristic p.
In particular by the linear case K/u(G) is nilpotent and (n(®): K) divides e,
see [9], 8.2ii). Thus all parts of (13) follow from the nilpotence of K. If u(G) = (1)
this is clear. If u(n, D) = m < oo then [U(G), 1 (G)] = {1}, sou(G) <{(K) and K is
nilpotent.

We conclude this present discussion with two simple conditions that force the
central height to be finite.

(14) Let Gbe a subgroup of GL(n, R), for some finitely generated subring R of D.
Suppose u(G) = {1 or u(n, D)<oo. Then G has finite central height and n(G) is
nilpotent.

If G is any finitely generated subgroup of GL(n, D) then clearly an R exists
as in (14).

Proof. We may assume that u(G) = {1). By definition of specia R is residually
a finite-dimensional algebra. Therefore G is residuvally finite. But [{(G), ,G] is an
abelian n-group by Theorem B, and necessarily it has finite rank. Consequently
[{(G), ,G] is finite and G has finite central height. In particular taking #(G) for G and
using Theorem A2, the group #(G) is nilpotent.

(15) Let G be a subgroup of GL(n, D) satisfying the maximal condition on abelian
characteristic subgroups. If either u(G) = {1) or u(n, Dy<co then G has finite
central height and 1(G) is nilpotent.

Proof. By Theorems Bl and B2 there is a positive integer k such that [{(G), .G}
is an abelian 7- group of finite rank. It must satisfy the maximal condition on charac-
teristic subgroups. Therefore [{(G), ,G] is finite and the result follows.

The following result is the key to Propositions D and E. .

(16) Let F be a field of characteristic p > 0: S a group in P(UN§F*) and D the
division ring of quotients of the group algebra FS. If p = 0 assume S & R(AF N §F ).
If p>0 assume Se R(UF, NF°). Then u(n, D) = n—1 for all n> 1.

Note that D in (16) does exist, for example by 1.4.4 of [8].

Proof. Suppose p>0 and e AF, n F~* Let 4 be an apelian normal sub-
group of Swith a = (S : 4)finite and prime to p. Let K'be the subfield of .D genera-
ted by F and 4. Then S normalizes K and (K[S] : K) = a. In particular it is finite,
so K[S] is a division subring of D. Therefore K[S] = D and (D : K) = a. By
Galois theory (K : Cx(S)) = (S': Cs(4)), which divides a. Also Cy(S) lies in the

centre Z of .D. Hence (D : Z) divides a* and in particular is prime to p. Consequently

u(n, D)<n—1by1.20f [10]. Butn—1 < u(n, F) < u(n, D). Therefore u(n, Dy=n—1
in this case.

Now suppose p>0 and e R(UF, " F ). Then by [11], 5.1 the ring D is
locally residually a division ring of the type just considered. It follows easily that
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u(n, D) = n—1. Finally if p = 0 a slight simplification of the above proof settles.
this case too.

(17) The proof of Proposition B. Part 1 follows from (16) and [11], 1.4b, Part 2
from (16) and [11], 1.4a) and Part 4 immediately from Part 3. Thus consider Part 3.
If p = 0 then S satisfies the hypothesis of Part 1 by [11], 5.6. Suppose p> 0. The
same result yields that

SeP(Un FINROUAF, N F™.

But also S & R(UAF, A F™) by [7], Vol. 2, 9.41 and 9.43. Now we can apply Part 2.

(18) The proof of Proposition D. For each finite subset X of D and finite subset ¥
of the ubring R of D gencrated by X, there is a positive integer d and a ring homo-
morphism of R into the division ring of quotients of the group algebra over F of L
modulo the dih term of the derived series of L, that is one-to-one on Y, see [6]
Section 6.1. Thus Proposition D follows from Part 4 of Proposition E.

(19) Let F be a ficld of characteristic 2, S a group in P(AN F ) (AT, 0 §F9)
and D the division ring of quotients of FS. Suppose Gis a subgroup of GL(2, D) and N
is a normal subgroup of G with N< {(G)nTr(2, D). Then [N, G] is unipotent-free.

Proof. By [I1], 5.1 and a simple local residual argument we may assume that
SeAFn§°, Let Z denote the centre of D. As in the proof of (16) we have
that (D : Z) is finite and odd. Hence if x e D then the minimal poynomial of x
over Z has odd degree and in particular is separable. It follows easily that if g e N
then the characteristic polynomial of ¢ over Z in the obvious action of g on the
Z-space D@ D is also separable. Therefore the Jordan decomposition of g over Z
takes place in GL(2,Z[g, g ') < GL(2, D), cf. [8], 3.1.6 and proof. Thus
N<N,xN;< GL(2, D) by [8], 3.1.7, where N, is unipotent, N, is unipotent-free,
and both are acted on hypercentrally by G, see [8], 3.1.8. Then [Ny, Gl = (1)
by (16) and so [N, GI< N,. Therefore [N, G] is unipotent-free.

(20) Let D be any of the division rings considered in Propositions D and E.
A locally nilpotent subgroup of GL(n, D) has central height at most the greatest central
height of any locally nilpotent linear group of degree n and characteristic char D.
If char D = 2 then every subgroup of GL(2, D) has central height at most 1.

Proof. By Theorem A2 we have only to consider the case n = charD = 2.
Thus let G be a subgroup of GL(2, D) and set N = £(G). If N is irreducible then
Nou(G) = (1) and [N, ¢] = (1) by Theorem B1, If N is not irreducible then by
replacing G by 4 conjugate we may assume that N<Tr(2, D) Also [N, G] is uni-
potent by (7) (b). If D is as in Propositon B then (19) appli.s directly, [N, G is
unipotent-free and so [N, G] = (1>, IT D is as in Proposition D then as in (18) we
obtain that [N, G is locally residually trivial. Hence again [N, G] = G

(21) Let D be any division ring as in Propositions D or E with char D = 0 and
suppose G is a subgroup of GL(n, D), Then [L(G), -G is abelian and unipotent-
Jree and [((G), mux 1,y 1)(G)] and L(G)/Lmmnts, n-1(G) are locally residually m-groups.
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Note that for D as in (21), Theorem B only yields that [{(G), ,G] is an abelian
n-group and that {(G)/(,(G) is a m-group.

Proof. As in previous proofs we reduce to the case where D is as in (16) with
charD = 0 and S e AFn F~°. Then D is finite-dimensional over its centre and {(G)
has a Jordan decomposition !

HO < LG, x{(G)y < GL(n, D),

on the factors of which G acts hypercentrally, see [8], 3.1.8. Since u(n, D) = n—1
by (16) we have [{(6) ,u-1G1= {1). Also [{(G)4, G is a m~group and [[(G)y,-,G]
is abelian by (6) (c). Therefore [{(G), mx(1,n~1Clis a n-group and [{(G),-,G]
is abelian. Further (6) (d) applied to {(G), vields that {(G)max(1,n~13(G) is also
a m-group. The proof is complete.

(22) The proof of Lemma F. By a simple localization argument we may assume
that S has an abelian normal subgroup T'< Cs(F) such that (S : T) is finite and
a power of p. Let K be the subfield of D generated by F and T. Then D = K[S]
and (D : K) = (S : T). By Galois theory (K: Cx(S)) = (S: Cy(K)), which divides
(S : T). Clearly Ci(S) lies in the centre Z of D. Consequently (D :Z) is a finite
power of p and D is special.

(23) Some examples in positive characteristic. Let p be a prime and P = 4]B
the split extension of the elementary abelian p-group 4 by the abelian group B.
‘Suppose that for each finite subset X of A and finitely generated subgroup Y of B
there is a subgroup of Y of finite index a power of p centralizing <X, Y. Then in
particular P is locally nilpotent, being locally, centre by a metabelian p-group.

Pick a basis for 4 and let F be the field of rational functions in the elements
of this basis over the field of p elements. Then 4 can be regarded as an additive
subgroup of F and the action of B on 4 defines an action of B on F. Let S be a free
abelian group mapping (homomorphically) onto B with kernel T. Use this map of S
to B to lift the action of B to one of S on F. Then F and S satisfy the hypotheses
of Lemma F.

Let D be the special division ring of characteristic p so determined by F and S.
Set

10 s 0
G= <(a 1), (0 s). acd,seSY<GLQ, D).

Then G is isomorphic to a split extension 4] of 4 by $ and so G is a central exten-
sion of T' by P. (This step is the critical use of the hypothesis that B is abelian.) In
particular G is locally nilpotent. Moreover G will be hiypercentral (resp. Baer, Fitting
or Gruenberg) if and only if P is. We now make different choices for P.

(a) Suppose P is the (standard, restricted) wreath product of a cyclic group
of order p by a countably infinite, elementary abelian p-group. Then P is a Fitting
group but is not hypercentral (it does not even have the normalizer condition, see [7],
Vol. 2, p. 3). Thus G is a Fitting group but is not hypercentral. Also the centre of P is
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trivial, s0 {{(G) = {(G), and y . .. an infinite p-group for 1 <i<o,s0 y'G is an
infinite p-group for 2<i<w. In particular y'G is never a n-group for i< .

(b) Suppose P is the direct product of groups P; for i = 1,2, ..., where P, is
the wreath product of a cyclic group of order P byacyclicgroup of order p'. Then é is
hypercentral and hypocentral, and a Fitting group, but G is not nilpotent. Also G has
central height and central depth o and y'G is an infinite p-group for 2<i< @.

(c) Suppo?‘e P = A]B, where B = (b is infinite oyclic, 4 is the direct product
of groups fj‘j for J'b““‘ 1,2, ... where 4; = (ay;> %...x (@, ;) is elementary abelian
of order p™ and ajy = apyq (= ay, if i = P’y for all i and J- Then P is not a Baer
group, for if it were we would have B subnormal in P, say in k steps, and then for
P> Fk+1 we would have

_ ot g ?
U= 1{a1;341b] = ai;a}; ... Bt 1,jqke2,5 #F 1.

But P is hypercentral; clearly 4 has P-central height exactly w. If 8" e {,(P) for
some r then b" e {(P) for some 5<w and ¢¥') is subnormal in ALY . A similar
argument to that above (showing <b) is not subnormal) shows that this is false.
Therefore {,(P) = A. For the same reason #,(P) = A.

Here B is frec abelian, so we can choose S = B, T'= (1) and G = P. Then G i
hypercentral but not a Baer group. Also G has central height w+1 and G/{(G)
= Gfny(G) is infinite cyclic. Further G is hypocentral of central depth ® and Y'G is
an infinite p-group for 2<i<w. In particular (1(G): 1,(G)) is infinite.

(d) Suppose P is the direct product of the three groups P considered in (2), (b)
and (c) above. The resulting group G then exhibits the above phenomena in a single
group. In particular

Lo(G) < {i(G) <... <UiB) < ... <L(B)
for1(@ =1(G), m(@=35(G) and o(G)=1(G) =G
are all distinct.

(23) Some examples in characteristic zero. We know of no example of a locally
nilpotent group of matrices over a special division ring of characteristic zero that is
not hypercentral. However we do have the following.

Let 7 be o field of characteristic zero, L = Fu @ Fv, the Lie F-algebra deter-
mined by o, 1] = u, and D the division ring of quotients of the universal enveloping
algebra of L. Then D is a special division ring of characteristic zero. Set

v - 10 _ ul -
G = {q (vt]).g~(0u).1~0,J,2,...)<GL(n,D).

Then G is hypercentral of central height w+1 and hypocentral of central depth ®.
Also {,(G) = 1,(G) = §(G), L(G) = 0(G) = n(G) = G and {(D)/{(G) = n(G)/n4(G)
is infinite cyclic. y'G is infinite and torsion-free for | <i< .

4 — Fundamenta Mathematicae 135.2


Artur


126 B. A. F. Wehrfritz

This group G is the group considered in [11], 6.2. Let 4 = {a;: i 0). Then 4
is an abelian normal subgroup of G, the group G/4 is infinite cyclic and

A<L(@)<m(O) <5< LO),

see [11], 6.2. By 3.4 of [10] we have (v, ) = il and the same inductive proof on / yields
that (v, W) = ilr' for all re Z and /> 0. Thus L(G)n{g) = {1} and 4 = L(G).
Also by [11], 6.2 the group G is hypocentral of central depth at most w and G is not
nilpotent so the central depth is exactly w. Finally the claim concerning 'G follows
easily.
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The structure of compacta satisfying dim(Xx X)<2 dim X
by

Stanislaw Spiez (Warszawa)

Dedicated to Professor Yukihiro Kodama
on his Sixtieth Birthday

Abstract. Let X be a 2-dimensional compactum. In this note we prove that the condition
dim (X'x X)-<4 is satisfied iff any mapping from an arbitrary closed subset 4’ of X into a circle' S
admits an extension X By for some n, where By is a certain 2-dimensional CW-complex defined
in Introduction. As a corollary we obtain that if dim(X x X)< 4, then any mapping X —~R* can be
approximated arbitrarily closely by imbeddings. This together with results of [Kr] and [Sp] shows
that for an m-dimensional compactum X the condition dim(Xx X )<2mis satisfied if and only
if the set of all imbeddings X--~R*™ is dense in the space of all mappings X-R¥, .

Introduction. In this note we prove the case m = 2 of the following

THeorem 1. Let X be an m-dimensional compactum. If dim(XxX) <2m,
then the set E(X, R*™) of all imbeddings X— R* is dense in' the space C(X, R*™)
of all mappings X —R*™. ‘ ‘

The above implication for m > 2 was established in [Sp]. The inverse implication
was proved by J. Krasinkiewicz in [Kr] for all m. Theorem 1 and 2 result of [Kr]
imply the following ‘ " ' ‘ ‘

THEOREM 2. For an m-dimensional compactum X the condition dim(X x X) < 2m
is satisfied if and only if the set E(X, R¥Y is dense in the space C(X, R™™).

The abave result was conjectured by J. Krasinkiewicz (cf [M=R2]). For other
related results the reader is referred to |M-R 1], [K~L], [M--R2], [Kr], [Sp] and [K-K].

The case m = 2 of Theorem | is u consequence of the following main result
of our puper, Tn the statement we necd the following notion. Let Sv T be the one
point union, with the base-point , of the circles § and T. Let @ and b be generators
of the |-homotopy groups 7,(S, %) and 7, (T, %), respectively. By a 2-dimensional
Boltyanskii-Kodama bubble B} we understand the CW-complex obtained by attaching
two 2-cells to §v T by mappings corresponding to the element "b" e n(Sv T, %)
and the commutator [a, b] @ my(S v T, %), respectively. The reason for using this

~ name for B? is that Boltyanskii and Kodama. applied a similar CW-complex in
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